Supplementation of Lactobacillus plantarum (TCI227) Prevented Potassium-Oxonate-Induced Hyperuricemia in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Ethics Statement
2.2. Design of Animal Experiments
2.3. Chemicals
2.4. Serum Biochemical Parameter Analysis
2.5. Uric Acid Content of Serum and Urine Analysis
2.6. Analysis of Short-Chain Fatty Acid Composition in Feces
2.7. Stool DNA Purification and Next-Generation Sequencing for Intestinal Microbiota Analysis
2.8. Statistical Analyses
3. Results
3.1. TCI227 Improved Body Weight and Diet in PO-Induced HC Rats
3.2. TCI227 Improved Hyperuricemia and Did Not Affect Liver and Kidney Function
3.3. TCI227 Increased SCFAs and Diversity of Intestinal Microbiota
3.4. TCI227 Changed Composition of Intestinal Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Akram, M.; Asghar, M.N.; Saleem Khan, M.; Shahid, S.; Abdur Rahman, H.M.; Nadeem, I. Development and validation of an economical uric acid-Fe(3+)/Fe(2+)-ferrozine-based colorimetric assay to estimate uric acid level of pure and biological samples. Biosci. Biotechnol. Biochem. 2020, 84, 1967–1974. [Google Scholar] [CrossRef] [PubMed]
- Trinchieri, A.; Montanari, E. Biochemical and dietary factors of uric acid stone formation. Urolithiasis 2018, 46, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.K.; Mount, D.B. The molecular physiology of uric acid homeostasis. Annu. Rev. Physiol. 2015, 77, 323–345. [Google Scholar] [CrossRef] [PubMed]
- Bardin, T.; Richette, P. Definition of hyperuricemia and gouty conditions. Curr. Opin. Rheumatol. 2014, 26, 186–191. [Google Scholar] [CrossRef]
- Torralba, K.D.; De Jesus, E.; Rachabattula, S. The interplay between diet, urate transporters and the risk for gout and hyperuricemia: Current and future directions. Int. J. Rheum. Dis. 2012, 15, 499–506. [Google Scholar] [CrossRef]
- Ben Salem, C.; Slim, R.; Fathallah, N.; Hmouda, H. Drug-induced hyperuricaemia and gout. Rheumatology 2017, 56, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Kubota, M. Hyperuricemia in Children and Adolescents: Present Knowledge and Future Directions. J. Nutr. Metab. 2019, 2019, 3480718. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, J.; Wang, Z.; Ang, K.Y.; Huang, S.; Hou, Q.; Su, X.; Qiao, J.; Zheng, Y.; Wang, L.; et al. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans. Sci. Rep. 2016, 6, 20602. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.; Piceno, Y.M.; DeSantis, T.Z.; Pahl, M.; Andersen, G.L.; Vaziri, N.D. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am. J. Nephrol. 2014, 39, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Hosomi, A.; Nakanishi, T.; Fujita, T.; Tamai, I. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS ONE 2012, 7, e30456. [Google Scholar] [CrossRef]
- Andres, M.; Sivera, F.; Falzon, L.; Buchbinder, R.; Carmona, L. Dietary supplements for chronic gout. Cochrane. Database Syst. Rev. 2014, 10, CD010156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.L.; Hou, Y.H.; Wang, C.S.; Lin, S.W.; Jhou, B.Y.; Chen, C.C.; Chen, Y.L. Antiobesity and Uric Acid-Lowering Effect of Lactobacillus plantarum GKM3 in High-Fat-Diet-Induced Obese Rats. J. Am. Coll. Nutr. 2019, 38, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Guevarra, R.B.; Kim, Y.T.; Kwon, J.; Kim, H.; Cho, J.H.; Kim, H.B.; Lee, J.H. Role of Probiotics in Human Gut Microbiome-Associated Diseases. J. Microbiol. Biotechnol. 2019, 29, 1335–1340. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, C.; Zeng, X.; Yuan, Z. Microecological treatment of hyperuricemia using Lactobacillus from pickles. BMC Microbiol. 2020, 20, 195. [Google Scholar] [CrossRef]
- Hongyan, L.; Suling, W.; Weina, Z.; Yajie, Z.; Jie, R. Antihyperuricemic effect of liquiritigenin in potassium oxonate-induced hyperuricemic rats. Biomed. Pharm. 2016, 84, 1930–1936. [Google Scholar] [CrossRef]
- White, W.B.; Saag, K.G.; Becker, M.A.; Borer, J.S.; Gorelick, P.B.; Whelton, A.; Hunt, B.; Castillo, M.; Gunawardhana, L.; Investigators, C. Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout. N. Engl. J. Med. 2018, 378, 1200–1210. [Google Scholar] [CrossRef]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Ma, L.; Fu, P. Gut microbiota-derived short-chain fatty acids and kidney diseases. Drug Des. Devel. Ther. 2017, 11, 3531–3542. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Indiani, C.; Rizzardi, K.F.; Castelo, P.M.; Ferraz, L.F.C.; Darrieux, M.; Parisotto, T.M. Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Child. Obes. 2018, 14, 501–509. [Google Scholar] [CrossRef]
- Zhong, Y.; Nyman, M.; Fak, F. Modulation of gut microbiota in rats fed high-fat diets by processing whole-grain barley to barley malt. Mol. Nutr. Food Res. 2015, 59, 2066–2076. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.S. Ancient insights into uric acid metabolism in primates. Proc. Natl. Acad. Sci. USA 2014, 111, 3657–3658. [Google Scholar] [CrossRef] [Green Version]
- Kratzer, J.T.; Lanaspa, M.A.; Murphy, M.N.; Cicerchi, C.; Graves, C.L.; Tipton, P.A.; Ortlund, E.A.; Johnson, R.J.; Gaucher, E.A. Evolutionary history and metabolic insights of ancient mammalian uricases. Proc. Natl. Acad. Sci. USA 2014, 111, 3763–3768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalbeth, N.; So, A. Hyperuricaemia and gout: State of the art and future perspectives. Ann. Rheum. Dis. 2010, 69, 1738. [Google Scholar] [CrossRef] [PubMed]
- Pacher, P.; Nivorozhkin, A.; Szabó, C. Therapeutic Effects of Xanthine Oxidase Inhibitors: Renaissance Half a Century after the Discovery of Allopurinol. Pharmacol. Rev. 2006, 58, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, S.; Zhang, C.; Song, H. Natural Products Improving Hyperuricemia with Hepatorenal Dual Effects. Evid. Based Complement. Altern. Med. Ecam 2016, 2016, 7390504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarvaiya, V.N.; Sadariya, K.A.; Pancha, P.G.; Thaker, A.M.; Patel, A.C.; Prajapati, A.S. Evaluation of antigout activity of Phyllanthus emblica fruit extracts on potassium oxonate-induced gout rat model. Vet. World 2015, 8, 1230–1236. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Liang, X.S.; Huang, L.W.; Luo, Z.G.; Tan, L. The optimization and assessment of the method for inducing hyperuricemia in rats. Chin. J. Appl. Physiol. 2020, 36, 223–227. [Google Scholar] [CrossRef]
- Piao, Y.; Liu, Y.; Xie, X. Change trends of organ weight background data in sprague dawley rats at different ages. J. Toxicol. Pathol. 2013, 26, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Křížova, E.; Imek, V.S.; Abelenda, M.; Puerta, M. Food intake and body weight in rats with daily food-availability restrictions. Physiol. Behav. 1996, 60, 791–794. [Google Scholar] [CrossRef]
- Sica, A.; Erreni, M.; Allavena, P.; Porta, C. Macrophage polarization in pathology. Cell. Mol. Life Sci. 2015, 72, 4111–4126. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Lee, M.A.; Do, H.N.; Song, Y.I.; Bae, R.J.; Lee, H.Y.; Park, S.H.; Kang, J.S.; Kang, J.K. Historical control data from 13-week repeated toxicity studies in Crj:CD (SD) rats. Lab. Anim. Res. 2012, 28, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abubakar, S.; Sule, M. Effect of oral administration of aqueous extract of cassia occidentalis l. seeds on serum electrolytes concentration in rats. Bayero J. Pure Appl. Sci. 2010, 3, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Lv, Q.; Xu, D.; Zhang, X.; Yang, X.; Zhao, P.; Cui, X.; Liu, X.; Yang, W.; Yang, G.; Xing, S. Association of Hyperuricemia With Immune Disorders and Intestinal Barrier Dysfunction. Front. Physiol. 2020, 11, 524236. [Google Scholar] [CrossRef] [PubMed]
- Abu-Gharbieh, E.; Shehab, N.G.; Almasri, I.M.; Bustanji, Y. Antihyperuricemic and xanthine oxidase inhibitory activities of Tribulus arabicus and its isolated compound, ursolic acid: In vitro and in vivo investigation and docking simulations. PLoS ONE 2018, 13, e0202572. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.-T.; Li, J.; Su, D.-X.; Dong, J.-F.; Li, C.-F. Hypouricemic effect of the methanol extract from Prunus mume fruit in mice. Pharm. Biol. 2012, 50, 1423–1427. [Google Scholar] [CrossRef]
- Zmora, N.; Bashiardes, S.; Levy, M.; Elinav, E. The Role of the Immune System in Metabolic Health and Disease. Cell Metab. 2017, 25, 506–521. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Yang, X.; Lv, Q.; Yan, Z.; Chen, Z.; Xu, D.; Liu, X.; Yang, W.; Xing, S. Soluble uric acid induces inflammation via TLR4/NLRP3 pathway in intestinal epithelial cells. Iran. J. Basic Med. Sci. 2020, 23, 744–750. [Google Scholar] [CrossRef]
- Mosca, A.; Leclerc, M.; Hugot, J.P. Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our Ecosystem? Front. Microbiol. 2016, 7, 455. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Liu, Q.; Li, H.; Wen, C.; He, Z. Alterations of the Gut Microbiome Associated With the Treatment of Hyperuricaemia in Male Rats. Front. Microbiol. 2018, 9, 2233. [Google Scholar] [CrossRef]
- Li, K.; Zhang, L.; Xue, J.; Yang, X.; Dong, X.; Sha, L.; Lei, H.; Zhang, X.; Zhu, L.; Wang, Z.; et al. Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice. Food Funct. 2019, 10, 1915–1927. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.J.; Chen, M.H.; Chen, Y.L.; Hsiao, C.M.; Chen, H.M.; Chen, S.J.; Wu, M.D.; Yech, Y.J.; Yuan, G.F.; Wang, Y.J. Evaluating the urate-lowering effects of different microbial fermented extracts in hyperuricemic models accompanied with a safety study. J. Food Drug Anal. 2017, 25, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, H.; Li, J.; Chen, Y.; Yang, Y. Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates microbiota dysbiosis in an experimental model of sepsis. Int. J. Mol. Med. 2019, 43, 1139–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Lv, Q.; Wang, X.; Cui, X.; Zhao, P.; Yang, X.; Liu, X.; Yang, W.; Yang, G.; Wang, G.; et al. Hyperuricemia is associated with impaired intestinal permeability in mice. Am. J. Physiology. Gastrointest. Liver Physiol. 2019, 317, G484–G492. [Google Scholar] [CrossRef]
- Han, J.; Wang, X.; Tang, S.; Lu, C.; Wan, H.; Zhou, J.; Li, Y.; Ming, T.; Wang, Z.J.; Su, X. Protective effects of tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2020, 34, 5061–5076. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Yu, Y.; Li, H.; Ding, X.; Li, X.; Jing, X.; Chen, J.; Liu, G.; Lin, Y.; Jiang, C.; et al. Inulin supplementation ameliorates hyperuricemia and modulates gut microbiota in Uox-knockout mice. Eur. J. Nutr. 2021, 60, 2217–2230. [Google Scholar] [CrossRef]
- Willemsen, L.E.M.; Koetsier, M.A.; van Deventer, S.J.H.; van Tol, E.A.F. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 2003, 52, 1442–1447. [Google Scholar] [CrossRef]
Groups | Control | HC | HC + LD | HC + MD | HC + HD | HC + AP |
---|---|---|---|---|---|---|
Initial body weight (g) | 280.20 ± 13.00 | 292.94 ± 12.94 | 294.65 ± 17.29 | 294.30 ± 9.51 | 286.70 ± 19.66 | 287.20 ± 7.69 |
Final body weight (g) | 399.83 ± 36.07 | 365.44 ± 21.92 # | 374.65 ± 13.55 | 388.24 ± 18.49 | 376.64 ± 25.09 | 374.04 ± 19.52 |
Weight change (g) | 119.63 ± 24.63 | 72.50 ± 10.70 ## | 80.00 ± 23.32 | 93.94 ± 19.49 * | 89.94 ± 10.62 ** | 86.84 ± 17.80 |
Food intake (g/rat/day) | 26.94 ± 0.86 | 22.68 ± 1.20 ## | 25.12 ± 1.00 ** | 24.97 ± 1.11 ** | 24.45 ± 1.35 * | 23.35 ± 1.03 |
Water intake (mL/rat/day) | 45.66 ± 2.70 | 42.41 ± 2.92 # | 44.97 ± 4.20 | 42.44 ± 3.34 | 50.69 ± 2.68 ** | 47.43 ± 4.88 * |
Weight of Organs and Tissues (mg/g rat) | Control | HC | HC + LD | HC + MD | HC + HD | HC + AP |
---|---|---|---|---|---|---|
Liver | 33.62 ± 1.74 | 38.56 ± 1.57 ## | 38.29 ± 2.07 | 38.79 ± 2.47 | 37.08 ± 2.33 | 37.06 ± 2.19 |
Heart | 3.53 ± 0.18 | 3.54 ± 0.26 | 3.58 ± 0.25 | 3.48 ± 0.30 | 3.49 ± 0.38 | 3.41 ± 0.23 |
Lung | 3.72 ± 0.32 | 3.99 ± 0.23 | 3.82 ± 0.37 | 3.83 ± 0.19 | 4.04 ± 0.19 | 4.05 ± 0.40 |
Spleen | 2.36 ± 0.92 | 5.66 ± 1.00 ## | 6.52 ± 0.81 | 5.78 ± 1.05 | 5.27 ± 1.14 | 5.52 ± 1.14 |
Kidney | 8.43 ± 1.00 | 8.51 ± 0.49 | 8.45 ± 0.64 | 9.00 ± 0.48 | 8.49 ± 0.89 | 8.11 ± 0.38 |
Epididymal adipose tissue | 8.89 ± 1.67 | 7.52 ± 1.64 | 8.51 ± 1.95 | 6.97 ± 1.49 | 7.83 ± 1.62 | 6.77 ± 3.16 |
Perirenal adipose tissue | 11.05 ± 3.04 | 7.52 ± 2.25 # | 8.87 ± 3.39 | 7.31 ± 1.58 | 8.02 ± 2.62 | 7.39 ± 1.46 |
Mesenteric adipose tissue | 6.00 ± 2.21 | 7.44 ± 2.68 | 10.12 ± 2.83 | 10.31 ± 5.75 | 9.05 ± 3.26 | 7.69 ± 2.21 |
Subcutaneous adipose tissue | 13.28 ± 2.94 | 11.07 ± 2.98 | 12.74 ± 3.32 | 11.50 ± 1.90 | 12.75 ± 1.94 | 9.44 ± 1.76 |
Brown adipose tissue | 0.64 ± 0.20 | 0.52 ± 0.10 | 0.45 ± 0.22 | 0.61 ± 0.28 | 0.49 ± 0.16 | 0.58 ± 0.17 |
Gastrocnemius muscle | 7.87 ± 2.83 | 9.21 ± 2.49 | 9.14 ± 2.67 | 8.71 ± 2.66 | 9.11 ± 2.85 | 9.16 ± 2.38 |
Soleus muscle | 0.92 ± 0.14 | 0.84 ± 0.08 | 0.84 ± 0.10 | 0.83 ± 0.11 | 0.90 ± 0.09 | 0.91 ± 0.07 |
Groups | Control | HC | HC + LD | HC + MD | HC + HD | HC + AP |
---|---|---|---|---|---|---|
Glucose (mg/dL) | 97.25 ± 9.95 | 97.75 ± 12.96 | 89.13 ± 5.74 | 97.38 ± 19.04 | 90.13 ± 8.59 | 91.13 ± 10.88 |
Total cholesterol (mg/dL) | 44.88 ± 5.87 | 46.00 ± 9.59 | 44.75 ± 11.46 | 48.88 ± 7.62 | 48.38 ± 8.45 | 40.63 ± 8.23 |
Triglyceride (mg/dL) | 83.75 ± 29.50 | 50.88 ± 12.18 # | 45.00 ± 13.66 | 43.75 ± 14.32 | 42.38 ± 10.68 | 37.50 ± 5.86 * |
AST (U/L) | 75.50 ± 5.63 | 77.25 ± 14.83 | 93.88 ± 36.76 | 69.63 ± 13.54 | 77.75 ± 14.44 | 73.63 ± 11.21 |
ALT (U/L) | 38.88 ± 6.85 | 30.13 ± 9.39 | 36.50 ± 6.30 | 31.50 ± 8.80 | 37.50 ± 15.86 | 30.50 ± 8.77 |
BUN (mg/dL) | 14.38 ± 1.30 | 14.13 ± 1.89 | 14.38 ± 2.88 | 13.25 ± 1.83 | 14.75 ± 2.92 | 16.50 ± 4.44 |
Creatinine (mg/dL) | 0.35 ± 0.05 | 0.34 ± 0.04 | 0.32 ± 0.06 | 0.28 ± 0.03 ** | 0.31 ± 0.03 | 0.34 ± 0.05 |
Na+ (mmol/L) | 145.25 ± 1.67 | 141.75 ± 1.75 ## | 142.38 ± 1.06 | 141.25 ± 1.58 | 141.38 ± 2.20 | 144.00 ± 1.85 |
K+ (mmol/L) | 6.36 ± 0.17 | 6.64 ± 0.67 | 6.84 ± 0.71 | 6.84 ± 0.45 | 6.74 ± 1.01 | 6.48 ± 0.50 |
Cl− (mmol/L) | 96.76 ± 1.38 | 99.05 ± 2.71 # | 99.45 ± 2.41 | 98.49 ± 1.39 | 98.70 ± 1.93 | 100.15 ± 0.98 |
Groups | Control | HC | HC + LD | HC + MD | HC + HD | HC + AP |
---|---|---|---|---|---|---|
Serum uric acid (mg/dL) | ||||||
Week 0 | 4.05 ± 1.70 | 4.41 ± 1.71 | 4.11 ± 2.46 | 4.04 ± 2.77 | 4.08 ± 1.68 | 4.27 ± 2.25 |
Week 4 | 4.83 ± 0.70 | 6.52 ± 0.91 ## | 4.96 ± 1.77 * | 5.16 ± 1.54 * | 5.22 ± 1.80 | 1.32 ± 0.76 ** |
Urine uric acid (mg/dL) | ||||||
Week 0 | 7.41 ± 3.03 | 7.68 ± 3.28 | 6.55 ± 0.54 | 7.70 ± 2.81 | 7.86 ± 3.53 | 7.64 ± 2.53 |
Week 2 | 6.66 ± 1.78 | 3.14 ± 2.22 ## | 4.48 ± 2.51 | 5.21 ± 2.86 ** | 5.59 ± 2.78 | 3.23 ± 1.61 |
Week 4 | 6.39 ± 1.42 | 3.91 ± 1.71 ## | 6.08 ± 1.72 * | 5.41 ± 0.72 * | 5.15 ± 0.69 | 4.71 ± 1.67 |
Groups | Control | HC | HC + LD | HC + MD | HC + HD | HC + AP |
---|---|---|---|---|---|---|
Acetic acid (μmol/g) | 8.22 ± 1.73 | 5.21 ± 0.50 ## | 7.17 ± 2.31 | 5.56 ± 1.71 | 5.34 ± 0.60 | 4.67 ± 1.23 |
Propionic acid (μmol/g) | 2.62 ± 0.98 | 1.79 ± 0.43 | 2.30 ± 0.77 | 1.97 ± 0.70 | 1.97 ± 0.22 | 1.84 ± 0.52 |
Butyric acid (μmol/g) | 8.60 ± 4.38 | 4.14 ± 1.29 # | 5.41 ± 1.80 | 5.68 ± 5.30 | 4.34 ± 1.18 | 4.69 ± 3.46 |
Valeric acid (μmol/g) | 0.77 ± 0.21 | 0.50 ± 0.12 # | 0.50 ± 0.15 | 0.55 ± 0.20 | 0.51 ± 0.04 | 0.46 ± 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chien, C.-Y.; Chien, Y.-J.; Lin, Y.-H.; Lin, Y.-H.; Chan, S.-T.; Hu, W.-C.; Wu, H.-F.; Chiang, C.-F.; Hsu, C.-L. Supplementation of Lactobacillus plantarum (TCI227) Prevented Potassium-Oxonate-Induced Hyperuricemia in Rats. Nutrients 2022, 14, 4832. https://doi.org/10.3390/nu14224832
Chien C-Y, Chien Y-J, Lin Y-H, Lin Y-H, Chan S-T, Hu W-C, Wu H-F, Chiang C-F, Hsu C-L. Supplementation of Lactobacillus plantarum (TCI227) Prevented Potassium-Oxonate-Induced Hyperuricemia in Rats. Nutrients. 2022; 14(22):4832. https://doi.org/10.3390/nu14224832
Chicago/Turabian StyleChien, Chih-Yu, Yu-Jou Chien, Yung-Hao Lin, Yung-Hsiang Lin, Shu-Ting Chan, Wei-Chun Hu, Han-Fang Wu, Chi-Fu Chiang, and Chin-Lin Hsu. 2022. "Supplementation of Lactobacillus plantarum (TCI227) Prevented Potassium-Oxonate-Induced Hyperuricemia in Rats" Nutrients 14, no. 22: 4832. https://doi.org/10.3390/nu14224832