Genetic Risk Factors and Gene–Lifestyle Interactions in Gestational Diabetes
Abstract
:1. Gestational Diabetes Impacts Global Health across Generations
2. Heterogeneity of Gestational Diabetes Poses Clinical Challenges
3. Maternal Genetic Risk Factors of GDM
4. Fetal, Paternal and Placental Genetic Risk Factors of GDM
5. Polygenetic Risk Scores (PRSs)
5.1. PRSs and GDM
5.2. PRSs and T2D
Reference | Population | Polygenic Risk Score (PRS) | Outcome: GDM | Results and Effect (If Available) |
---|---|---|---|---|
Kawai et al. [108] | 458 women with GDM and 1538 controls | 34 SNPs previously associated with T2D or fasting glucose in the general population, or with GDM or glucose intolerance in pregnancy | GDM | PRS associated with GDM. 1.11 (1.08–1.14) per risk allele increase. |
Lauenborg et al. [52] | 244 women with GDM and 1883 controls | 11 SNPs previously associated with T2D | GDM | PRS associated with GDM. 1.18 (1.10–1.27) per risk allele increase. |
Powe et al. [109] | 250 women with GDM and 1681 controls (2 separate cohorts: HAPO and Gen3G) | 150 SNPs previously associated with glycemic traits or T2D | GDM | Both PRSs associated with GDM. 1.06 (1.01–1.10) for Gen3G and 1.03 (1.01–1.06) for HAPO per risk allele. |
Outcome: T2D | ||||
Ekelund et al. [110] | 793 women with GDM | 13 SNPs previously associated with T2D | T2D | PRS associated with T2D. 1.11 (1.05–1.18) per risk allele increase. |
Kwak et al. [111] | 395 women with GDM | 48 SNPs previously associated with T2D | T2D | PRS associated with T2D. 1.66 (1.30–2.13) per risk allele increase. |
Li at al. [112] | 2434 women with GDM | 59 SNPs previously associated with T2D | T2D | PRS associated with T2D. 1.07 (1.01–1.14) per 5 risk alleles. |
Outcome: GDM and T2D | ||||
Cormier et al. [107] | 214 women with GDM and 82 controls | 36 SNPs previously associated with T2D | GDM, pre-diabetes, and T2D | PRS associated with GDM and progression to pre-diabetes and T2D. |
Sullivan et al. [113] | 281 women with GDM and 1102 controls | 34 SNPs previously associated with T2D | GDM and T2D | PRS associated with previous GDM, but not with T2D. 1.05 (1.00–1.08) per risk allele increase for GDM. |
Outcome: other glycemic traits | ||||
Prasad et al. [114] | 374 women with GDM | 4 SNPs associated with measures of insulin resistance and secretion | Insulin secretion, insulin resistance, and T2D | PRS associated with impaired insulin secretion (disposition index) and resistance (HOMA-IR) |
6. Gene–Lifestyle Interactions with GDM and Postpartum Type 2 Diabetes
6.1. Gene–Lifestyle Interactions with GDM
6.2. Interactions between PRS, Lifestyle Factors, and GDM/T2D
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lain, K.Y.; Catalano, P.M. Metabolic changes in pregnancy. Clin. Obs. Gynecol. 2007, 50, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Sweeting, A.; Wong, J.; Murphy, H.R.; Ross, G.P. A clinical update on Gestational Diabetes Mellitus. Endocr. Rev. 2022, 43, 763–793. [Google Scholar] [CrossRef] [PubMed]
- Sacks, D.A.; Hadden, D.R.; Maresh, M.; Deerochanawong, C.; Dyer, A.R.; Metzger, B.E.; Lowe, L.P.; Coustan, D.R.; Hod, M.; Oats, J.J.; et al. Frequency of gestational diabetes mellitus at collaborating centers based on IADPSG consensus panel-recommended criteria: The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Diabetes Care 2012, 35, 526–528. [Google Scholar] [CrossRef] [Green Version]
- Buckley, B.S.; Harreiter, J.; Damm, P.; Corcoy, R.; Chico, A.; Simmons, D.; Vellinga, A.; Dunne, F.; DALI Core Investigator Group. Gestational diabetes mellitus in Europe: Prevalence, current screening practice and barriers to screening. A review. Diabet. Med. J. Br. Diabet. Assoc. 2012, 29, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, M.; Cao, Y.; Fadl, H.; Gustafson, H.; Simmons, D. Increasing prevalence of gestational diabetes mellitus when implementing the IADPSG criteria: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2021, 172, 108642. [Google Scholar] [CrossRef] [PubMed]
- Huet, J.; Beucher, G.; Rod, A.; Morello, R.; Dreyfus, M. Joint impact of gestational diabetes and obesity on perinatal outcomes. J. Gynecol. Obs. Hum. Reprod. 2018, 47, 469–476. [Google Scholar] [CrossRef]
- Ijas, H.; Koivunen, S.; Raudaskoski, T.; Kajantie, E.; Gissler, M.; Vaarasmaki, M. Independent and concomitant associations of gestational diabetes and maternal obesity to perinatal outcome: A register-based study. PLoS ONE 2019, 14, e0221549. [Google Scholar] [CrossRef] [Green Version]
- Ye, W.; Luo, C.; Huang, J.; Li, C.; Liu, Z.; Liu, F. Gestational diabetes mellitus and adverse pregnancy outcomes: Systematic review and meta-analysis. BMJ 2022, 377, e067946. [Google Scholar] [CrossRef]
- Bellamy, L.; Casas, J.P.; Hingorani, A.D.; Williams, D. Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta-analysis. Lancet 2009, 373, 1773–1779. [Google Scholar] [CrossRef]
- McKenzie-Sampson, S.; Paradis, G.; Healy-Profitos, J.; St-Pierre, F.; Auger, N. Gestational diabetes and risk of cardiovascular disease up to 25 years after pregnancy: A retrospective cohort study. Acta Diabetol. 2018, 55, 315–322. [Google Scholar] [CrossRef]
- Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Schmidt, L.; Damm, P. Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type 1 diabetes. J. Clin. Endocrinol. Metab. 2009, 94, 2464–2470. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Zhang, S.; Li, W.; Leng, J.; Wang, L.; Liu, H.; Li, W.; Zhang, C.; Qi, L.; Tuomilehto, J.; et al. Maternal gestational diabetes is associated with offspring’s hypertension. Am. J. Hypertens. 2019, 32, 335–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vounzoulaki, E.; Khunti, K.; Abner, S.C.; Tan, B.K.; Davies, M.J.; Gillies, C.L. Progression to type 2 diabetes in women with a known history of gestational diabetes: Systematic review and meta-analysis. BMJ 2020, 369, m1361. [Google Scholar] [CrossRef] [PubMed]
- Auvinen, A.M.; Luiro, K.; Jokelainen, J.; Järvelä, I.; Knip, M.; Auvinen, J.; Tapanainen, J.S. Type 1 and type 2 diabetes after gestational diabetes: A 23 year cohort study. Diabetologia 2020, 63, 2123–2128. [Google Scholar] [CrossRef]
- Kramer, C.K.; Campbell, S.; Retnakaran, R. Gestational diabetes and the risk of cardiovascular disease in women: A systematic review and meta-analysis. Diabetologia 2019, 62, 905–914. [Google Scholar] [CrossRef] [Green Version]
- Retnakaran, R.; Ye, C.; Hanley, A.J.; Connelly, P.W.; Sermer, M.; Zinman, B. Screening Glucose Challenge Test in Pregnancy Can Identify Women With an Adverse Postpartum Cardiovascular Risk Factor Profile: Implications for Cardiovascular Risk Reduction. J. Am. Heart Assoc. 2019, 8, e014231. [Google Scholar] [CrossRef] [PubMed]
- Damm, P.; Houshmand-Oeregaard, A.; Kelstrup, L.; Lauenborg, J.; Mathiesen, E.R.; Clausen, T.D. Gestational diabetes mellitus and long-term consequences for mother and offspring: A view from Denmark. Diabetologia 2016, 59, 1396–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelstrup, L.; Damm, P.; Mathiesen, E.R.; Hansen, T.; Vaag, A.A.; Pedersen, O.; Clausen, T.D. Insulin resistance and impaired pancreatic beta-cell function in adult offspring of women with diabetes in pregnancy. J. Clin. Endocrinol. Metab. 2013, 98, 3793–3801. [Google Scholar] [CrossRef] [Green Version]
- Scholtens, D.M.; Kuang, A.; Lowe, L.P.; Hamilton, J.; Lawrence, J.M.; Lebenthal, Y.; Brickman, W.J.; Clayton, P.; Ma, R.C.; McCance, D.; et al. Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study (HAPO FUS): Maternal Glycemia and Childhood Glucose Metabolism. Diabetes Care 2019, 42, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Lowe, W.L., Jr.; Lowe, L.P.; Kuang, A.; Catalano, P.M.; Nodzenski, M.; Talbot, O.; Tam, W.H.; Sacks, D.A.; McCance, D.; Linder, B.; et al. Maternal glucose levels during pregnancy and childhood adiposity in the Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study. Diabetologia 2019, 62, 598–610. [Google Scholar] [CrossRef]
- Powe, C.E.; Hivert, M.F.; Udler, M.S. Defining Heterogeneity Among Women With Gestational Diabetes Mellitus. Diabetes 2020, 69, 2064–2074. [Google Scholar] [CrossRef] [PubMed]
- Cheney, C.; Shragg, P.; Hollingsworth, D. Demonstration of heterogeneity in gestational diabetes by a 400-kcal breakfast meal tolerance test. Obs. Gynecol. 1985, 65, 17–23. [Google Scholar]
- Freinkel, N.; Metzger, B.E.; Phelps, R.L.; Simpson, J.L.; Martin, A.O.; Radvany, R.; Ober, C.; Dooley, S.L.; Depp, R.O.; Belton, A. Gestational diabetes mellitus: A syndrome with phenotypic and genotypic heterogeneity. Horm. Metab. Res. 1986, 18, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Powe, C.E.; Allard, C.; Battista, M.C.; Doyon, M.; Bouchard, L.; Ecker, J.L.; Perron, P.; Florez, J.C.; Thadhani, R.; Hivert, M.-F. Heterogeneous Contribution of Insulin Sensitivity and Secretion Defects to Gestational Diabetes Mellitus. Diabetes Care 2016, 39, 1052–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benhalima, K.; Van Crombrugge, P.; Moyson, C.; Verhaeghe, J.; Vandeginste, S.; Verlaenen, H.; Vercammen, C.; Maes, T.; Dufraimont, E.; De Block, C.; et al. Characteristics and pregnancy outcomes across gestational diabetes mellitus subtypes based on insulin resistance. Diabetologia 2019, 62, 2118–2128. [Google Scholar] [CrossRef]
- Layton, J.; Powe, C.; Allard, C.; Battista, M.C.; Doyon, M.; Bouchard, L.; Perron, P.; Wessel, J.; Hivert, M.-F. Maternal lipid profile differs by gestational diabetes physiologic subtype. Metab. Clin. Exp. 2019, 91, 39–42. [Google Scholar] [CrossRef] [Green Version]
- Immanuel, J.; Simmons, D.; Harreiter, J.; Desoye, G.; Corcoy, R.; Adelantado, J.M.; Devlieger, R.; Lapolla, A.; Dalfra, M.G.; Bertolotto, A.; et al. Metabolic phenotypes of early gestational diabetes mellitus and their association with adverse pregnancy outcomes. Diabet. Med. J. Br. Diabet. Assoc. 2021, 38, e14413. [Google Scholar] [CrossRef]
- Madsen, L.R.; Gibbons, K.S.; Ma, R.C.W.; Tam, W.H.; Catalano, P.M.; Sacks, D.A.; Lowe, J.; McIntyre, H.D. Do variations in insulin sensitivity and insulin secretion in pregnancy predict differences in obstetric and neonatal outcomes? Diabetologia 2021, 64, 304–312. [Google Scholar] [CrossRef]
- Jokelainen, M.; Stach-Lempinen, B.; Rönö, K.; Nenonen, A.; Kautiainen, H.; Teramo, K.; Klemetti, M.M. Oral glucose tolerance test results in early pregnancy: A Finnish population-based cohort study. Diabetes Res. Clin. Pract. 2020, 162, 108077. [Google Scholar] [CrossRef]
- Catalano, P.M.; Huston, L.; Amini, S.B.; Kalhan, S.C. Longitudinal changes in glucose metabolism during pregnancy in obese women with normal glucose tolerance and gestational diabetes mellitus. Am. J. Obs. Gynecol. 1999, 180, 903–916. [Google Scholar] [CrossRef]
- Catalano, P.M.; Tyzbir, E.D.; Roman, N.M.; Amini, S.B.; Sims, E.A. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am. J. Obs. Gynecol. 1991, 165, 1667–1672. [Google Scholar] [CrossRef]
- Lassance, L.; Haghiac, M.; Leahy, P.; Basu, S.; Minium, J.; Zhou, J.; Reider, M.; Catalano, P.M.; Hauguel-de Mouzon, S. Identification of early transcriptome signatures in placenta exposed to insulin and obesity. Am. J. Obs. Gynecol. 2015, 212, 647 e1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desoye, G. The Human Placenta in Diabetes and Obesity: Friend or Foe? The 2017 Norbert Freinkel Award Lecture. Diabetes Care 2018, 41, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, J.; Heslehurst, N.; Hall, J.; Schoenaker, D.A.J.M.; Hutchinson, J.; Cade, J.E.; Poston, L.; Barrett, G.; Crozier, S.R.; Barker, M.; et al. Before the beginning: Nutrition and lifestyle in the preconception period and its importance for future health. Lancet 2018, 391, 1830–1841. [Google Scholar] [CrossRef]
- O’Tierney-Ginn, P.; Presley, L.; Myers, S.; Catalano, P. Placental growth response to maternal insulin in early pregnancy. J. Clin. Endocrinol. Metab. 2015, 100, 159–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raets, L.; Beunen, K.; Benhalima, K. Screening for Gestational Diabetes Mellitus in Early Pregnancy: What Is the Evidence? J. Clin. Med. 2021, 10, 1257. [Google Scholar] [CrossRef] [PubMed]
- Immanuel, J.; Simmons, D. Screening and Treatment for Early-Onset Gestational Diabetes Mellitus: A Systematic Review and Meta-analysis. Curr. Diab. Rep. 2017, 17, 115. [Google Scholar] [CrossRef]
- Wexler, D.J.; Powe, C.E.; Barbour, L.A.; Buchanan, T.; Coustan, D.R.; Corcoy, R.; Damm, P.; Dunne, F.; Feig, D.S.; Ferrara, A.; et al. Research Gaps in Gestational Diabetes Mellitus: Executive Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Obs. Gynecol. 2018, 132, 496–505. [Google Scholar] [CrossRef]
- Arora, G.P.; Åkerlund, M.; Brøns, C.; Moen, G.H.; Wasenius, N.S.; Sommer, C.; Jenum, A.K.; Almgren, P.; Thaman, R.G.; Orho-Melander, M.; et al. Phenotypic and genotypic differences between Indian and Scandinavian women with gestational diabetes mellitus. J. Intern. Med. 2019, 286, 192–206. [Google Scholar] [CrossRef] [Green Version]
- Catalano, P.; deMouzon, S.H. Maternal obesity and metabolic risk to the offspring: Why lifestyle interventions may have not achieved the desired outcomes. Int. J. Obes. 2015, 39, 642–649. [Google Scholar] [CrossRef] [Green Version]
- Woolner, A.M.; Bhattacharya, S. Obesity and stillbirth. Best Pr. Res. Clin. Obs. Gynaecol. 2015, 29, 415–426. [Google Scholar] [CrossRef] [PubMed]
- McLellan, J.A.; Barrow, B.A.; Levy, J.C.; Hammersley, M.S.; Hattersley, A.T.; Gillmer, M.D.; Turner, R.C. Prevalence of diabetes mellitus and impaired glucose tolerance in parents of women with gestational diabetes. Diabetologia 1995, 38, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.O.; Simpson, J.L.; Ober, C.; Freinkel, N. Frequency of diabetes mellitus in mothers of probands with gestational diabetes: Possible maternal influence on the predisposition to gestational diabetes. Am. J. Obs. Gynecol. 1985, 151, 471–475. [Google Scholar] [CrossRef]
- Dörner, G.; Plagemann, A.; Reinagel, H. Familial diabetes aggregation in type I diabetics: Gestational diabetes an apparent risk factor for increased diabetes susceptibility in the offspring. Exp. Clin. Endocrinol. 1987, 89, 84–90. [Google Scholar] [CrossRef]
- Shaat, N.; Ekelund, M.; Lernmark, A.; Ivarsson, S.; Almgren, P.; Berntorp, K.; Groop, L. Association of the E23K polymorphism in the KCNJ11 gene with gestational diabetes mellitus. Diabetologia 2005, 48, 2544–2551. [Google Scholar] [CrossRef] [Green Version]
- Shaat, N.; Lernmark, A.; Karlsson, E.; Ivarsson, S.; Parikh, H.; Berntorp, K.; Groop, L. A variant in the transcription factor 7-like 2 (TCF7L2) gene is associated with an increased risk of gestational diabetes mellitus. Diabetologia 2007, 50, 972–979. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Chagoya, A.; Vázquez-Cárdenas, P.; Moreno-Macías, H.; Tapia-Maruri, L.; Rodríguez-Guillén, R.; López-Vite, E.; Escalante, M.G.G.; Escobedo-Aguirre, F.; Parra-Covarrubias, A.; Cordero-Brieño, R.; et al. Genetic determinants for gestational diabetes mellitus and related metabolic traits in Mexican women. PLoS ONE 2015, 10, e0126408. [Google Scholar] [CrossRef] [Green Version]
- Popova, P.V.; Klyushina, A.A.; Vasilyeva, L.B.; Tkachuk, A.S.; Vasukova, E.A.; Anopova, A.D.; Pustozerov, E.A.; Gorelova, I.V.; Kravchuk, E.N.; Li, O.; et al. Association of Common Genetic Risk Variants With Gestational Diabetes Mellitus and Their Role in GDM Prediction. Front. Endocrinol. 2021, 12, 628582. [Google Scholar] [CrossRef]
- Rosta, K.; Al-Aissa, Z.; Hadarits, O.; Harreiter, J.; Nádasdi, Á.; Kelemen, F.; Bancher-Todesca, D.; Komlósi, Z.; Németh, L.; Rigó, J.; et al. Association Study with 77 SNPs Confirms the Robust Role for the rs10830963/G of MTNR1B Variant and Identifies Two Novel Associations in Gestational Diabetes Mellitus Development. PLoS ONE 2017, 12, e0169781. [Google Scholar] [CrossRef] [Green Version]
- Freathy, R.M.; Hayes, M.G.; Urbanek, M.; Lowe, L.P.; Lee, H.; Ackerman, C.; Frayling, T.M.; Cox, N.J.; Dunger, D.B.; Dyer, A.R.; et al. Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study: Common genetic variants in GCK and TCF7L2 are associated with fasting and postchallenge glucose levels in pregnancy and with the new consensus definition of gestational diabetes mellitus from the International Association of Diabetes and Pregnancy Study Groups. Diabetes 2010, 59, 2682–2689. [Google Scholar]
- Cho, Y.M.; Kim, T.H.; Lim, S.; Choi, S.H.; Shin, H.D.; Lee, H.K.; Park, K.S.; Jang, H.C. Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia 2009, 52, 253–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauenborg, J.; Grarup, N.; Damm, P.; Borch-Johnsen, K.; Jørgensen, T.; Pedersen, O.; Hansen, T. Common type 2 diabetes risk gene variants associate with gestational diabetes. J. Clin. Endocrinol. Metab. 2009, 94, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Chavarro, J.; Olsen, S.; Lin, Y.; Ley, S.H.; Bao, W.; Rawal, S.; Grunnet, L.G.; Thuesen, A.C.B.; Mills, J.L.; et al. Genetic variants of gestational diabetes mellitus: A study of 112 SNPs among 8722 women in two independent populations. Diabetologia 2018, 61, 1758–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaat, N.; Ekelund, M.; Lernmark, A.; Ivarsson, S.; Nilsson, A.; Perfekt, R.; Berntorp, K.; Groop, L. Genotypic and phenotypic differences between Arabian and Scandinavian women with gestational diabetes mellitus. Diabetologia 2004, 47, 878–884. [Google Scholar]
- Ferber, K.M.; Keller, E.; Albert, E.D.; Ziegler, A.G. Predictive value of human leukocyte antigen class II typing for the development of islet autoantibodies and insulin-dependent diabetes postpartum in women with gestational diabetes. J. Clin. Endocrinol. Metab. 1999, 84, 2342–2348. [Google Scholar] [CrossRef]
- Törn, C.; Gupta, M.; Sanjeevi, C.B.; Aberg, A.; Frid, A.; Landin-Olsson, M. Different HLA-DR-DQ and MHC class I chain-related gene A (MICA) genotypes in autoimmune and nonautoimmune gestational diabetes in a Swedish population. Hum. Immunol. 2004, 65, 1443–1450. [Google Scholar] [CrossRef]
- Shaat, N.; Karlsson, E.; Lernmark, A.; Ivarsson, S.; Lynch, K.; Parikh, H.; Almgren, P.; Berntorp, K.; Groop, L. Common variants in MODY genes increase the risk of gestational diabetes mellitus. Diabetologia 2006, 49, 1545–1551. [Google Scholar] [CrossRef] [Green Version]
- Gjesing, A.P.; Rui, G.; Lauenborg, J.; Have, C.T.; Hollensted, M.; Andersson, E.; Grarup, N.; Sun, J.; Quan, S.; Brandslund, I.; et al. High Prevalence of Diabetes-Predisposing Variants in MODY Genes Among Danish Women With Gestational Diabetes Mellitus. J. Endocr. Soc. 2017, 1, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Kwak, S.H.; Kim, S.H.; Cho, Y.M.; Go, M.J.; Cho, Y.S.; Choi, S.H.; Moon, M.K.; Jung, H.S.; Shin, H.D.; Kang, H.M.; et al. A genome-wide association study of gestational diabetes mellitus in Korean women. Diabetes 2012, 61, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.N.; Zhao, D.; Ma, W.; Lang, J.N.; Liu, S.M.; Fu, Y.; Wang, X.; Wang, Z.W.; Li, Q. A genome-wide association study of gestational diabetes mellitus in Chinese women. J. Matern.-Fetal Neonatal Med. 2021, 34, 1557–1564. [Google Scholar] [CrossRef]
- Pervjakova, N.; Moen, G.H.; Borges, M.C.; Ferreira, T.; Cook, J.P.; Allard, C.; Beaumont, R.N.; Canouil, M.; Hatem, G.; Heiskala, A.; et al. Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes. Hum. Mol. Genet. 2022, 31, 3377–3391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Bao, W.; Rong, Y.; Yang, H.; Bowers, K.; Yeung, E.; Kiely, M. Genetic variants and the risk of gestational diabetes mellitus: A systematic review. Hum. Reprod. Update 2013, 19, 376–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powe, C.E.; Kwak, S.H. Genetic Studies of Gestational Diabetes and Glucose Metabolism in Pregnancy. Curr. Diabetes Rep. 2020, 20, 69. [Google Scholar] [CrossRef] [PubMed]
- Del Bosque-Plata, L.; Martínez-Martínez, E.; Espinoza-Camacho, M.; Gragnoli, C. The Role of TCF7L2 in Type 2 Diabetes. Diabetes 2021, 70, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Jin, L.; Tang, M.; Lu, W.; Lai, S.; Zhang, R.; Jiang, F.; Luo, M.; Hu, C. Common single-nucleotide polymorphisms combined with a genetic risk score provide new insights regarding the etiology of gestational diabetes mellitus. Diabet. Med. J. Br. Diabet. Assoc. 2022, 39, e14885. [Google Scholar] [CrossRef]
- Cao, M.; Zhang, L.; Chen, T.; Shi, A.; Xie, K.; Li, Z.; Xu, J.; Chen, Z.; Ji, C.; Wen, J. Genetic Susceptibility to Gestational Diabetes Mellitus in a Chinese Population. Front. Endocrinol. 2020, 11, 247. [Google Scholar] [CrossRef] [Green Version]
- Hayes, M.G.; Urbanek, M.; Hivert, M.F.; Armstrong, L.L.; Morrison, J.; Guo, C.; Lowe, L.P.; Scheftner, D.A.; Pluzhnikov, A.; Levine, D.M.; et al. Identification of HKDC1 and BACE2 as genes influencing glycemic traits during pregnancy through genome-wide association studies. Diabetes 2013, 62, 3282–3291. [Google Scholar] [CrossRef] [Green Version]
- Scott, R.A.; Lagou, V.; Welch, R.P.; Wheeler, E.; Montasser, M.E.; Luan, J.; Mägi, R.; Strawbridge, R.J.; Rehnberg, E.; Gustafsson, S.; et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet. 2012, 44, 991–1005. [Google Scholar] [CrossRef] [Green Version]
- Esterházy, D.; Stützer, I.; Wang, H.; Rechsteiner, M.P.; Beauchamp, J.; Döbeli, H.; Hilpert, H.; Matile, H.; Prummer, M.; Schmidt, A.; et al. Bace2 is a β cell-enriched protease that regulates pancreatic β cell function and mass. Cell Metab. 2011, 14, 365–377. [Google Scholar] [CrossRef]
- Guo, C.; Ludvik, A.E.; Arlotto, M.E.; Hayes, M.G.; Armstrong, L.L.; Scholtens, D.M.; Brown, C.D.; Newgard, C.B.; Becker, T.C.; Layden, B.T.; et al. Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1. Nat. Commun. 2015, 6, 6069. [Google Scholar] [CrossRef] [Green Version]
- Ludvik, A.E.; Pusec, C.M.; Priyadarshini, M.; Angueira, A.R.; Guo, C.; Lo, A.; Hershenhouse, K.S.; Yang, G.-Y.; Ding, X.; Reddy, T.E.; et al. HKDC1 Is a Novel Hexokinase Involved in Whole-Body Glucose Use. Endocrinology 2016, 157, 3452–3461. [Google Scholar] [CrossRef]
- Majithia, A.R.; Flannick, J.; Shahinian, P.; Guo, M.; Bray, M.A.; Fontanillas, P.; Gabriel, S.B.; Rosen, E.D.; Altshuler, D.; Manning, A.K.; et al. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc. Natl. Acad. Sci. USA 2014, 111, 13127–13132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petry, C.J.; Hughes, I.A.; Ong, K.K. Increased basal insulin sensitivity in late pregnancy in women carrying a male fetus: A cohort study. Biol. Sex Differ. 2022, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Rauh-Hain, J.A.; Rana, S.; Tamez, H.; Wang, A.; Cohen, B.; Cohen, A.; Brown, F.; Ecker, J.L.; Karumanchi, S.A.; Thadhani, R. Risk for developing gestational diabetes in women with twin pregnancies. J. Matern.-Fetal Neonatal Med. 2009, 22, 293–299. [Google Scholar] [CrossRef]
- Khandwala, Y.S.; Baker, V.L.; Shaw, G.M.; Stevenson, D.K.; Lu, Y.; Eisenberg, M.L. Association of paternal age with perinatal outcomes between 2007 and 2016 in the United States: Population based cohort study. BMJ 2018, 363, k4372. [Google Scholar] [CrossRef] [PubMed]
- Caughey, A.B.; Cheng, Y.W.; Stotland, N.E.; Washington, A.E.; Escobar, G.J. Maternal and paternal race/ethnicity are both associated with gestational diabetes. Am. J. Obs. Gynecol. 2010, 202, 616.e1–616.e5. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, N.; Nachum, Z.; Green, M.S. The prevalence of gestational diabetes mellitus recurrence—Effect of ethnicity and parity: A metaanalysis. Am. J. Obs. Gynecol. 2015, 213, 310–317. [Google Scholar] [CrossRef]
- Petry, C.J.; Seear, R.V.; Wingate, D.L.; Manico, L.; Acerini, C.L.; Ong, K.K.; Hughes, I.A.; Dunger, D.B. Associations between paternally transmitted fetal IGF2 variants and maternal circulating glucose concentrations in pregnancy. Diabetes 2011, 60, 3090–3096. [Google Scholar] [CrossRef] [Green Version]
- Hivert, M.F.; Cardenas, A.; Allard, C.; Doyon, M.; Powe, C.E.; Catalano, P.M.; Perron, P.; Bouchard, L. Interplay of Placental DNA Methylation and Maternal Insulin Sensitivity in Pregnancy. Diabetes 2020, 69, 484–492. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.; Ormazabal, V.; Lappas, M.; McIntyre, H.D.; Salomon, C. Extracellular vesicles and their potential role inducing changes in maternal insulin sensitivity during gestational diabetes mellitus. Am. J. Reprod. Immunol. 2021, 85, e13361. [Google Scholar] [CrossRef] [PubMed]
- James-Allan, L.B.; Devaskar, S.U. Extracellular vesicles and their role in gestational diabetes mellitus. Placenta 2021, 113, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Bathla, T.; Abolbaghaei, A.; Reyes, A.B.; Burger, D. Extracellular vesicles in gestational diabetes mellitus: A scoping review. Diab. Vasc. Dis. Res. 2022, 19, 14791641221093901. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Jayabalan, N.; Guanzon, D.; Palma, C.; Scholz-Romero, K.; Elfeky, O.; Zuñiga, F.; Ormazabal, V.; Diaz, E.; Rice, G.E.; et al. Human placental exosomes in gestational diabetes mellitus carry a specific set of miRNAs associated with skeletal muscle insulin sensitivity. Clin. Sci. 2018, 132, 2451–2467. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.Y.; Nagashima, K.; Ohshima, T.; Saheki, Y.; Lu, Y.F.; Matsushita, M.; Yamada, Y.; Mikoshiba, K.; Seino, Y.; Matsui, H.; et al. Cdk5-dependent regulation of glucose-stimulated insulin secretion. Nat. Med. 2005, 11, 1104–1108. [Google Scholar] [CrossRef]
- Ohara-Imaizumi, M.; Yoshida, M.; Aoyagi, K.; Saito, T.; Okamura, T.; Takenaka, H.; Akimoto, Y.; Nakamichi, Y.; Takanashi-Yanobu, R.; Nishiwaki, C.; et al. Deletion of CDKAL1 affects mitochondrial ATP generation and first-phase insulin exocytosis. PLoS ONE 2010, 5, e15553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, H.; Li, Q.; Gao, S. Meta-analysis of the relationship between common type 2 diabetes risk gene variants with gestational diabetes mellitus. PLoS ONE 2012, 7, e45882. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Long, W.; Zhou, W.; Zhang, B.; Liu, J.; Yu, B. FTO, GCKR, CDKAL1 and CDKN2A/B gene polymorphisms and the risk of gestational diabetes mellitus: A meta-analysis. Arch. Gynecol. Obstet. 2018, 298, 705–715. [Google Scholar] [CrossRef]
- Ubeda, M.; Rukstalis, J.M.; Habener, J.F. Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity. J. Biol. Chem. 2006, 281, 28858–28864. [Google Scholar] [CrossRef] [Green Version]
- Hannou, S.A.; Wouters, K.; Paumelle, R.; Staels, B. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: What have we learned from GWASs? Trends Endocrinol. Metab. 2015, 26, 176–184. [Google Scholar] [CrossRef]
- García-Herrero, C.M.; Galán, M.; Vincent, O.; Flández, B.; Gargallo, M.; Delgado-Alvarez, E.; Blázquez, E.; Navas, M.A. Functional analysis of human glucokinase gene mutations causing MODY2: Exploring the regulatory mechanisms of glucokinase activity. Diabetologia 2007, 50, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.Y.; Shu, J.; Fu, X.H.; Chen, X.P.; Zhang, L.; Ji, M.X.; Liu, X.M.; Yu, T.T.; Sheng, J.Z.; Huang, H.F. Improving the effectiveness of lifestyle interventions for gestational diabetes prevention: A meta-analysis and meta-regression. BJOG 2019, 126, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Yang, Y. Emerging roles of GLIS3 in neonatal diabetes, type 1 and type 2 diabetes. J. Mol. Endocrinol. 2017, 58, R73–R85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascoe, L.; Tura, A.; Patel, S.K.; Ibrahim, I.M.; Ferrannini, E.; Zeggini, E.; Weedon, M.N.; Mari, A.; Hattersley, A.T.; McCarthy, M.I.; et al. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes 2007, 56, 3101–3104. [Google Scholar] [CrossRef] [PubMed]
- Zapater, J.L.; Lednovich, K.R.; Khan, M.W.; Pusec, C.M.; Layden, B.T. Hexokinase domain-containing protein-1 in metabolic diseases and beyond. Trends Endocrinol. Metab. 2022, 33, 72–84. [Google Scholar] [CrossRef]
- Holmkvist, J.; Cervin, C.; Lyssenko, V.; Winckler, W.; Anevski, D.; Cilio, C.; Almgren, P.; Berglund, G.; Nilsson, P.; Tuomi, T.; et al. Common variants in HNF-1 alpha and risk of type 2 diabetes. Diabetologia 2006, 49, 2882–2891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, L.J.; Mohlke, K.L.; Bonnycastle, L.L.; Willer, C.J.; Li, Y.; Duren, W.L.; Erdos, M.R.; Stringham, H.M.; Chines, P.S.; Jackson, A.U.; et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007, 316, 1341–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Cui, L.; Tam, W.H.; Ma, R.C.; Wang, C.C. Genetic variants associated with gestational diabetes mellitus: A meta-analysis and subgroup analysis. Sci. Rep. 2016, 6, 30539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Y.; Zhu, W.; Shi, J.; Shao, A.; Cheng, Y.; Liu, Y. Association between KCNJ11 E23K polymorphism and the risk of type 2 diabetes mellitus: A global meta-analysis. J. Diabetes Complicat. 2022, 36, 108170. [Google Scholar] [CrossRef]
- Bonnefond, A.; Philippe, J.; Durand, E.; Dechaume, A.; Huyvaert, M.; Montagne, L.; Marre, M.; Balkau, B.; Fajardy, I.; Vambergue, A.; et al. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS ONE 2012, 7, e37423. [Google Scholar] [CrossRef] [Green Version]
- Unoki, H.; Takahashi, A.; Kawaguchi, T.; Hara, K.; Horikoshi, M.; Andersen, G.; Ng, D.P.K.; Holmkvist, J.; Borch-Johnsen, K.; Jørgensen, T.; et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat. Genet. 2008, 40, 1098–1102. [Google Scholar] [CrossRef]
- Tan, J.T.; Nurbaya, S.; Gardner, D.; Ye, S.; Tai, E.S.; Ng, D.P. Genetic variation in KCNQ1 associates with fasting glucose and beta-cell function: A study of 3,734 subjects comprising three ethnicities living in Singapore. Diabetes 2009, 58, 1445–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peschke, E. Melatonin, endocrine pancreas and diabetes. J. Pineal Res. 2008, 44, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Lyssenko, V.; Nagorny, C.L.; Erdos, M.R.; Wierup, N.; Jonsson, A.; Spégel, P.; Bugliani, M.; Saxena, R.; Fex, M.; Pulizzi, N.; et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 2009, 41, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Park, S.Y.; Su, J.; Bailey, K.; Ottosson-Laakso, E.; Shcherbina, L.; Oskolkov, N.; Zhang, E.; Thevenin, T.; Fadista, J.; et al. TCF7L2 is a master regulator of insulin production and processing. Hum. Mol. Genet. 2014, 23, 6419–6431. [Google Scholar] [CrossRef] [Green Version]
- Lewis, C.M.; Vassos, E. Polygenic risk scores: From research tools to clinical instruments. Genome Med. 2020, 12, 44. [Google Scholar] [CrossRef]
- Perišić, M.M.; Vladimir, K.; Karpov, S.; Štorga, M.; Mostashari, A.; Khanin, R. Polygenic Risk Score and Risk Factors for Gestational Diabetes. J. Pers. Med. 2022, 12, 1381. [Google Scholar] [CrossRef]
- Cormier, H.; Vigneault, J.; Garneau, V.; Tchernof, A.; Vohl, M.C.; Weisnagel, S.J.; Robitaille, J. An explained variance-based genetic risk score associated with gestational diabetes antecedent and with progression to pre-diabetes and type 2 diabetes: A cohort study. BJOG 2015, 122, 411–419. [Google Scholar] [CrossRef]
- Kawai, V.K.; Levinson, R.T.; Adefurin, A.; Kurnik, D.; Collier, S.P.; Conway, D.; Stein, C.M. A genetic risk score that includes common type 2 diabetes risk variants is associated with gestational diabetes. Clin. Endocrinol. 2017, 87, 149–155. [Google Scholar] [CrossRef]
- Powe, C.E.; Nodzenski, M.; Talbot, O.; Allard, C.; Briggs, C.; Leya, M.V.; Perron, P.; Bouchard, L.; Florez, J.C.; Scholtens, D.M.; et al. Genetic Determinants of Glycemic Traits and the Risk of Gestational Diabetes Mellitus. Diabetes 2018, 67, 2703–2709. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, M.; Shaat, N.; Almgren, P.; Anderberg, E.; Landin-Olsson, M.; Lyssenko, V.; Groop, L.; Berntorp, K. Genetic prediction of postpartum diabetes in women with gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2012, 97, 394–398. [Google Scholar] [CrossRef] [Green Version]
- Kwak, S.H.; Choi, S.H.; Kim, K.; Jung, H.S.; Cho, Y.M.; Lim, S.; Cho, N.H.; Kim, S.Y.; Park, K.S.; Jang, H.C. Prediction of type 2 diabetes in women with a history of gestational diabetes using a genetic risk score. Diabetologia 2013, 56, 2556–2563. [Google Scholar] [CrossRef]
- Li, M.; Rahman, M.L.; Wu, J.; Ding, M.; Chavarro, J.E.; Lin, Y.; Ley, S.H.; Bao, W.; Grunnet, L.G.; Hinkle, S.N.; et al. Genetic factors and risk of type 2 diabetes among women with a history of gestational diabetes: Findings from two independent populations. BMJ Open Diabetes Res. Care 2020, 8, e000850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, S.D.; Jablonski, K.A.; Florez, J.C.; Dabelea, D.; Franks, P.W.; Dagogo-Jack, S.; Kim, C.; Knowler, W.C.; Christophi, C.A.; Ratner, R.; et al. Genetic risk of progression to type 2 diabetes and response to intensive lifestyle or metformin in prediabetic women with and without a history of gestational diabetes mellitus. Diabetes Care 2014, 37, 909–911. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.B.; Kristensen, K.; Katsarou, A.; Shaat, N. Association of single nucleotide polymorphisms with insulin secretion, insulin sensitivity, and diabetes in women with a history of gestational diabetes mellitus. BMC Med. Genom. 2021, 14, 274. [Google Scholar] [CrossRef] [PubMed]
- Powe, C.E.; Udler, M.S.; Hsu, S.; Allard, C.; Kuang, A.; Manning, A.K.; Perron, P.; Bouchard, L.; Lowe, W.L.; Scholtens, D.; et al. Genetic Loci and Physiologic Pathways Involved in Gestational Diabetes Mellitus Implicated Through Clustering. Diabetes 2021, 70, 268–281. [Google Scholar] [CrossRef]
- Mahajan, A.; Taliun, D.; Thurner, M.; Robertson, N.R.; Torres, J.M.; Rayner, N.W.; Payne, A.J.; Steinthorsdottir, V.; Scott, R.A.; Grarup, N.; et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 2018, 50, 1505–1513. [Google Scholar] [CrossRef] [Green Version]
- Hughes, A.E.; Hattersley, A.T.; Flanagan, S.E.; Freathy, R.M. Two decades since the fetal insulin hypothesis: What have we learned from genetics? Diabetologia 2021, 64, 717–726. [Google Scholar] [CrossRef]
- Freathy, R.M.; Bennett, A.J.; Ring, S.M.; Shields, B.; Groves, C.J.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Lindgren, C.M.; Lango, H.; et al. Type 2 diabetes risk alleles are associated with reduced size at birth. Diabetes 2009, 58, 1428–1433. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, T.I.A.; Metz, S.; Kilpeläinen, T.O. Do gene-environment interactions have implications for the precision prevention of type 2 diabetes? Diabetologia 2022, 65, 1804–1813. [Google Scholar] [CrossRef]
- Uusitupa, M.; Khan, T.A.; Viguiliouk, E.; Kahleova, H.; Rivellese, A.A.; Hermansen, K.; Pfeiffer, A.; Thanopoulou, A.; Salas-Salvadó, J.; Schwab, U.; et al. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2611. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.; Valerio, J.D.; Garcia de la Torre, N.; Jimenez, I.; Del Valle, L.; Melero, V.; Assaf-Balut, C.; Fuentes, M.; Bordiu, E.; Durán, A.; et al. TCF7L2 rs7903146 polymorphism modulates the association between adherence to a Mediterranean diet and the risk of gestational diabetes mellitus. Metab. Open 2020, 8, 100069. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, H.; Wang, L.; Zhou, T.; Liang, Z.; Li, W.; Shang, X.; Leng, J.; Shen, Y.; Hu, G.; et al. Lifestyle intervention modifies the effect of the MC4R genotype on changes in insulin resistance among women with prior gestational diabetes: Tianjin Gestational Diabetes Mellitus Prevention Program. Am. J. Clin. Nutr. 2019, 110, 750–758. [Google Scholar] [CrossRef]
- Grotenfelt, N.E.; Wasenius, N.S.; Rönö, K.; Laivuori, H.; Stach-Lempinen, B.; Orho-Melander, M.; Schulz, C.-A.; Kautiainen, H.; Koivusalo, S.B.; Eriksson, J.G. Interaction between rs10830963 polymorphism in MTNR1B and lifestyle intervention on occurrence of gestational diabetes. Diabetologia 2016, 59, 1655–1658. [Google Scholar] [CrossRef] [PubMed]
- Van Poppel, M.N.M.; Corcoy, R.; Hill, D.; Simmons, D.; Mendizabal, L.; Zulueta, M.; Simon, L.; Desoye, G.; Perez, J.M.A.; Kautzky-Willer, A.; et al. Interaction between rs10830962 polymorphism in MTNR1B and lifestyle intervention on maternal and neonatal outcomes: Secondary analyses of the DALI lifestyle randomized controlled trial. Am. J. Clin. Nutr. 2022, 115, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Wang, L.; Liu, H.; Chen, Y.; Zhou, T.; Heianza, Y.; Leng, J.; Li, W.; Yang, X.; Shen, Y.; et al. Genetic susceptibility, lifestyle intervention and glycemic changes among women with prior gestational diabetes. Clin. Nutr. 2020, 39, 2144–2150. [Google Scholar] [CrossRef]
- Huvinen, E.; Lahti, J.; Klemetti, M.M.; Bergman, P.H.; Räikkönen, K.; Orho-Melander, M.; Laivuori, H.; Koivusalo, S.B. Genetic risk of type 2 diabetes modifies the effects of a lifestyle intervention aimed at the prevention of gestational and postpartum diabetes. Diabetologia 2022, 65, 1291–1301. [Google Scholar] [CrossRef]
- Yang, J.; Qian, F.; Chavarro, J.E.; Ley, S.H.; Tobias, D.K.; Yeung, E.; Hinkle, S.N.; Bao, W.; Li, M.; Liu, A.; et al. Modifiable risk factors and long term risk of type 2 diabetes among individuals with a history of gestational diabetes mellitus: Prospective cohort study. BMJ 2022, 378, e070312. [Google Scholar] [CrossRef]
- Pagel, K.A.; Chu, H.; Ramola, R.; Guerrero, R.F.; Chung, J.H.; Parry, S.; Reddy, U.M.; Silver, R.M.; Steller, J.G.; Yee, L.M.; et al. Association of Genetic Predisposition and Physical Activity With Risk of Gestational Diabetes in Nulliparous Women. JAMA Netw. Open 2022, 5, e2229158. [Google Scholar] [CrossRef]
Gene Symbol | Gene Functions/Associations * | Reference | Sample Size/Number of Included Studies | Type of Study |
---|---|---|---|---|
CDKAL1; CDK5 regulatory subunit associated protein 1 like 1 | Encodes CDKAL1, a member of the methylthiotransferase family. The exact function of CDKALI has not been established but it has been implicated in glucose-stimulated insulin secretion [84,85] and risk variants associated with impaired insulin secretory capacity [51]. T2D-associated locus. | Kwak et al. [59] | Stage 1: GDM n = 468, Control n = 1242; Stage 2: GDM n = 931, Control n = 783 | Two-stage GWAS |
Mao et al. [86] | GDM n = 10336; Control n = 17,445 | Meta-analysis | ||
Zhang et al. [62] | 29 studies | Meta-analysis | ||
Guo et al. [87] | 14 studies | Meta-analysis | ||
Powe and Kwak [63] | 23 studies, effective n = 2373–24,237 | Meta-analysis | ||
Pervjakova et al. [61] | GDM n = 5485; control n = 347,856 | Multi-ancestry GWAS | ||
CDKN2AB; cyclin-dependent kinase inhibitor 2A/B | Two splice variants encode inhibitors of CDK. One alternate open reading frame product codes for a stabilizer of p53. Involved in regulation of cell proliferation and apoptosis. May protect pancreatic β-cells from glucotoxicity [88]. Risk variants associated with impaired insulin secretion from β-cells [89]. Mutations cause MODY2 [90]. MODY- and T2D-associated locus. | Zhang et al. [62] | 29 studies | Meta-analysis |
Guo et al. [91] | 14 studies | Meta-analysis | ||
Powe and Kwak [63] | 23 studies; effective n = 2373–24,237 | Meta-analysis | ||
Pervjakova et al. [61] | GDM n = 5485; control n = 347,856 | GWAS | ||
GCK; glucokinase | Encodes the GCK enzyme, a hexokinase with a role in glucose-stimulated insulin secretion in the pancreas, and glucose uptake and conversion to glycogen in the liver. T2D-associated locus. | Zhang et al. [62] | 29 studies | Meta-analysis |
Mao et al. [86] | GDM n = 10336; control n = 17,445 | Meta-analysis | ||
GLIS3; GLIS family zinc finger 3 | Encodes a nuclear protein with five C2H2-type zinc finger domains with a role in the development of the pancreas, thyroid, eye, liver, and kidney. Regulates insulin gene transcription, insulin secretion, and probably also β-cell survival [92]. T2D-associated locus. | Powe and Kwak [63] | 23 studies, effective n = 2373–24,237 | Meta-analysis |
HHEX/IDE; hematopoietically expressed homeobox/insulin-degrading enzyme | HHEX codes a transcription factor belonging to the homebox family, implicated in developmental processes. IDE codes for insulin-degrading enzyme. Diabetes risk alleles linked to decreased pancreatic β-cell function [93]. T2D-associated locus. | Powe and Kwak [63] | 23 studies, effective n = 2373–24,237 | Meta-analysis |
HKDC1; hexokinase-domain-containing 1 | Codes for a zinc metallopeptidase that degrades intracellular insulin and other peptides (e.g., glucagon). Regulates glucose utilization and homeostasis, and may have a particular role during times of metabolic stress [94]. T2D-associated locus. Homeostasis during times of metabolic stress | Pervjakova et al. [61] | GDM n = 5485; control n = 347,856 | GWAS |
HNF1A; hepatocyte nuclear factor 1α | Encodes a transcription factor required for the expression of many liver-specific genes. Mutations in HNF1A causes MODY3 and common variants associated with T2D via affecting insulin secretion [95]. MODY- and T2D-associated locus. | Powe and Kwak [63] | 23 studies, effective n = 2373–24,237 | Meta-analysis |
IRS1; insulin receptor substrate 1 | Encodes a protein that is phosphorylated by insulin receptor tyrosine kinase. Associated with susceptibility to insulin resistance. T2D-associated locus. | Mao et al. [86] | GDM n = 10336; control n = 17,445 | Meta-analysis |
Zhang et al. [62] | 29 studies | Meta-analysis | ||
IGF2BP2; insulin-like growth factor 2 mRNA-binding protein 2 | Encodes a protein that regulates the translation of IGF2 mRNA. IGF2 is a polypeptide growth factor involved in the stimulation of insulin action [96]. T2D-associated locus. | Mao et al. [86] | GDM n = 10336; control n = 17,445 | Meta-analysis |
Zhang et al. [62] | 29 studies | Meta-analysis | ||
Wu et al. [97] | GDM n = 8204; control n = 15,221 | Meta-analysis | ||
KCNJ11; potassium inwardly rectifying channel subfamily J member 1 | Codes for an integral membrane protein and inward-rectifier-type potassium channel involved in insulin release [98]. Mutations cause MODY13 [99]. MODY- and T2D-associated locus. | Mao et al. [86] | GDM n = 10336; control n = 17,445 | Meta-analysis |
Zhang et al. [62] | 29 studies | Meta-analysis | ||
KCNQ1; potassium voltage-gated channel subfamily Q member 1 | Encodes a voltage-gated potassium channel. Risk variants are likely to affect diabetes risk via changes in pancreatic expression of this protein and effects on insulin secretion [100,101]. T2D-associated locus. | Mao et al. [86] | GDM n = 10336; control n = 17,445 | Meta-analysis |
MTNR1B; melatonin receptor 1B | Encodes a high-affinity receptor for melatonin, which influences insulin secretion [102] in addition to other functions, such as regulating circadian rhythms. Variants associated with impaired insulin secretion [103]. T2D-associated locus. | Mao et al. [86] | GDM n = 10336; control n = 17,445 | Meta-analysis |
Zhang et al. [62] | 29 studies | Meta-analysis | ||
Wu et al. [97] | GDM n = 8204; control n = 15,221 | Meta-analysis | ||
Powe and Kwak [63] | 23 studies, effective n = 2373–24,237 | Meta-analysis | ||
Pervjakova et al. [61] | GDM n = 5485; control n = 347,856 | GWAS | ||
TCF7L2; transcription factor 7-like 2 | Codes for a high mobility group (box-containing transcription factor involved in the Wnt signaling pathway). Implicated in insulin production and processing [104]. T2D-associated locus. | Zhang et al. [62] | 29 studies | Meta-analysis |
Mao et al. [86] | GDM n = 10336; control n = 17,445 | Meta-analysis | ||
Wu et al. [97] | GDM n = 8204; control n = 15,221 | Meta-analysis | ||
Pervjakova et al. [61] | GDM n = 5485; control n = 347,856 | GWAS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jääskeläinen, T.; Klemetti, M.M. Genetic Risk Factors and Gene–Lifestyle Interactions in Gestational Diabetes. Nutrients 2022, 14, 4799. https://doi.org/10.3390/nu14224799
Jääskeläinen T, Klemetti MM. Genetic Risk Factors and Gene–Lifestyle Interactions in Gestational Diabetes. Nutrients. 2022; 14(22):4799. https://doi.org/10.3390/nu14224799
Chicago/Turabian StyleJääskeläinen, Tiina, and Miira M. Klemetti. 2022. "Genetic Risk Factors and Gene–Lifestyle Interactions in Gestational Diabetes" Nutrients 14, no. 22: 4799. https://doi.org/10.3390/nu14224799
APA StyleJääskeläinen, T., & Klemetti, M. M. (2022). Genetic Risk Factors and Gene–Lifestyle Interactions in Gestational Diabetes. Nutrients, 14(22), 4799. https://doi.org/10.3390/nu14224799