Dietary Ruminant and Industrial Trans-Fatty Acids Intake and Colorectal Cancer Risk
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Diet and Trans Fatty Acids Considered in the Analysis
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASR | Age-adjusted incidence rate |
BMI | Body mass index |
CI | Confidence interval |
CRC | Colorectal cancer |
CLAs | Conjugated linoleic acids |
EA | Elaidic acid |
FFQ | Food Frequency Questionnaire |
FAs | Fatty acids |
FFAs | Free fatty acids |
TFAs | Trans fatty acids |
FINJEM | Finland Job Exposure Matrix |
iTFAs | Industrial trans fatty acids |
LMICS | Low- and Middle-Income Countries |
VC | Vaccenic acid |
NSAIDS | Nonsteroidal anti-inflammatory drugs |
OR | Odds Ratio |
PPWL | Physical activity workload |
rTFAs | Ruminant trans fatty acids |
SES | Socioeconomic status |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Roshandel, G.; Ferlay, J.; Ghanbari-Motlagh, A.; Partovipour, E.; Salavati, F.; Aryan, K.; Mohammadi, G.; Khoshaabi, M.; Sadjadi, A.; Davanlou, M.; et al. Cancer in Iran 2008 to 2025: Recent incidence trends and short-term predictions of the future burden. Cancer Epidemiol. 2021, 149, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, S.L.; Rezaianzadeh, A.; Safe, M.; Tabatabaee, H. Trends of incidence of colorectal cancer in Iran, 2003–2010. Inicio 2019, 14, 295–299. [Google Scholar]
- Baena, R.; Salinas, P. Diet and colorectal cancer. Maturitas 2015, 80, 258–264. [Google Scholar] [CrossRef]
- Aglago, E.K.; Murphy, N.; Huybrechts, I.; Nicolas, G.; Casagrande, C.; Fedirko, V.; Weiderpass, E.; Rothwell, J.A.; Dahm, C.C.; Olsen, A.; et al. Dietary intake and plasma phospholipid concentrations of saturated, monounsaturated and trans fatty acids and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Int. J. Cancer 2021, 149, 865–882. [Google Scholar] [CrossRef]
- Etemadi, A.; Sadjadi, A.; Semnani, S.; Nouraie, S.M.; Khademi, H.; Bahadori, M. Cancer registry in Iran: A brief overview. Arch. Iran. Med. 2008, 11, 577–580. [Google Scholar] [PubMed]
- Heidari, K.; Ahmadian, M.; Hosseinkhani, R.; Ravankhah, Z.; Taherian, Z.; Amini, Z. Results of the program for prevention and control of non-communicable diseases in Isfahan. Sci. J. Kurd. Univ. Med. Sci. 2021, 115, 1–12. [Google Scholar] [CrossRef]
- Mirzaei, H.; Panahi, M.; Etemad, K.; GHanbari-Motlagh, A.; Holakouie-Naini, K. Evaluation of Pilot Colorectal Cancer Screening Programs in Iran. Iran. J. Epidemiol. 2016, 12, 21–28. [Google Scholar]
- Michels, N.; Specht, I.O.; Heitmann, B.L.; Chajès, V.; Huybrechts, I. Dietary trans-fatty acid intake in relation to cancer risk: A systematic review and meta-analysis. Nutr. Rev. 2020, 79, 758–776. [Google Scholar] [CrossRef]
- Lock, A.L.; Parodi, P.W.; Bauman, D.E. The biology of trans fatty acids: Implications for human health and the dairy industry. Aust. J. Dairy Technol. 2005, 60, 134–142. [Google Scholar]
- Weggemans, R.M.; ETrautwein, E.A. Intake of ruminant versus industrial trans fatty acids and risk of coronary heart disease—What is the evidence? Eur. J. Lipid Sci. Technol. 2004, 106, 390–397. [Google Scholar] [CrossRef]
- Stendera, S.; Derberg, J. Influence of Trans Fatty Acids on Health. Ann. Nutr. Metab. 2004, 48, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Ali Abd El-Aal, Y.; Abdel-Fattah, D.M.; El-Dawy Ahmed, K. Some biochemical studies on trans fatty acid-containing diet. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1753–1757. [Google Scholar] [CrossRef]
- Aro, A. Complexity of issue of dietary trans fatty acid. Lancet 2001, 357, 732–733. [Google Scholar] [CrossRef]
- Stender, S.; Dyerberg, J.; Astrup, A. High levels of industrially produced trans-fat in popular fast foods. N. Engl. J. Med. 2006, 354, 1650–1652. [Google Scholar] [CrossRef] [PubMed]
- Umar Khan, M.; Fahimul Hassan, M.; Rauf, A. Determination of trans fat in selected fast-food products and hydrogenated fats of India using attenuated total reflection fourier transform infrared (ATR-FTIR) spectroscopy. J. Oleo. Sci. 2017, 66, 251–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebauer, S.K.; Chardigny, J.M.; Jakobsen, M.U.; Lamarche, B.; Lock, A.L.; Proctor, S.D.; Baer, D.J. Effects of Ruminant trans Fatty Acids on Cardiovascular Disease and Cancer: A Comprehensive Review of Epidemiological, Clinical, and Mechanistic Studies. Adv. Nutr. 2011, 2, 332–354. [Google Scholar] [CrossRef] [Green Version]
- Pipoyan, D.; Stepanyan, S.; Stepanyan, S.; Beglaryan, M.; Costantini, L.; Molinari, R.; Merendino, N. The Effect of Trans Fatty Acids on Human Health: Regulation and Consumption Patterns. Foods 2021, 10, 2452. [Google Scholar] [CrossRef]
- World Health Organization. Cutting into Trans-Fat Consumption in Iran. 2018. Available online: https://www.who.int/news-room/feature-stories/detail/cutting-into-trans-fat-consumption-in-iran (accessed on 25 June 2022).
- Asgary, S.; Nazari, B.; Sarrafzadegan, N.; Saberi, S.; Azadbakht, L.; Esmaillzadeh, A. Fatty acid composition of commercially available Iranian edible oils. J. Res. Med. Sci. 2009, 14, 211–215. [Google Scholar]
- Hadji, M.; Rashidian, H.; Marzban, M.; Gholipour, M.; Naghibzadeh-Tahami, A.; Mohebbi, E.; Ebrahimi, E.; Hosseini, B.; Haghdoost, A.A.; Rezaianzadeh, A.; et al. The Iranian Study of Opium and Cancer (IROPICAN): Rationale, Design, and Initial Findings. Arch. Iran. Med. 2021, 24, 167–176. [Google Scholar] [CrossRef]
- Kauppinen, T.; Toikkanen, J.; Pukkala, E. From cross-tabulations to multipurpose exposure information system: A new job-exposure matrix. Am. J. Ind. Med. 1998, 33, 409–417. [Google Scholar] [CrossRef]
- Kauppinen, T.; Heikkilä, P.; Plato, N.; Woldbaek, T.; Lenvik, K.; Hansen, J.; Kristjansson, V.; Pukkala, E. Construction of job-exposure matrices for the Nordic occupational cancer study. Acta Oncol. 2009, 48, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Mohebbi, E.; Hadji, M.; Rashidian, H.; Rezaianzadeh, A.; Marzban, M.; Haghdoost, A.A.; Naghibzadeh Tahami, A.; Moradi, A.; Gholipour, M.; Najafi, F.; et al. Opium use and the risk of head and neck squamous cell carcinoma. Int. J. Cancer 2021, 148, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- Poustchi, H.; Eghtesad, S.; Kamangar, F.; Etemadi, A.; Keshtkar, A.A.; Hekmatdoost, A.; Mohammadi, Z.; Mahmoudi, Z.; Shayanrad, A.; Roozafzai, F.; et al. Prospective Epidemiological Research Studies in Iran (the PERSIAN Cohort Study): Rationale, Objectives, and Design. Am. J. Epidemiol. 2018, 187, 647–655. [Google Scholar] [CrossRef]
- Haytowitz, D.B.; Ahuja, J.K.C.; Wu, X.; Somanchi, M.; Nickle, M.; Nguyen, Q.A.; Roseland, J.; Williams, J.; Patterson, K.; Li, Y.; et al. USDA National Nutrient Database for Standard Reference. Legacy Release, Nutrient Data Laboratory, Beltsville Human Nutrition Research Center. 2019. Available online: https://data.nal.usda.gov/dataset/usda-national-nutrient-database-standard-reference-legacy-release (accessed on 25 May 2020).
- Food composition tables for the Near East. FAO Food Nutr. Pap. 1982, 26, 1–265.
- Musaiger, A.O. Food Composition Tables for Kingdom of Bahrain. 2011. Available online: https://www.semanticscholar.org/paper/Food-composition-tables-for-Kingdom-of-Bahrain.-Musaiger/ (accessed on 30 May 2020).
- Seyyedsalehi, M.S.; Collatuzzo, G.; Huybrechts, I.; Hadji, M.; Rashidian, H.; Safari-Faramani, R.; Alizadeh-Navaei, R.; Kamangar, F.; Etemadi, A.; Pukkala, E.; et al. Association between dietary fat intake and colorectal cancer in an Iranian population: A multicenter case-control study. Front. Nutr. (Press) 2022, 9, 856408. [Google Scholar]
- Lin, J.; Zhang, S.M.; Cook, N.R.; Lee, I.M.; Buring, J.E. Dietary fat and fatty acids and risk of colorectal cancer in women. Am. J. Epidemiol. 2004, 160, 1011–1022. [Google Scholar] [CrossRef] [Green Version]
- Nkondjock, A.; Shatenstein, B.; Maisonneuve, P.; Ghadirian, P. Assessment of risk associated with specific fatty acids and colorectal cancer among French-Canadians in Montreal: A case-control study. Int. J. Epidemiol. 2003, 32, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Slattery, M.L.; Benson, J.; Ma, K.N.; Schaffer, D.; Potter, J.D. Trans-fatty acids and colon cancer. Nutr. Cancer 2001, 39, 170–175. [Google Scholar] [CrossRef]
- Limburg, P.J.; Liu-Mares, W.; Vierkant, R.A.; Wang, A.H.; Harnack, L.; Flood, A.P.; Sellers, T.A.; Cerhan, J.R. Prospective evaluation of trans-fatty acid intake and colorectal cancer risk in the Iowa Women’s Health Study. Int. J. Cancer 2008, 123, 2717–2719. [Google Scholar] [CrossRef] [Green Version]
- Vinikoor, L.C.; Millikan, R.C.; Satia, J.A.; Schroeder, J.C.; Martin, C.F.; Ibrahim, J.G.; Sandler, R.S. Trans-Fatty Acid Consumption and its Association with Distal Colorectal Cancer in the North Carolina Colon Cancer Study II. Cancer Causes Control 2010, 21, 171–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theodoratou, E.; McNeill, G.; Cetnarskyj, R.; Farrington, S.M.; Tenesa, A.; Barnetson, R.; Porteous, M.; Dunlop, M.; Campbell, H. Dietary fatty acids and colorectal cancer: A case-control study. Am. J. Epidemiol. 2007, 166, 181–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohmori, H.; Fujii, K.; Kadochi, Y.; Mori, S.; Nishiguchi, Y.; Fujiwara, R.; Kishi, S.; Sasaki, T.; Kuniyasu, H. Elaidic Acid, a Trans-Fatty Acid, Enhances the Metastasis of Colorectal Cancer Cells. Pathobiology 2017, 84, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Stender, S.; Astrup, A.; Dyerberg, J. Ruminant and industrially produced trans fatty acids: Health aspects. Food Nutr. Res. 2008, 52. [Google Scholar] [CrossRef] [Green Version]
- McKelvey, W.; Greenland, S.; Sandler, R.S. A second look at the relation between colorectal adenomas and consumption of foods containing partially hydrogenated oils. Epidemiology 2000, 11, 469–473. [Google Scholar] [CrossRef]
- Thompson, A.K.; Shaw, D.I.; Minihane, A.M.; Williams, C.M. Trans-fatty acids and cancer: The evidence reviewed. Nutr. Res. Rev. 2008, 21, 174–188. [Google Scholar] [CrossRef]
- Shiraishi, R.; Iwakiri, R.; Fujise, T.; Kuroki, T.; Kakimoto, T.; Takashima, T.; Sakata, Y.; Tsunada, S.; Nakashima, Y.; Yanagita, T. Conjugated linoleic acid suppresses colon carcinogenesis in azoxymethane-pretreated rats with long-term feeding of diet containing beef tallow. J. Gastroenterol. 2010, 45, 625–635. [Google Scholar] [CrossRef]
- Lehnen, T.E.; da Silva, M.R.; Camacho, A.; Marcadenti, A.; Lehnen, A.M. A review on effects of conjugated linoleic fatty acid (CLA) upon body composition and energetic metabolism. J. Int. Soc. Sports Nutr. 2015, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bardou, M.; Barkun, A.N.; Martel, M. Obesity and colorectal cancer. Gut 2013, 62, 933–947. [Google Scholar] [CrossRef] [Green Version]
- Pena-Serna, C.; Gomez-Ramirez, B.; Zapata-Lopez, N. Nutritional aspects of ghee based on lipid composition. Pak. J. Nutr. 2019, 18, 1107–1114. [Google Scholar] [CrossRef]
- Sharma, H.; Zhang, X.; Dwivedi, C. The effect of ghee (clarified butter) on serum lipid levels and microsomal lipid peroxidation. Ayu 2010, 31, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization Regional Office for the Eastern Mediterranean (WHO/EMRO). Strategy on Nutrition for the Eastern Mediterranean Region 2020–2030; WHO/EMRO: Cairo, Egypt, 2019; Available online: https://apps.who.int/iris/handle/10665/330059 (accessed on 28 June 2022).
- World Health Organization (WHO). Elimination of trans fatty acids in the Eastern Mediterranean Region. East Mediterr Health J. 2021, 27, 639–640. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.euro.who.int/__data/assets/pdf_file/0010/288442/Eliminating-trans-fats-in-Europe-A-policy-brief.pdf (accessed on 20 July 2020).
- Wanders, A.J.; Zock, P.L.; Brouwer, I.A. A Trans-fat intake and its dietary sources in general populations worldwide: A systematic review. Nutrients 2017, 9, 840. [Google Scholar] [CrossRef] [PubMed]
- Safari, A.; Shariff, Z.M.; Kandiah, M.; Rashidkhani, B.; Fereidooni, F. Dietary patterns and risk of colorectal cancer in Tehran Province: A case–control study. BMC Public Health 2013, 13, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafari, F.; Kholdi, N.; Davati, A.; Nezamdust, Z. The Study of Oils Consumption Pattern and Its Related Factors in East Tehran. J. Fasa Univ. Med. Sci. 2013, 3, 202–207. [Google Scholar]
- Salehzadeh, H.; Soori, M.M.; Sadegh, S.H.; Shahsawari, S.; Mohammadi, S.H.; Saifi, M.; Mozaffari, P. The type and amount of household oil consumption and the influential factors in Sanandaj city, Iran. J. Adv. Environ. Health Res. 2019, 7, 1–7. [Google Scholar]
- Karimi, B.; Ghorbani, R.; Haghighi, S.; Irajian, G.H.; Habibian, H.; Sayadjou, S.; Ghazavi, S.; Kolahdouz, K. Effects of educational intervention on women’s behaviors in utilization of oils and fats. J. Semnan Univ. Med. Sci. 2010, 11, 255–263. [Google Scholar]
- Mohebbi, E.; Rashidian, H.; Naghibzadeh Tahami, A.; Haghdoost, A.A.; Rahimi-Movaghar, A.; Seyyedsalehi, M.S.; Rezaianzadeh, A.; Marzban, M.; Moradi, A.; Gholipour, M.; et al. Opium use reporting error in case-control studies: Neighborhood controls versus hospital visitor controls. Med. J. Islam. Repub. Iran 2021, 35, 457–463. [Google Scholar] [CrossRef]
Controls | Cases | |||
---|---|---|---|---|
Colorectal * | Colon | Rectum | ||
Total, N (%) | 3206 (100%) | 865 (100%) | 434 (100%) | 404 (100%) |
Province, N (%) | ||||
Tehran | 816 (25%) | 165 (19%) | 101 (23%) | 64 (15%) |
Fars | 943 (29%) | 248 (28%) | 93 (21%) | 155 (38%) |
Kerman | 525 (16%) | 100 (11%) | 49 (11%) | 51 (12%) |
Golestan | 373 (11%) | 149 (17%) | 89 (20%) | 53 (13%) |
Mazandaran | 136 (4%) | 59 (6%) | 34 (7%) | 25 (6%) |
Kermanshah | 251 (7%) | 68 (7%) | 31 (7%) | 35 (8%) |
Mashhad | 162 (5%) | 76 (8%) | 37 (8%) | 21 (5%) |
Gender, N (%) | ||||
Women | 1003 (31.28%) | 368 (42.54%) | 193 (44.47%) | 169 (41.83%) |
Men | 2203 (68.71%) | 497 (57.46%) | 241 (55.53%) | 235 (58.17%) |
Age at interview, years, N (%) | ||||
<30 | 21 (0.66%) | 8 (0.92%) | 3 (0.69%) | 5 (1.24%) |
>=30 & <40 | 227 (7.08%) | 60 (6.94%) | 32 (7.37%) | 27 (6.68%) |
>=40 & <50 | 503 (15.69%) | 126 (14.57%) | 64 (14.75%) | 58 (14.36%) |
>=50 & <60 | 993 (30.97%) | 242 (27.98%) | 112 (25.81%) | 123 (30.45%) |
>=60 & <70 | 1020 (31.82%) | 258 (29.83%) | 137 (31.57%) | 112 (27.72%) |
>=70 | 442 (13.79%) | 171 (19.77%) | 86 (19.82%) | 79 (19.55%) |
SES, N (%) | ||||
Low | 861 (26.86%) | 337 (38.27%) | 159 (36.64%) | 161 (39.85%) |
Moderate | 1078 (33.62%) | 234 (27.05%) | 118 (27.19%) | 109 (26.98%) |
High | 1267 (39.52%) | 300 (34.68%) | 157 (36.18%) | 134 (33.17%) |
Tobacco consumption, N (%) | ||||
Never | 2153 (67.16%) | 629 (72.72%) | 334 (76.96%) | 274 (67.82%) |
Ever | 1053 (32.84%) | 236 (27.28%) | 100 (23.04%) | 130 (32.18%) |
Opium consumption, N (%) | ||||
Never use | 2646 (82.53%) | 731 (84.51%) | 369 (85.02%) | 340 (84.16%) |
Regular user | 432 (13.47%) | 88 (10.17%) | 40 (9.22%) | 46 (11.39%) |
Non-regular user | 128 (3.99%) | 46 (5.32%) | 25 (5.76%) | 18 (4.46%) |
Physical activity workload, N (%) | ||||
Sedentary | 1034 (32.27%) | 287 (33.18%) | 147 (33.87%) | 132 (32.67%) |
Moderate | 701 (21.88%) | 155 (17.92%) | 78 (17.97%) | 72 (17.82%) |
Heavy | 694 (21.66%) | 184 (21.27%) | 87 (20.05%) | 87 (21.53%) |
Unknown | 775 (24.19%) | 239 (27.63%) | 122 (28.11%) | 113 (27.97%) |
Aspirin use, N (%) | ||||
No | 2469 (77%) | 709 (81.97%) | 358 (82.49%) | 327 (80.94%) |
Yes | 737 (22.99%) | 156 (18.03%) | 76 (17.51%) | 77 (19.06%) |
BMI, kg/m2, mean (±SD) | 26.6 (±4.72) | 26.9 (±4.99) | 26.9 (±5.07) | 26.8 (±4.85) |
BMI, N (%) | ||||
Underweight (<18.5) | 90 (2.81%) | 28 (3.24%) | 14 (3.23%) | 14(3.47%) |
Normoweight (>=18.5 & <25) | 1121 (34.97%) | 261 (30.17%) | 135 (31.11%) | 119(29.46%) |
Overweight (>=25 & <30) | 1311 (40.89%) | 371 (42.89%) | 184 (42.40%) | 177 (43.81%) |
Obese (>=30) | 684 (21.33%) | 205 (23.70%) | 101 (23.27%) | 94(23.27%) |
Dietary intake, mean(±SD) | ||||
Total processed meat (g/day) | 1.9 (±0.12) | 2.2 (±0.26) | 2.5 (±0.43) | 1.8 (±0.31) |
Fiber (g/day) | 24.7 (±11) | 26.8 (±12) | 25.2 (±12) | 26.3 (±13) |
Calcium (mg/day) | 860.3 (±6.6) | 908.2 (±14.7) | 920.6 (±20.9) | 880.2 (±21.2) |
Dietary energy intake (Kcal/day) | 2319.4 (±878) | 2405.6 (±1076) | 2387.2 (±1082) | 2393.2 (±1066) |
Dietary energy intake from total fat (Kcal/day) | 616.68 (±261) | 696.51 (±351) | 714.6 (±351) | 667.71 (±351) |
Dietary energy intake from total TFAs (Kcal/day) | 3.78 (±2.52) | 4.14 (±2.97) | 4.41 (±3.06) | 3.78 (±2.79) |
Trans fatty acids (TFA) Dietary intakes(g/day), mean (±SD) | ||||
Total fat | 68.52 (±29.92) | 77.39 (±39.70) | 79.40 (±39.71) | 74.19 (±39.29) |
Total trans fatty acid | 0.42 (±0.28) | 0.46 (±0.33) | 0.49 (±0.34) | 0.42 (±0.31) |
Total industrial trans fatty acids | 0.32 (±0.21) | 0.36 (±0.26) | 0.38 (±0.26) | 0.32 (±0.24) |
EA | 0.30 (±0.22) | 0.34 (±0.26) | 0.36 (±0.26) | 0.31 (±0.25) |
Total trans ruminant fatty acids | 0.10 (±0.07) | 0.11 (±0.08) | 0.11 (±0.09) | 0.10 (±0.07) |
CLAs | 0.05 (±0.04) | 0.06 (±0.05) | 0.06 (±0.05) | 0.05 (±0.04) |
Trans Fatty Acids | Colorectal Cancer | Colon | Proximal Colon | Distal Colon | Rectum | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean (g/day) | Num. Case | Multivariable OR (95%CI) | Mean (g/day) | Num. Case | Multivariable OR (95%CI) | Mean (g/day) | Num. Case | Multivariable OR (95 %CI) | Mean (g/day) | Num. Case | Multivariable OR (95 %CI) | Mean (g/day) | Num. Case | Multivariable OR (95 %CI) | ||
Total trans fatty acid | Q1 | 0.267 | 219 | Ref. | 0.293 | 108 | Ref. | 0.258 | 30 | Ref. | 0.292 | 52 | Ref. | 0.234 | 105 | Ref. |
Q2 | 0.374 | 196 | 1.13 (0.89–1.45) | 0.388 | 100 | 1.09 (0.79–1.51) | 0.411 | 33 | 0.87 (0.50–1.52) | 0.336 | 42 | 1.07 (0.67–1.72) | 0.351 | 89 | 1.22 (0.87–1.70) | |
Q3 | 0.481 | 201 | 1.38 (1.07–1.77) | 0.506 | 90 | 1.42 (1.02–1.98) | 0.498 | 34 | 1.051 (0.60–1.84) | 0.512 | 32 | 1.31 (0.81–2.13) | 0.454 | 106 | 1.36 (0.96–1.93) | |
Q4 | 0.695 | 249 | 1.31 (1.02–1.68) | 0.723 | 136 | 1.29 (0.93–1.80) | 0.698 | 48 | 1.53 (0.91–2.58) | 0.715 | 59 | 1.15 (0.71–1.88) | 0.634 | 104 | 1.37 (0.97–1.94) | |
Q4 vs. Q1 | 1.10 (1.01–1.19) | 1.10 (0.99–1.22) | 1.17 (0.99–1.39) | 1.06 (0.91–1.24) | 1.10 (0.99–1.23) | |||||||||||
p-trend | 0.015 | 0.061 | 0.064 | 0.397 | 0.064 | |||||||||||
Total industrial trans fatty acids | Q1 | 0.116 | 222 | Ref. | 0.115 | 92 | Ref. | 0.123 | 29 | Ref. | 0.105 | 43 | Ref. | 0.117 | 126 | Ref. |
Q2 | 0.240 | 195 | 1.36 (1.01–1.84) | 0.240 | 95 | 1.63 (1.08–2.46) | 0.242 | 35 | 2.34 (1.18–4.63) | 0.238 | 41 | 0.98 (0.54–1.76) | 0.241 | 96 | 1.15 (0.78–1.71) | |
Q3 | 0.332 | 180 | 1.53 (1.05–2.22) | 0.334 | 93 | 1.91 (1.15–3.16) | 0.333 | 27 | 2.148 (0.93–4.95) | 0.333 | 43 | 1.72 (0.85–3.47) | 0.329 | 81 | 1.32 (0.80–2.19) | |
Q4 | 0.613 | 265 | 1.73 (1.12–2.68) | 0.652 | 154 | 2.47 (1.40–4.37) | 0.638 | 54 | 2.94 (1.15–7.51) | 0.670 | 58 | 2.32 (1.02–5.28) | 0.661 | 101 | 1.23 (0.67–2.27) | |
Q4 vs. Q1 | 1.17 (1.02–1.34) | 1.28(1.07–1.54) | 1.32 (0.98–1.77) | 1.33 (1.02–1.73) | 1.07 (0.88–1.31) | |||||||||||
p-trend | 0.026 | 0.006 | 0.064 | 0.033 | 0.468 | |||||||||||
Elaidic acid | Q1 | 0.099 | 224 | Ref. | 0.102 | 100 | Ref. | 0.106 | 33 | Ref. | 0.098 | 48 | Ref. | 0.098 | 122 | Ref. |
Q2 | 0.224 | 198 | 1.68 (1.18–2.41) | 0.227 | 88 | 2.07 (1.28–3.33) | 0.230 | 33 | 5.46 (2.41–12.42) | 0.230 | 38 | 0.78 (0.38–1.62) | 0.222 | 103 | 1.45 (0.88–2.39) | |
Q3 | 0.317 | 171 | 2.52 (1.56–4.07) | 0.319 | 90 | 3.47 (1.85–6.50) | 0.325 | 26 | 10.22 (3.37–30.96) | 0.313 | 38 | 1.43 (0.56–3.62) | 0.311 | 77 | 2.49 (1.25–4.95) | |
Q4 | 0.601 | 272 | 2.69 (1.46–4.93) | 0.635 | 156 | 3.98 (1.82–8.73) | 0.620 | 53 | 13.78 (3.50–54.21) | 0.649 | 61 | 1.33 (0.41–4.35) | 0.653 | 102 | 2.45 (1.01–5.93) | |
Q4 vs. Q1 | 1.43 (1.19–1.73) | 1.58 (1.24–2.02) | 2.12 (1.40–3.20) | 1.15 (0.80–1.66) | 1.40 (1.07–1.83) | |||||||||||
p-trend | 0.000 | 0.000 | 0.000 | 0.428 | 0.012 | |||||||||||
Total trans ruminant fatty acids | Q1 | 0.030 | 220 | Ref. | 0.031 | 101 | Ref. | 0.032 | 32 | Ref. | 0.031 | 49 | Ref. | 0.029 | 116 | Ref. |
Q2 | 0.070 | 220 | 0.63 (0.47–0.85) | 0.073 | 96 | 0.52 (0.35–0.78) | 0.074 | 40 | 0.66 (0.35–1.26) | 0.073 | 39 | 0.65 (0.36–1.15) | 0.069 | 120 | 0.73 (0.49–1.07) | |
Q3 | 0.107 | 161 | 0.43 (0.29–0.64) | 0.106 | 89 | 0.42 (0.25–0.69) | 0.106 | 22 | 0.54 (0.24–1.19) | 0.106 | 42 | 0.31 (0.14–0.67) | 0.107 | 66 | 0.40 (0.23–0.68) | |
Q4 | 0.187 | 264 | 0.60 (0.39–0.93) | 0.201 | 148 | 0.46 (0.26–0.82) | 0.193 | 51 | 0.42 (0.16–1.08) | 0.211 | 55 | 0.35 (0.15–0.82) | 0.193 | 102 | 0.70 (0.38–1.28) | |
Q4 vs. Q1 | 0.85 (0.73–0.98) | 0.80 (0.67–0.97) | 0.75 (0.55–1.02) | 0.71 (0.54–0.94) | 0.86 (0.70–1.05) | |||||||||||
p-trend | 0.031 | 0.026 | 0.072 | 0.017 | 0.163 | |||||||||||
Conjugated linoleic acid(CLAs) | Q1 | 0.017 | 218 | Ref. | 0.017 | 99 | Ref. | 0.018 | 33 | Ref. | 0.017 | 46 | Ref. | 0.016 | 116 | Ref. |
Q2 | 0.040 | 219 | 0.55 (0.38–0.80) | 0.040 | 95 | 0.42 (0.25–0.69) | 0.040 | 37 | 0.36 (0.15–0.85) | 0.039 | 41 | 0.79 (0.36–1.69) | 0.039 | 120 | 0.68 (0.41–1.15) | |
Q3 | 0.059 | 164 | 0.34 (0.19–0.60) | 0.059 | 90 | 0.25 (0.12–0.53) | 0.059 | 25 | 0.20 (0.06–0.72) | 0.059 | 42 | 0.28 (0.08–0.89) | 0.060 | 69 | 0.37 (0.16–0.84) | |
Q4 | 0.106 | 264 | 0.55 (0.28–1.09) | 0.114 | 150 | 0.32 (0.13–0.79) | 0.112 | 50 | 0.18 (0.04–0.85) | 0.120 | 56 | 0.41 (0.10–1.66) | 0.113 | 99 | 0.79 (0.29–2.13) | |
Q4 vs. Q1 | 0.93 (0.75–1.15) | 0.83 (0.63–1.11) | 0.75 (0.46–1.20) | 0.85 (0.55–1.30) | 0.98 (0.72–1.34) | |||||||||||
p-trend | 0.523 | 0.218 | 0.239 | 0.461 | 0.940 |
Anatomical Location | Trans Fatty Acids Type | Tertiles | Gender | Age | ||||
---|---|---|---|---|---|---|---|---|
Male (Ncase = 497/ Ncontrol = 2203) | Female (Ncase = 368/ Ncontrol = 1003) | P_heterogeneity ** | <= 50 (Ncase = 206/ Ncontrol = 871) | >50 (Ncase =659/ Ncontrol = 2335) | P_heterogeneity ** | |||
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |||||
Colorectal | Total | Q2 | 1.28 (0.97–1.69) | 1.11 (0.79–1.56) | 1.54 (0.97–2.43) | 1.18 (0.93–1.51) | ||
Q3 | 1.22 (0.92–1.63) | 1.33 (0.94–1.87) | 1.12 (0.71–1.75) | 1.46 (1.13–1.88) | ||||
Q3 vs. Q1* | 1.10 (0.96–1.27) | 1.16 (0.97–1.37) | 0.21 | 1.03 (0.83–1.28) | 1.21 (1.06–1.37) | 0.12 | ||
Industrial | Q2 | 1.07 (0.74–1.55) | 1.01 (0.65–1.57) | 0.90 (0.51–1.58) | 1.14 (0.83–1.58) | |||
Q3 | 1.28 (0.79–2.06) | 1.66 (0.93–2.97) | 0.82 (0.41–1.64) | 1.76 (1.15–2.70) | ||||
Q3 vs. Q1 | 1.11 (0.88–1.41) | 1.29 (0.96–1.71) | 0.14 | 0.86 (0.61–1.21) | 1.31 (1.06–1.62) | 0.02 | ||
Ruminant | Q2 | 0.86 (0.59- 1.24) | 0.61 (0.39–0.96) | 0.83 (0.47–1.47) | 0.69 (0.50–0.96) | |||
Q3 | 0.89 (0.55–1.44) | 0.54 (0.29–0.99) | 1.06 (0.53–2.12) | 0.63 (0.40–0.98) | ||||
Q3 vs. Q1 | 0.95 (0.75–1.21) | 0.74 (0.55–1.00) | 0.02 | 1.08 (0.76–1.52) | 0.80 (0.64–0.99) | 0.04 | ||
Colon | Total | Q2 | 1.14 (0.78–1.67) | 1.21 (0.78–1.88) | 1.40 (.77–2.54) | 1.17 (0.84–1.63) | ||
Q3 | 1.22 (0.83–1.79) | 1.56 (1.01–2.42) | 0.92 (0.51–1.68) | 1.73 (1.24–2.42) | ||||
Q3 vs. Q1 | 1.10 (0.91–1.33) | 1.25 (1.01–1.55) | 0.76 | 0.93 (0.70–1.23) | 1.32(1.12–1.56) | 0.13 | ||
Industrial | Q2 | 1.53 (0.91–2.57) | 0.68 (0.38–1.22) | 0.76 (0.35–1.64) | 1.24 (0.79–1.94) | |||
Q3 | 2.32 (1.22–4.39) | 1.01 (0.48–2.13) | 0.77 (0.30–1.93) | 2.21 (1.26–3.89) | ||||
Q3 vs. Q1 | 1.48 (1.08–2.02) | 1.02 (0.70–1.47) | 0.03 | 0.82 (0.52–1.27) | 1.48 (1.12–1.95) | 0.13 | ||
Ruminant | Q2 | 0.70 (0.42–1.15) | 0.98 (0.54–1.78) | 1.01 (0.46–2.18) | 0.67 (0.43–1.05) | |||
Q3 | 0.60 (0.32–1.13) | 0.93 (0.42–2.08) | 1.45 (0.57–3.67) | 0.49 (0.27–0.89) | ||||
Q3 vs. Q1 | 0.79 (0.58–1.08) | 0.96 (0.65–1.41) | 0.21 | 1.29 (0.82–2.02) | 0.71 (0.54–0.95) | 0.43 | ||
Rectum | Total | Q2 | 1.65 (1.14–2.40) | 0.91 (0.57–1.48) | 1.92 (1.00–3.68) | 1.23 (0.89–1.71) | ||
Q3 | 1.40 (0.93–2.09) | 0.99 (0.62–1.60) | 1.40 (0.74–2.67) | 1.24 (0.87–1.75) | ||||
Q3 vs. Q1 | 1.18 (0.97–1.44) | 1.01 (0.79–1.28) | 0.12 | 1.14 (0.84–1.54 | 1.11 (0.93–1.32) | 0.30 | ||
Industrial | Q2 | 0.82 (0.50–1.35) | 1.50 (0.83–2.69) | 1.06 (0.49–2.28) | 1.10 (0.72–1.70) | |||
Q3 | 0.74 (0.38–1.46) | 2.75 (1.20–6.28) | 0.87 (0.33–2.33) | 1.44 (0.79–2.60) | ||||
Q3 vs. Q1 | 0.86 (0.62–1.19) | 1.67 (1.11–2.49) | 0.30 | 0.91 (0.56–1.48) | 1.19 (0.89–1.59) | 0.17 | ||
Ruminant | Q2 | 1.00 (0.61–1.64) | 0.37 (0.20–0.68) | 0.68 (0.32–1.46) | 0.65 (0.42–1.02) | |||
Q3 | 1.19 (0.61–2.34) | 0.32 (0.14–0.75) | 0.69 (0.26–1.82) | 0.70 (0.38–1.29) | ||||
Q3 vs. Q1 | 1.08 (0.77–1.51) | 0.56 (0.37–0.84) | 0.07 | 0.85 (0.52–1.38) | 0.83 (0.62–1.11) | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seyyedsalehi, M.S.; Collatuzzo, G.; Rashidian, H.; Hadji, M.; Gholipour, M.; Mohebbi, E.; Kamangar, F.; Pukkala, E.; Huybrechts, I.; Gunter, M.J.; et al. Dietary Ruminant and Industrial Trans-Fatty Acids Intake and Colorectal Cancer Risk. Nutrients 2022, 14, 4912. https://doi.org/10.3390/nu14224912
Seyyedsalehi MS, Collatuzzo G, Rashidian H, Hadji M, Gholipour M, Mohebbi E, Kamangar F, Pukkala E, Huybrechts I, Gunter MJ, et al. Dietary Ruminant and Industrial Trans-Fatty Acids Intake and Colorectal Cancer Risk. Nutrients. 2022; 14(22):4912. https://doi.org/10.3390/nu14224912
Chicago/Turabian StyleSeyyedsalehi, Monireh Sadat, Giulia Collatuzzo, Hamideh Rashidian, Maryam Hadji, Mahin Gholipour, Elham Mohebbi, Farin Kamangar, Eero Pukkala, Inge Huybrechts, Marc J. Gunter, and et al. 2022. "Dietary Ruminant and Industrial Trans-Fatty Acids Intake and Colorectal Cancer Risk" Nutrients 14, no. 22: 4912. https://doi.org/10.3390/nu14224912
APA StyleSeyyedsalehi, M. S., Collatuzzo, G., Rashidian, H., Hadji, M., Gholipour, M., Mohebbi, E., Kamangar, F., Pukkala, E., Huybrechts, I., Gunter, M. J., Chajes, V., Boffetta, P., & Zendehdel, K. (2022). Dietary Ruminant and Industrial Trans-Fatty Acids Intake and Colorectal Cancer Risk. Nutrients, 14(22), 4912. https://doi.org/10.3390/nu14224912