Dietary Intakes and Eating Behavior between Metabolically Healthy and Unhealthy Obesity Phenotypes in Asian Children and Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Anthropometric and Biochemical Measurements
2.3. Assessment of Dietary Intake
2.4. Evaluation of Eating Behavior
2.5. Classification of MHO and MUO Children/Adolescents
2.6. Statistical Analysis
3. Results
3.1. Clinical Characteristics of Participants
3.2. Food Groups, Nutrient Intakes and Eating Behavior between Children/adolescents with MHO and Children/Adolescents with MUO
3.3. Food Groups, Nutrient Intakes and Eating Behavior between Children/Adolescents with MHO and Children/Adolescents with MUO Stratified by Sex or Race
3.4. Association between Food Groups/Nutrients/Eating Behavior and Risk Factors of Metabolic Syndrome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Lim, H. The Global Childhood Obesity Epidemic and the Association between Socio-Economic Status and Childhood Obesity. Int. Rev. Psychiatry 2012, 24, 176–188. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization: Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 5 August 2022).
- Sahoo, K.; Sahoo, B.; Choudhury, A.K.; Sofi, N.Y.; Kumar, R.; Bhadoria, A.S. Childhood obesity: Causes and consequences. J. Fam. Med. Prim. Care 2015, 4, 187–192. [Google Scholar] [CrossRef]
- Hsueh, Y.W.; Yeh, T.L.; Lin, C.Y.; Tsai, S.Y.; Liu, S.J.; Lin, C.M.; Chen, H.H. Association of metabolically healthy obesity and elevated risk of coronary artery calcification: A systematic review and meta-analysis. PeerJ 2020, 8, e8815. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.I.; Mittendorfer, B.; Klein, S. Metabolically healthy obesity: Facts and fantasies. J. Clin. Invest. 2019, 129, 3978–3989. [Google Scholar] [CrossRef] [Green Version]
- Bluher, M. Metabolically Healthy Obesity. Endocr. Rev. 2020, 41(3), bnaa004. [Google Scholar] [CrossRef] [Green Version]
- Hinnouho, G.M.; Czernichow, S.; Dugravot, A.; Nabi, H.; Brunner, E.J.; Kivimaki, M.; Singh-Manoux, A. Metabolically healthy obesity and the risk of cardiovascular disease and type 2 diabetes: The Whitehall II cohort study. Eur. Heart J. 2015, 36, 551–559. [Google Scholar] [CrossRef]
- Ding, W.Q.; Yan, Y.K.; Zhang, M.X.; Cheng, H.; Zhao, X.Y.; Hou, D.Q.; Mi, J. Hypertension outcomes in metabolically unhealthy normal-weight and metabolically healthy obese children and adolescents. J. Hum. Hypertens 2015, 29, 548–554. [Google Scholar] [CrossRef]
- Yu, X.; Wang, L.; Zhang, W.; Ming, J.; Jia, A.; Xu, S.; Li, Q.; Ji, Q. Fasting triglycerides and glucose index is more suitable for the identification of metabolically unhealthy individuals in the Chinese adult population: A nationwide study. J. Diabetes Investig. 2019, 10, 1050–1058. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, A.; Chin, V.; Perez-Colon, S.; Farook, T.; Bansal, S.; Kochummen, E.; Umpaichitra, V. Differences between Metabolically Healthy vs Unhealthy Obese Children and Adolescents. J. Natl. Med. Assoc. 2017, 109, 203–210. [Google Scholar] [CrossRef]
- Genovesi, S.; Antolini, L.; Orlando, A.; Gilardini, L.; Bertoli, S.; Giussani, M.; Invitti, C.; Nava, E.; Battaglino, M.G.; Leone, A.; et al. Cardiovascular Risk Factors Associated With the Metabolically Healthy Obese (MHO) Phenotype Compared to the Metabolically Unhealthy Obese (MUO) Phenotype in Children. Front. Endocrinol. 2020, 11, 27. [Google Scholar] [CrossRef]
- Yoon, D.Y.; Lee, Y.A.; Lee, J.; Kim, J.H.; Shin, C.H.; Yang, S.W. Prevalence and Clinical Characteristics of Metabolically Healthy Obesity in Korean Children and Adolescents: Data from the Korea National Health and Nutrition Examination Survey. J. Korean Med. Sci. 2017, 32, 1840–1847. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yin, J.; Cheng, H.; Wang, Y.; Gao, S.; Li, M.; Grant, S.F.; Li, C.; Mi, J.; Li, M. Identification of Genetic and Environmental Factors Predicting Metabolically Healthy Obesity in Children: Data From the BCAMS Study. J. Clin. Endocrinol. Metab 2016, 101, 1816–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albuquerque, D.; Nobrega, C.; Manco, L.; Padez, C. The contribution of genetics and environment to obesity. Br. Med. Bull. 2017, 123, 159–173. [Google Scholar] [CrossRef] [Green Version]
- McAllister, E.J.; Dhurandhar, N.V.; Keith, S.W.; Aronne, L.J.; Barger, J.; Baskin, M.; Benca, R.M.; Biggio, J.; Boggiano, M.M.; Eisenmann, J.C.; et al. Ten putative contributors to the obesity epidemic. Crit. Rev. Food Sci. Nutr. 2009, 49, 868–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, J.W. Prevention of Obesity and Metabolic Syndrome in Children. Front Endocrinol 2019, 10, 669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prince, R.L.; Kuk, J.L.; Ambler, K.A.; Dhaliwal, J.; Ball, G.D. Predictors of metabolically healthy obesity in children. Diabetes Care 2014, 37, 1462–1468. [Google Scholar] [CrossRef] [Green Version]
- Kranz, S.; Brauchla, M.; Slavin, J.L.; Miller, K.B. What do we know about dietary fiber intake in children and health? The effects of fiber intake on constipation, obesity, and diabetes in children. Adv. Nutr. 2012, 3, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Arenaza, L.; Huybrechts, I.; Ortega, F.B.; Ruiz, J.R.; De Henauw, S.; Manios, Y.; Marcos, A.; Julian, C.; Widhalm, K.; Bueno, G.; et al. Adherence to the Mediterranean diet in metabolically healthy and unhealthy overweight and obese European adolescents: The HELENA study. Eur. J. Nutr. 2019, 58, 2615–2623. [Google Scholar] [CrossRef] [Green Version]
- Camhi, S.M.; Whitney Evans, E.; Hayman, L.L.; Lichtenstein, A.H.; Must, A. Healthy eating index and metabolically healthy obesity in U.S. adolescents and adults. Prev. Med. 2015, 77, 23–27. [Google Scholar] [CrossRef]
- Roberge, J.B.; Van Hulst, A.; Barnett, T.A.; Drapeau, V.; Benedetti, A.; Tremblay, A.; Henderson, M. Lifestyle Habits, Dietary Factors, and the Metabolically Unhealthy Obese Phenotype in Youth. J. Pediatr. 2019, 204, 46–52.e41. [Google Scholar] [CrossRef]
- Qorbani, M.; Khashayar, P.; Rastad, H.; Ejtahed, H.-S.; Shahrestanaki, E.; Seif, E.; Daniali, S.S.; Goudarzi, M.; Motlagh, M.E.; Khodaparast, Z.; et al. Association of dietary behaviors, biochemical, and lifestyle factors with metabolic phenotypes of obesity in children and adolescents. Diabetol. Metab. Syndr. 2020, 12, 108. [Google Scholar] [CrossRef] [PubMed]
- Elmaogullari, S.; Demirel, F.; Hatipoglu, N. Risk factors that affect metabolic health status in obese children. J. Pediatr. Endocrinol. Metab 2017, 30, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Denney-Wilson, E.; Campbell, K.J. Eating behaviour and obesity. BMJ 2008, 337, a1926. [Google Scholar] [CrossRef]
- Gallant, A.R.; Tremblay, A.; Pérusse, L.; Bouchard, C.; Després, J.P.; Drapeau, V. The Three-Factor Eating Questionnaire and BMI in adolescents: Results from the Québec Family Study. Br. J. Nutr. 2010, 104, 1074–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, A.; Aiba, N.; Miyachi, M.; Watanabe, S.; the Saku Cohort Study Group. The associations of eating behavior and dietary intake with metabolic syndrome in Japanese: Saku cohort baseline study. J. Physiol. Anthropol. 2020, 39, 40. [Google Scholar] [CrossRef] [PubMed]
- Torres-Castillo, N.; Martinez-Lopez, E.; Vizmanos-Lamotte, B.; Garaulet, M. Healthy Obese Subjects Differ in Chronotype, Sleep Habits, and Adipose Tissue Fatty Acid Composition from Their Non-Healthy Counterparts. Nutrients 2020, 13, 119. [Google Scholar] [CrossRef]
- Henry, C.J.; Kaur, B.; Quek, R.Y.C. Are Asian foods as “fattening” as western-styled fast foods? Eur. J. Clin. Nutr. 2020, 74, 348–350. [Google Scholar] [CrossRef]
- Health Promotion Board, Singapore: Singapore Children Growth Charts. Available online: https://www.healthhub.sg/live-healthy/2016/child-bigger-than-average-but-active-should-i-be-worried (accessed on 14 September 2022).
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [Green Version]
- Health Promotion Board, Singapore Energy and Nutrient Composition of Food (2011). Available online: http://focos.hpb.gov.sg/eservices/ENCF/ (accessed on 21 October 2020).
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S; discussion 1229S–1231S. [Google Scholar] [CrossRef] [Green Version]
- Dietary Guidelines for Americans 2020–2025. Available online: https://www.dietaryguidelines.gov/resources/2020-2025-dietary-guidelines-online-materials. (accessed on 10 August 2022).
- Health Promotion Board Dietary Guidelines. Available online: https://www.healthhub.sg/live-healthy/192/recommended_dietary_allowances. (accessed on 10 August 2022).
- de Lauzon, B.; Romon, M.; Deschamps, V.; Lafay, L.; Borys, J.M.; Karlsson, J.; Ducimetière, P.; Charles, M.A. The Three-Factor Eating Questionnaire-R18 is able to distinguish among different eating patterns in a general population. J. Nutr. 2004, 134, 2372–2380. [Google Scholar] [CrossRef] [Green Version]
- Chong, M.F.; Ayob, M.N.; Chong, K.J.; Tai, E.S.; Khoo, C.M.; Leow, M.K.; Lee, Y.S.; Tham, K.W.; Venkataraman, K.; Meaney, M.J.; et al. Psychometric analysis of an eating behaviour questionnaire for an overweight and obese Chinese population in Singapore. Appetite 2016, 101, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Tsatsoulis, A.; Paschou, S.A. Metabolically Healthy Obesity: Criteria, Epidemiology, Controversies, and Consequences. Curr. Obes. Rep. 2020, 9, 109–120. [Google Scholar] [CrossRef] [PubMed]
- April-Sanders, A.K.; Rodriguez, C.J. Metabolically Healthy Obesity Redefined. JAMA Netw. Open 2021, 4, e218860. [Google Scholar] [CrossRef] [PubMed]
- Ooi, D.S.Q.; Ong, S.G.; Lee, O.M.H.; Chan, Y.H.; Lim, Y.Y.; Ho, C.W.L.; Tay, V.; Vijaya, K.; Loke, K.Y.; Sng, A.A.; et al. Prevalence and predictors of metabolically healthy obesity in severely obese Asian children. Pediatr. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Alberti, K.G.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents—An IDF consensus report. Pediatr Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef] [PubMed]
- National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004, 114, 555–576. [Google Scholar] [CrossRef]
- Wansink, B.; Cheney, M.M.; Chan, N. Exploring comfort food preferences across age and gender. Physiol. Behav. 2003, 79, 739–747. [Google Scholar] [CrossRef]
- Wardle, J.; Haase, A.M.; Steptoe, A.; Nillapun, M.; Jonwutiwes, K.; Bellisle, F. Gender differences in food choice: The contribution of health beliefs and dieting. Ann. Behav. Med. A Publ. Soc. Behav. Med. 2004, 27, 107–116. [Google Scholar] [CrossRef]
- Reddy, G.; van Dam, R.M. Food, culture, and identity in multicultural societies: Insights from Singapore. Appetite 2020, 149, 104633. [Google Scholar] [CrossRef]
- Tan, Y.W.B.; Lau, J.H.; AshaRani, P.V.; Roystonn, K.; Devi, F.; Lee, Y.Y.; Whitton, C.; Wang, P.; Shafie, S.; Chang, S.; et al. Dietary patterns of persons with chronic conditions within a multi-ethnic population: Results from the nationwide Knowledge, Attitudes and Practices survey on diabetes in Singapore. Arch. Public Health 2022, 80, 62. [Google Scholar] [CrossRef]
- Phillips, C.M. Metabolically healthy obesity: Definitions, determinants and clinical implications. Rev. Endocr. Metab. Disord. 2013, 14, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J. Whole grains and human health. Nutr. Res. Rev. 2004, 17, 99–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drewnowski, A.; McKeown, N.; Kissock, K.; Beck, E.; Mejborn, H.; Vieux, F.; Smith, J.; Masset, G.; Seal, C.J. Perspective: Why Whole Grains Should Be Incorporated into Nutrient-Profile Models to Better Capture Nutrient Density. Adv. Nutr. 2021, 12, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Singapore Dietary Guidelines. Available online: https://www.healthhub.sg/live-healthy/111/living_with_health_8_sets_diet_guidelines. (accessed on 27 September 2022).
- Esmaillzadeh, A.; Mirmiran, P.; Azizi, F. Whole-grain consumption and the metabolic syndrome: A favorable association in Tehranian adults. Eur. J. Clin. Nutr. 2005, 59, 353–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ander, B.P.; Dupasquier, C.M.; Prociuk, M.A.; Pierce, G.N. Polyunsaturated fatty acids and their effects on cardiovascular disease. Exp. Clin. Cardiol. 2003, 8, 164–172. [Google Scholar]
- Huang, C.W.; Chien, Y.S.; Chen, Y.J.; Ajuwon, K.M.; Mersmann, H.M.; Ding, S.T. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans. Int. J. Mol. Sci. 2016, 17, 1689. [Google Scholar] [CrossRef] [Green Version]
- Telle-Hansen, V.H.; Christensen, J.J.; Formo, G.A.; Holven, K.B.; Ulven, S.M. A comprehensive metabolic profiling of the metabolically healthy obesity phenotype. Lipids Health Dis. 2020, 19, 90. [Google Scholar] [CrossRef]
- Meiselman, H.L.; Bell, R. EATING HABITS. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 1963–1968. [Google Scholar]
- Urbanek, J.K.; Metzgar, C.J.; Hsiao, P.Y.; Piehowski, K.E.; Nickols-Richardson, S.M. Increase in cognitive eating restraint predicts weight loss and change in other anthropometric measurements in overweight/obese premenopausal women. Appetite 2015, 87, 244–250. [Google Scholar] [CrossRef]
- Phillips, C.M.; Dillon, C.; Harrington, J.M.; McCarthy, V.J.; Kearney, P.M.; Fitzgerald, A.P.; Perry, I.J. Defining metabolically healthy obesity: Role of dietary and lifestyle factors. PLoS ONE 2013, 8, e76188. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.N.; Song, S.W. Associations between Macronutrient Intakes and Obesity/Metabolic Risk Phenotypes: Findings of the Korean National Health and Nutrition Examination Survey. Nutrients 2019, 11, 628. [Google Scholar] [CrossRef] [Green Version]
- Rolls, B.J.; Fedoroff, I.C.; Guthrie, J.F. Gender differences in eating behavior and body weight regulation. Health Psychol. 1991, 10, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, V.; Bégin, C.; Corneau, L.; Dodin, S.; Lemieux, S. Gender differences in dietary intakes: What is the contribution of motivational variables? J. Hum. Nutr. Diet 2015, 28, 37–46. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, J. Association between fried food consumption and hypertension in Korean adults. Br. J. Nutr. 2016, 115, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Alsabieh, M.; Alqahtani, M.; Altamimi, A.; Albasha, A.; Alsulaiman, A.; Alkhamshi, A.; Habib, S.S.; Bashir, S. Fast food consumption and its associations with heart rate, blood pressure, cognitive function and quality of life. Pilot study. Heliyon 2019, 5, e01566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scaranni, P.; Cardoso, L.O.; Chor, D.; Melo, E.C.P.; Matos, S.M.A.; Giatti, L.; Barreto, S.M.; da Fonseca, M.J.M. Ultra-processed foods, changes in blood pressure and incidence of hypertension: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr. 2021, 24, 3352–3360. [Google Scholar] [CrossRef] [PubMed]
- Shenkin, A. Micronutrients in health and disease. Postgrad. Med. J. 2006, 82, 559–567. [Google Scholar] [CrossRef] [Green Version]
- van den Broek, T.J.; Kremer, B.H.A.; Marcondes Rezende, M.; Hoevenaars, F.P.M.; Weber, P.; Hoeller, U.; van Ommen, B.; Wopereis, S. The impact of micronutrient status on health: Correlation network analysis to understand the role of micronutrients in metabolic-inflammatory processes regulating homeostasis and phenotypic flexibility. Genes Nutr. 2017, 12, 5. [Google Scholar] [CrossRef] [Green Version]
- Appel, L.J. The effects of protein intake on blood pressure and cardiovascular disease. Curr. Opin. Lipidol. 2003, 14, 55–59. [Google Scholar] [CrossRef]
- Barrea, L.; Annunziata, G.; Bordoni, L.; Muscogiuri, G.; Colao, A.; Savastano, S.; On behalf of Obesity Programs of Nutrition, Education, Research and Assessment (OPERA) Group. Nutrigenetics—Personalized nutrition in obesity and cardiovascular diseases. Int. J. Obes. Suppl. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Hannon, B.A.; Edwards, C.G.; Thompson, S.V.; Burke, S.K.; Burd, N.A.; Holscher, H.D.; Teran-Garcia, M.; Khan, N.A. Genetic Variants in Lipid Metabolism Pathways Interact with Diet to Influence Blood Lipid Concentrations in Adults with Overweight and Obesity. Lifestyle Genom. 2020, 13, 155–163. [Google Scholar] [CrossRef]
- Phillips, C.M.; Goumidi, L.; Bertrais, S.; Field, M.R.; Ordovas, J.M.; Cupples, L.A.; Defoort, C.; Lovegrove, J.A.; Drevon, C.A.; Blaak, E.E.; et al. Leptin Receptor Polymorphisms Interact with Polyunsaturated Fatty Acids to Augment Risk of Insulin Resistance and Metabolic Syndrome in Adults. J. Nutr. 2009, 140, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferre, M.; Merino, J.; Sun, Q.; Fito, M.; Salas-Salvado, J. Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence. Oxid. Med. Cell Longev. 2017, 2017, 6723931. [Google Scholar] [CrossRef]
- Crawford, P.B.; Obarzanek, E.; Morrison, J.; Sabry, Z.I. Comparative advantage of 3-day food records over 24-hour recall and 5-day food frequency validated by observation of 9- and 10-year-old girls. J. Am. Diet Assoc. 1994, 94, 626–630. [Google Scholar] [CrossRef]
Parameter | All (n = 52) | MHO (n = 42) | MUO (n = 10) | p | MHO (n = 12) | MUO (n = 40) | p |
---|---|---|---|---|---|---|---|
Age (years) | 14.1 (12.3–16.1) | 14.1 (11.8–16.1) | 14.1 (13.8–16.3) | 0.531 | 12.6 (8.59–17.0) | 14.6 (13.1–16.1) | 0.182 |
Sex (%Male/%Female) | 59.6/40.4 | 60/40 | 60/40 | 1.000 | 83/17 | 52.5/47.5 | 0.093 |
Race (%Chinese/%Malay/%Indian) | 40.4/53.8/5.8 | 38/55/7 | 50/50/0 | 0.597 | 25/67/8 | 45/50/5 | 0.457 |
Monthly household income < SGD 2000 (%) | 15.6 | 15 | 17 | 1.000 | 10 | 18 | 1.000 |
BMI (kg/m2) | 35.9 (32.1–41.3) | 35.9 (31.8–40.9) | 36.4 (32.3–44.0) | 0.763 | 33.6 (30.1–39.4) | 36.5 (32.4–42.2) | 0.152 |
BMI-SDS | 2.43 (2.16–2.64) | 2.44 (2.17–2.63) | 2.28 (2.05–2.79) | 0.781 | 2.36 (1.99–2.55) | 2.44 (2.19–2.68) | 0.422 |
Waist to hip ratio | 0.98 (0.93–1.02) | 0.98 (0.95–1.02) | 0.95 (0.91–1.00) | 0.189 | 1.01 (0.94–1.03) | 0.98 (0.93–1.00) | 0.142 |
Body fat percentage (%) | 48.2 (39.4–55.4) | 47.9 (39.8–55.7) | 50.3 (35.5–54.8) | 0.952 | 51.5 (37.1–62.6) | 48.0 (40.1–54.3) | 0.558 |
Systolic blood pressure (mmHg) | 120 (111–130) | 118 (110–126) | 130 (124–134) | 0.003 * | 113 (108–118) | 124 (115–132) | 0.004 * |
Diastolic blood pressure (mmHg) | 66 (59–72) | 64 (57–72) | 70 (62–73) | 0.197 | 58 (55–72) | 67 (60–73) | 0.080 |
Total cholesterol (mmol/L) | 4.49 (3.92–5.04) | 4.52 (4.03–5.03) | 4.18 (3.54–5.17) | 0.493 | 4.61 (3.77–5.05) | 4.37 (3.98–5.04) | 0.991 |
Triglycerides (mmol/L) | 1.12 (0.94–1.35) | 1.01 (0.86–1.24) | 1.55 (1.10–2.17) | 0.014 * | 0.88 (0.69–1.24) | 1.13 (0.95–1.42) | 0.059 |
HDL cholesterol (mmol/L) | 1.11 (0.98–1.24) | 1.17 (0.99–1.25) | 1.01 (0.89–1.17) | 0.048 * | 1.24 (1.19–1.29) | 1.06 (0.95–1.19) | 0.002 * |
LDL cholesterol (mmol/L) | 2.84 (2.33–3.17) | 2.95 (2.40–3.38) | 2.52 (2.06–2.95) | 0.099 | 2.96 (2.32–3.17) | 2.80 (2.33–3.32) | 0.871 |
Fasting glucose (mmol/L) | 4.75 (4.60–5.10) | 4.70 (4.60–5.00) | 5.00 (4.58–5.20) | 0.434 | 4.65 (4.50–4.78) | 4.85 (4.60–5.20) | 0.027 * |
Glucose at 2 h of OGTT (mmol/L) | 5.50 (5.00–6.20) | 5.30 (4.88–6.10) | 5.85 (5.23–8.55) | 0.140 | 5.30 (5.10–5.68) | 5.55 (4.85–6.38) | 0.535 |
Fasting insulin (mU/L) | 22.6 (14.3–30.7) | 21.4 (14.1–30.4) | 25.0 (19.1–38.5) | 0.403 | 17.4 (11.4–25.1) | 25.0 (17.2–32.5) | 0.039 * |
HOMA-IR | 4.85 (3.14–6.43) | 4.48 (3.09–6.29) | 5.41 (3.76–8.84) | 0.410 | 3.67 (2.30–5.22) | 5.15 (3.35–7.70) | 0.019 * |
MH Definition | |||
---|---|---|---|
MHO (n = 12) | MUO (n = 40) | p | |
Food groups (continuous variables) | |||
Deep fried food (g) | 76.6 (19.0–136) | 55.1 (39.3–129) | 0.558 |
Fast food and processed convenience food (g) | 121 (16.1–152) | 54.1 (0.00–135) | 0.502 |
Fish (g) | 0.00 (0.00–0.00) | 0.00 (0.00–66.7) | 0.788 |
Fruits (g) | 17.7 (0.00–44.4) | 0.00 (0.00–39.8) | 0.721 |
Savory snacks (g) | 1.22 (0.00–21.3) | 5.00 (0.00–34.5) | 0.965 |
Sugar-sweetened beverage, SSB (ml) | 342 (163–421) | 278 (161–464) | 0.417 |
Sweet snacks (g) | 52.0 (6.25–118) | 23.5 (0.00–58.2) | 0.171 |
Vegetables (g) | 73.5 (43.7–113) | 82.3 (37.5–140) | 0.430 |
Whole grains (g) | 18.5 (0.00–69.8) | 0.00 (0.00–0.00) | 0.027 * |
Nutrients (continuous variables) | |||
Total energy (kcal) | 1856 (1670–2470) | 1855 (1730–2260) | 0.239 |
Carbohydrates (%kcal) | 49.1 (46.8–52.1) | 45.3 (40.2–51.9) | 0.539 |
Protein (%kcal) | 16.4 (14.7–17.6) | 17.7 (15.4–21.4) | 0.536 |
Total fat (%kcal) | 34.4 (32.8–37.2) | 36.0 (31.8–39.5) | 0.918 |
Saturated fat (%kcal) | 12.6 (10.1–14.2) | 12.3 (11.1–14.3) | 0.319 |
Monounsaturated fat (%kcal) | 11.7 (10.4–12.5) | 13.5 (11.4–14.9) | 0.851 |
Polyunsaturated fat (%kcal) | 6.92 (5.85–9.02) | 6.26 (5.17–7.45) | 0.027 * |
Beta-carotene (mcg per 1000 kcal) | 5.16 (0.00–50.1) | 0.19 (0.00–3.83) | 0.655 |
Calcium (mg per 1000 kcal) | 304 (183–368) | 252 (209–298) | 0.166 |
Cholesterol (mg per 1000 kcal) | 172 (101–229) | 198 (149–228) | 0.160 |
Dietary fiber (g per 1000 kcal) | 6.73 (5.85–7.59) | 6.60 (5.98–7.82) | 0.955 |
Iron (mg per 1000 kcal) | 6.54 (5.02–7.21) | 6.03 (5.24–7.09) | 0.719 |
Sodium (mg per 1000 kcal) | 1550 (1410–1840) | 1780 (1360–2050) | 0.839 |
Vitamin A (mcg per 1000 kcal) | 248 (114–338) | 258 (187–363) | 0.797 |
% of participants meeting AMDR/RDA of nutrients | |||
Carbohydrates † (AMDR) | 91.7 | 50 | 0.186 |
Total fat † (AMDR) | 58.3 | 42.5 | 0.924 |
Saturated fat † (AMDR) | 16.7 | 17.5 | 0.689 |
Protein † (AMDR) | 100 | 100 | 1.000 |
Calcium ‡ (RDA) | 8.3 | 5 | 0.498 |
Dietary fiber † (RDA) | 8.3 | 5 | 0.891 |
Iron ‡ (RDA) | 83.3 | 50 | 0.290 |
Vitamin A ‡ (RDA) | 50 | 20 | 0.072 |
Eating behavior (continuous variables) | |||
Cognitive dietary restraint | 16.0 (14.0–19.0) | 15.0 (13.0–17.0) | 0.009 * |
Emotional eating | 6.00 (3.25–6.00) | 6.00 (4.00–8.00) | 1.000 |
Uncontrolled eating | 22.0 (18.0–24.5) | 21.0 (19.0–24.0) | 0.766 |
MH Definition | ||||||
---|---|---|---|---|---|---|
Male | Female | |||||
MHO (n = 10) | MUO (n = 21) | p | MHO (n = 2) | MUO (n = 19) | p | |
Food groups | ||||||
Deep fried food (g) | 53.4 (7.18–110) | 80.9 (43.3–138) | 0.997 | 204 | 43.8 (23.3–106) | 0.401 |
Fast food and processed convenience food (g) | 121 (19.5–150) | 75.0 (0.00–151) | 0.855 | 107 | 50.0 (0.00–133) | 0.182 |
Fish (g) | 0.00 (0.00–0.00) | 14.0 (0.00–95.5) | 0.577 | 0.00 | 0.00 (0.00–47.7) | 0.774 |
Fruits (g) | 23.3 (0.00–48.9) | 0.00 (0.00–17.9) | 0.010 * | 13.1 | 4.00 (0.00–60.0) | 0.970 |
Savory snacks (g) | 1.22 (0.00–19.8) | 0.00 (0.00–33.1) | 0.940 | 16.7 | 12.8 (0.00–44.5) | 0.742 |
Sugar-sweetened beverage, SSB (ml) | 355 (209–472) | 257 (129–472) | 0.163 | 182 | 313 (207–444) | 0.212 |
Sweet snacks (g) | 52.0 (18.8–121) | 16.7 (0.00–50.8) | 0.097 | 61.8 | 26.7 (7.67–66.7) | 0.202 |
Vegetables (g) | 66.1 (39.8–118) | 71.3 (35.9–112) | 0.725 | 86.3 | 85.3 (36.7–159) | 0.555 |
Whole grains (g) | 17.2 (0.00–38.6) | 0.00 (0.00–42.3) | 0.933 | 133 | 0.00 (0.00–0.00) | <0.001 * |
Nutrients | ||||||
Total energy (kcal) | 1860 (1670–2460) | 2110 (1790–2420) | 0.253 | 2080 | 1780 (1680–1900) | 0.432 |
Carbohydrates (% kcal) | 49.1 (47.1–52.7) | 49.0 (38.6–52.8) | 0.900 | 43.1 | 44.0 (41.1–50.6) | 0.052 |
Protein (% kcal) | 16.0 (14.5–17.3) | 17.6 (15.9–21.5) | 0.987 | 19.4 | 19.7 (14.0–21.4) | 0.396 |
Total fat (% kcal) | 34.4 (32.9–36.4) | 34.7 (30.8–39.7) | 0.409 | 37.5 | 36.2 (32.7–39.6) | 0.971 |
Saturated fat (% kcal) | 12.3 (10.0–13.7) | 11.6 (9.93–13.8) | 0.371 | 14.3 | 12.7 (12.1–14.9) | 0.386 |
Monounsaturated fat (% kcal) | 11.7 (10.0–12.2) | 13.5 (11.4–15.1) | 0.786 | 13.5 | 13.4 (9.77–14.5) | 0.244 |
Polyunsaturated fat (% kcal) | 7.47 (5.46–9.25) | 6.09 (5.11–7.80) | 0.268 | 6.82 | 6.56 (5.67–7.24) | 0.746 |
Beta-carotene (mcg per 1000 kcal) | 3.39 (0.00–59.3) | 0.00 (0.00–1.32) | 0.548 | 15.4 | 0.81 (0.00–27.6) | 0.801 |
Calcium (mg per 1000 kcal) | 298 (158–318) | 225 (195–284) | 0.367 | 383 | 277 (221–359) | 0.282 |
Cholesterol (mg per 1000 kcal) | 161 (83.7–185) | 208 (160–254) | 0.097 | 305 | 190 (136–219) | 0.096 |
Dietary fiber (g per 1000 kcal) | 6.73 (5.72–7.80) | 6.67 (5.85–8.14) | 0.397 | 6.93 | 6.44 (5.97–7.53) | 0.982 |
Iron (mg per 1000 kcal) | 6.54 (4.94–7.14) | 6.01 (5.24–7.29) | 0.367 | 7.12 | 6.55 (5.23–6.92) | 0.540 |
Sodium (mg per 1000 kcal) | 1520 (1290–1840) | 1760 (1480–2050) | 0.795 | 1680 | 1890 (1340–2060) | 0.957 |
Vitamin A (mcg per 1000 kcal) | 188 (108–300) | 219 (123–353) | 0.275 | 395 | 314 (227–402) | 0.348 |
Eating behavior | ||||||
Cognitive dietary restraint | 15.5 (13.8–19.0) | 14.0 (13.0–16.0) | 0.031 * | 17.5 | 17.0 (14.0–18.0) | 0.999 |
Emotional eating | 6.00 (5.50–6.50) | 5.00 (3.50–6.00) | 0.490 | 3.00 | 7.00 (5.00–8.00) | 0.043 * |
Uncontrolled eating | 23.0 (18.0–25.0) | 21.0 (19.0–24.0) | 0.772 | 17.0 | 21.0 (18.0–23.0) | 0.027 * |
MH Definition | ||||||
---|---|---|---|---|---|---|
Chinese | Malay | |||||
MHO (n = 3) | MUO (n = 18) | p | MHO (n = 8) | MUO (n = 20) | p | |
Food groups | ||||||
Deep fried food (g) | 47.3 | 78.8 (42.3–161) | 0.972 | 78.3 (19.2–151) | 48.8 (23.5–119) | 0.274 |
Fast food and processed convenience food (g) | 0.00 | 54.1 (0.00–123) | 0.389 | 129 (35.7–198) | 75.3 (0.00–170) | 0.296 |
Fish (g) | 0.00 | 0.00 (0.00–105) | 1.000 | 0.00 (0.00–0.00) | 5.00 (0.00–66.7) | 0.771 |
Fruits (g) | 26.1 | 7.07 (0.00–62.1) | 0.963 | 4.58 (0.00–52.2) | 0.00 (0.00–29.5) | 1.000 |
Savory snacks (g) | 0.00 | 6.42 (0.00–30.2) | 0.551 | 15.8 (0.61–30.5) | 0.00 (0.00–44.9) | 0.683 |
Sugar-sweetened beverage, SSB (ml) | 333 | 237 (108–336) | 0.020 * | 291 (57.5–378) | 370 (219–588) | 0.194 |
Sweet snacks (g) | 124 | 23.5 (5.75–63.7) | 0.750 | 34.3 (6.25–90.7) | 22.5 (0.00–48.9) | 0.422 |
Vegetables (g) | 70.5 | 125 (53.7–169) | 0.387 | 66.1 (43.7–101) | 50.1 (29.9–92.0) | 0.466 |
Whole grains (g) | 19.0 | 0.00 (0.00–0.00) | 0.680 | 17.2 (0.00–69.8) | 0.00 (0.00–15.9) | 0.209 |
Nutrients | ||||||
Total energy (kcal) | 1670 | 1860 (1770–2300) | 0.830 | 1860 (1680–2400) | 1820 (1680–2220) | 0.358 |
Carbohydrates (% kcal) | 52.6 | 40.5 (36.3–43.9) | 0.051 | 47.6 (45.7–49.5) | 50.6 (46.0–53.2) | 0.076 |
Protein (% kcal) | 14.6 | 21.3 (17.1–23.2) | 0.224 | 16.9 (15.8–18.7) | 15.8 (14.0–19.6) | 0.211 |
Total fat (% kcal) | 32.8 | 39.1 (35.7–40.7) | 0.058 | 35.7 (34.3–37.9) | 32.6 (30.6–36.2) | 0.076 |
Saturated fat (% kcal) | 13.0 | 12.4 (11.9–14.9) | 0.922 | 10.9 (9.84–14.9) | 11.8 (10.1–13.2) | 0.226 |
Monounsaturated fat (% kcal) | 9.88 | 14.1 (13.2–15.1) | 0.002 * | 12.0 (11.6–14.3) | 12.1 (9.90–14.2) | 0.991 |
Polyunsaturated fat (% kcal) | 6.46 | 6.83 (6.00–7.96) | 0.215 | 8.38 (6.03–9.35) | 5.84 (5.17–6.92) | 0.039 * |
Beta-carotene (mcg per 1000 kcal) | 24.9 | 0.09 (0.00–1.50) | 0.066 | 3.39 (0.00–45.3) | 0.27 (0.00–4.86) | 0.872 |
Calcium (mg per 1000 kcal) | 316 | 233 (199–288) | 0.585 | 298 (151–368) | 259 (205–299) | 0.332 |
Cholesterol (mg per 1000 kcal) | 85.7 | 213 (179–248) | 0.236 | 176 (158–229) | 198 (116–222) | 0.484 |
Dietary fiber (g per 1000 kcal) | 7.39 | 6.22 (5.83–8.10) | 0.712 | 6.67 (5.56–7.49) | 7.08 (6.03–7.71) | 0.148 |
Iron (mg per 1000 kcal) | 6.50 | 5.83 (5.24–6.70) | 0.735 | 6.84 (5.26–7.21) | 6.72 (5.06–7.34) | 0.365 |
Sodium (mg per 1000 kcal) | 964 | 1860 (1370–2560) | 0.352 | 1630 (1440–1840) | 1700 (1390–2050) | 0.834 |
Vitamin A (mcg per 1000 kcal) | 286 | 288 (195–403) | 0.997 | 248 (121–338) | 250 (155–325) | 0.468 |
Eating behavior | ||||||
Cognitive dietary restraint | 15.0 | 14.0 (13.0–17.0) | 0.612 | 15.5 (14.0–19.0) | 16.0 (13.0–18.0) | 0.016 * |
Emotional eating | 3.00 | 5.50 (3.75–8.00) | 0.085 | 6.00 (6.00–7.50) | 6.00 (4.00–7.75) | 0.398 |
Uncontrolled eating | 19.0 | 21.0 (18.0–25.0) | 0.110 | 23.0 (18.8–25.0) | 21.0 (19.0–23.0) | 0.549 |
BMI-SDS | Triglycerides | HDL Cholesterol | Fasting Glucose | Glucose at 2 h OGTT | Systolic Blood Pressure | Diastolic Blood Pressure | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | 95% CI | β | 95% CI | β | 95% CI | β | 95% CI | β | 95% CI | β | 95% CI | β | 95% CI | |
Food groups | ||||||||||||||
Deep fried food (g) | 6.01 | −83.5–95.5 | −0.85 | −47.1–45.4 | 82.0 | −55.6–220 | −7.16 | −60.6–46.3 | −0.16 | −17.0–16.7 | 2.84 * | 0.95–6.62 * | 0.84 | −2.93–4.61 |
Fast food and processed convenience food (g) | −17.0 | −140–106 | −31.8 | −92.9–29.3 | −35.5 | −248–177 | 7.25 | −67.8–82.3 | 1.86 | −21.2–25.0 | 1.02 | −2.89–4.92 | 4.83* | 0.61–9.04 * |
Fish (g) | 0.00 | −52.3–52.3 | 0.00 | −28.9–28.9 | −23.5 | −114–67.1 | 0.00 | −32.1–32.1 | 7.39 | −2.32–17.1 | 0.00 | −1.78–1.78 | 0.00 | −2.05–2.05 |
Fruits (g) | 7.72 | −24.1–39.6 | 0.22 | −15.9–16.3 | 6.00 | −47.2–59.2 | −6.83 | −24.7–11.0 | −0.80 | −6.97–5.37 | −0.05 | −1.13–1.02 | 0.19 | −1.05–1.42 |
Savory snacks (g) | 16.6 | −12.8–46.0 | −0.50 | −16.4–15.4 | −14.7 | −69.0–39.6 | −9.14 | −28.0–9.72 | −1.81 | −7.61–3.99 | −0.04 | −1.05–0.97 | 0.95 | −0.25–2.15 |
Sugar-sweetened beverage, SSB (ml) | −79.8 | −322–163 | −28.5 | −164–107 | 133 | −370–635 | 31.5 | −112–175 | −25.9 | −72.8–21.1 | −1.33 | −9.85–7.19 | −3.73 | −12.9–5.44 |
Sweet snacks (g) | 7.37 | −43.7–58.3 | 0.27 | −26.6–27.1 | 24.9 | −59.9–110 | 0.35 | −30.9–31.6 | 2.02 | −7.74–11.8 | −0.02 | −1.61–1.57 | −0.02 | −1.86–1.82 |
Vegetables (g) | 38.3 | −38.4–115 | −9.54 | −48.7–29.6 | −89.9 | −212–32.0 | 5.74 | −40.1–51.6 | 15.6 | −2.98–28.1 | −1.31 | −3.65–1.03 | −1.02 | −4.00–1.95 |
Whole grains (g) | 0.00 | −14.4–14.4 | 0.00 | −7.64–7.64 | 0.00 | −45.8–45.8 | 0.00 | −6.94–6.94 | 0.00 | −2.64–2.64 | 0.00 | −0.83–0.83 | 0.00 | −1.02–1.02 |
Macronutrients | ||||||||||||||
Carbohydrates (% kcal) | −2.09 | −9.80–5.63 | 1.58 | −2.22–5.39 | 9.57 | −3.09–16.06 | 2.42 | −2.18–7.01 | 0.91 | −0.42–2.23 | 0.15 | −0.12–0.42 | 0.09 | −0.19–0.37 |
Protein (% kcal) | 2.19 | −2.44–6.82 | −0.73 | −3.08–1.62 | −7.25 | −14.8–0.31 | −1.31 | −4.12–1.51 | 0.38 | −0.50–1.26 | −0.08 | −0.23–0.07 | −0.03 | −0.20–0.15 |
Total fat (% kcal) | 2.48 | −3.65–8.62 | −1.39 | −4.67–1.88 | −1.49 | −11.6–8.64 | 0.06 | −3.60–3.72 | −0.41 | −1.52–0.69 | 0.01 | −0.17–0.20 | 0.01 | −0.21–0.23 |
Saturated fat (% kcal) | 0.39 | −2.66–3.44 | −0.48 | −2.17–1.22 | −1.51 | −6.10–3.07 | 0.15 | −1.76–2.06 | −0.20 | −0.73–0.33 | −0.01 | −0.11–0.08 | −0.02 | −0.13–0.09 |
Monounsaturated fat (% kcal) | 1.29 | −1.77–4.35 | 1.26 | −0.35–2.86 | −0.90 | −6.01–4.22 | 1.11 | −0.61–2.83 | −0.28 | −0.91–0.36 | −0.05 | −0.16–0.06 | −0.02 | −0.14–0.10 |
Polyunsaturated fat (% kcal) | −0.078 | −1.89–1.73 | −0.57 | −1.53–0.39 | 2.81 | −0.74–6.35 | −0.19 | −1.29–0.91 | −0.05 | −0.44–0.33 | −0.00 | −0.06–0.06 | 0.05 | −0.02–0.12 |
Micronutrients | ||||||||||||||
Beta-carotene (mcg per 1000 kcal) | −0.00 | −16.2–16.2 | −0.41 | −8.86–8.03 | 0.00 | −27.7–27.7 | −1.72 | −11.4–7.99 | −0.32 | −3.50–2.86 | −0.01 | −0.65–0.64 | 0.00 | −0.83–0.83 |
Calcium (mg per 1000 kcal) | −10.6 | −116–94.7 | −9.17 | −64.0–45.6 | 127 | −36.1–290 | −6.82 | −71.2–57.5 | −10.7 | −31.1–9.69 | −2.40 | −5.98–1.18 | −1.08 | −5.03–2.87 |
Cholesterol (mg per 1000 kcal) | −10.0 | −91.2–71.1 | −10.4 | −52.9–32.2 | −62.7 | −213–87.2 | −17.4 | −68.1–33.3 | −6.91 | −23.1–9.32 | 0.94 | −2.07–3.95 | −0.30 | −3.37–2.78 |
Dietary fiber (g per 1000 kcal) | −0.33 | −2.36–1.69 | 0.06 | −0.87–0.98 | −0.87 | −4.32–2.59 | −0.12 | −1.30–1.07 | −0.09 | −0.45–0.26 | −0.01 | −0.08–0.06 | 0.02 | −0.07–0.10 |
Iron (mg per 1000 kcal) | −0.89 | −2.09–0.91 | 0.36 | −0.37–1.09 | −2.34 * | −4.65–−0.04 * | −0.17 | −1.09–0.76 | −0.37 * | −0.67–−0.07 * | −0.04 | −0.08–0.01 | −0.02 | −0.07–0.04 |
Sodium (mg per 1000 kcal) | 207 | −507–921 | −34.7 | −372–303 | 576 | −519–1672 | 165 | −272–601 | −59.7 | −196–77 | −7.49 | −31.4–16.4 | −2.69 | −27.5–22.1 |
Vitamin A (mcg per 1000 kcal) | −60.1 | −210–90.3 | −43.8 | −120–32.7 | −62.8 | −328–202 | −58.1 | −142–25.7 | −13.2 | −40.0–13.6 | −0.80 | −6.10–4.51 | −1.48 | −7.40–4.44 |
Eating behavior | ||||||||||||||
Cognitive dietary restraint | −0.63 | −3.87–2.61 | 0.15 | −1.65–1.95 | 1.29 | −3.91–6.49 | −0.06 | −2.06–1.95 | 0.09 | −0.53–0.71 | −0.06 | −0.17–0.04 | 0.02 | −0.11–0.15 |
Emotional eating | −0.00 | −2.54–2.54 | 0.00 | −1.43–1.43 | −0.00 | −4.44–4.44 | 0.00 | −1.51–1.51 | 0.00 | −0.48–0.48 | −0.00 | −0.09–0.09 | 0.05 | −0.05–0.15 |
Uncontrolled eating | 1.62 | −2.55–5.78 | −0.98 | −3.11–1.15 | 4.15 | −3.09–11.4 | −0.74 | −3.20–1.71 | −0.32 | −1.07–0.44 | −0.07 | −0.19–0.06 | 0.05 | −0.11–0.21 |
Elevated Blood Pressure | Hypertriglyceridemia | Dyslipidemia (HDL) | Abnormal Glucose Tolerance | MUO (MS Definition) | MUO (MH Definition) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Food groups | ||||||||||||
Deep fried food (g) | 1.005 | 0.997–1.013 | 1.003 | 0.993–1.014 | 0.997 | 0.989–1.005 | 0.994 | 0.980–1.007 | 1.000 | 0.991–1.009 | 0.996 | 0.986–1.006 |
Fast food and processed convenience food (g) | 1.002 | 0.995–1.008 | 0.992 | 0.980–1.005 | 0.999 | 0.993–1.006 | 0.994 | 0.981–1.007 | 0.998 | 0.989–1.006 | 0.997 | 0.989–1.005 |
Fish (g) | 1.007 | 0.994–1.020 | 1.010 | 0.992–1.029 | 0.998 | 0.984–1.013 | 1.013 | 0.996–1.031 | 1.009 | 0.994–1.023 | 1.028 | 0.999–1.059 |
Fruits (g) | 1.007 | 0.992–1.021 | 1.001 | 0.978–1.024 | 0.992 | 0.977–1.007 | 0.993 | 0.973–1.013 | 1.001 | 0.985–1.018 | 1.004 | 0.982–1.026 |
Savory snacks (g) | 1.010 | 0.992–1.028 | 0.991 | 0.959–1.024 | 1.003 | 0.984–1.022 | 1.002 | 0.976–1.029 | 1.014 | 0.993–1.034 | 1.019 | 0.980–1.059 |
Sugar-sweetened beverage, SSB (ml) | 1.002 | 1.000–1.005 | 1.001 | 0.998–1.003 | 1.000 | 0.997–1.002 | 0.994 | 0.987–1.001 | 1.002 | 0.999–1.004 | 1.001 | 0.998–1.004 |
Sweet snacks (g) | 0.997 | 0.986–1.009 | 0.994 | 0.975–1.014 | 0.996 | 0.983–1.009 | 0.986 | 0.960–1.014 | 0.995 | 0.978–1.011 | 0.988 | 0.974–1.002 |
Vegetables (g) | 0.997 | 0.990–1.004 | 0.988 | 0.970–1.007 | 1.001 | 0.994–1.008 | 1.004 | 0.997–1.012 | 1.001 | 0.993–1.008 | 0.998 | 0.990–1.007 |
Whole grains (g) | 0.991 | 0.975–1.007 | 1.006 | 0.990–1.023 | 1.004 | 0.990–1.018 | 0.996 | 0.976–1.015 | 1.006 | 0.992–1.021 | 0.993 | 0.978–1.008 |
Macronutrients | ||||||||||||
Carbohydrates (% kcal) | 1.100 | 0.982–1.232 | 1.022 | 0.880–1.187 | 0.913 | 0.811–1.028 | 0.994 | (0.864–1.142) | 1.020 | 0.905–1.150 | 0.988 | 0.861–1.134 |
Protein (% kcal) | 0.791 * | 0.642–0.974 * | 0.980 | 0.741–1.297 | 1.115 | 0.929–1.340 | 1.213 | (0.955–1.541) | 0.942 | 0.764–1.160 | 1.074 | 0.830–1.391 |
Total fat (% kcal) | 0.976 | 0.848–1.122 | 0.972 | 0.799–1.182 | 1.083 | 0.935–1.253 | 0.871 | (0.706–1.074) | 1.002 | 0.852–1.179 | 0.983 | 0.814–1.188 |
Saturated fat (% kcal) | 1.057 | 0.795–1.405 | 0.918 | 0.618–1.365 | 0.986 | 0.725–1.341 | 0.903 | (0.581–1.403) | 1.125 | 0.807–1.570 | 0.799 | 0.555–1.153 |
Monounsaturated fat (% kcal) | 0.981 | 0.772–1.247 | 1.353 | 0.909–2.012 | 1.004 | 0.780–1.291 | 1.009 | (0.700–1.455) | 1.146 | 0.843–1.558 | 1.133 | 0.841–1.526 |
Polyunsaturated fat (% kcal) | 0.870 | 0.598–1.265 | 0.957 | 0.584–1.568 | 0.914 | 0.613–1.363 | 0.623 | (0.318–1.222) | 0.803 | 0.502–1.284 | 0.529 * | 0.284–0.986 * |
Micronutrients | ||||||||||||
Beta-carotene (mcg per 1000 kcal) | 0.977 | 0.939–1.017 | 0.360 | 0.070–1.859 | 1.000 | 0.995–1.005 | 0.984 | (0.924–1.048) | 0.982 | 0.925–1.042 | 0.995 | 0.989–1.001 |
Calcium (mg per 1000 kcal) | 0.991 * | 0.982–1.000 * | 0.997 | 0.987–1.007 | 1.002 | 0.995–1.009 | 0.999 | (0.989–1.009) | 0.992 | 0.981–1.003 | 0.997 | 0.989–1.005 |
Cholesterol (mg per 1000 kcal) | 1.001 | 0.992–1.010 | 1.009 | 0.995–1.022 | 1.007 | 0.997–1.017 | 1.006 | (0.994–1.018) | 1.005 | 0.994–1.015 | 1.003 | 0.992–1.014 |
Dietary fiber (g per 1000 kcal) | 0.714 | 0.473–1.079 | 0.967 | 0.584–1.601 | 1.188 | 0.863–1.635 | 0.747 | (0.416–1.340) | 0.655 | 0.365–1.175 | 1.015 | 0.702–1.468 |
Iron (mg per 1000 kcal) | 0.527 * | 0.309–0.899 * | 1.033 | 0.583–1.832 | 2.363 * | 1.258–4.437 * | 0.349 * | (0.134–0.908) * | 0.716 | 0.416–1.231 | 1.154 | 0.643–2.071 |
Sodium (mg per 1000 kcal) | 1.000 | 0.999–1.001 | 1.000 | 0.999–1.002 | 0.999 | 0.998–1.000 | 1.000 | (0.999–1.002) | 0.999 | 0.998–1.001 | 1.001 | 0.999–1.003 |
Vitamin A (mcg per 1000 kcal) | 0.998 | 0.993–1.002 | 0.996 | 0.989–1.003 | 1.001 | 0.997–1.005 | 1.002 | (0.996–1.008) | 0.998 | 0.992–1.003 | 1.000 | 0.995–1.004 |
Eating behavior | ||||||||||||
Cognitive dietary restraint | 0.711 * | 0.523–0.966 * | 0.987 | 0.690–1.413 | 0.747 | 0.527–1.059 | 1.259 | 0.853–1.859 | 0.797 | 0.557–1.139 | 0.681 * | 0.472–0.984 * |
Emotional eating | 0.866 | 0.641–1.172 | 1.017 | 0.695–1.488 | 0.958 | 0.698–1.314 | 0.968 | 0.650–1.442 | 0.877 | 0.617–1.246 | 1.084 | 0.756–1.553 |
Uncontrolled eating | 0.972 | 0.805–1.174 | 0.987 | 0.763–1.275 | 1.027 | 0.840–1.256 | 0.934 | 0.720–1.213 | 0.925 | 0.745–1.148 | 1.109 | 0.873–1.410 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ooi, D.S.Q.; Toh, J.Y.; Ng, L.Y.B.; Peng, Z.; Yang, S.; Rashid, N.S.B.S.A.; Sng, A.A.; Chan, Y.H.; Chong, M.F.-F.; Lee, Y.S. Dietary Intakes and Eating Behavior between Metabolically Healthy and Unhealthy Obesity Phenotypes in Asian Children and Adolescents. Nutrients 2022, 14, 4796. https://doi.org/10.3390/nu14224796
Ooi DSQ, Toh JY, Ng LYB, Peng Z, Yang S, Rashid NSBSA, Sng AA, Chan YH, Chong MF-F, Lee YS. Dietary Intakes and Eating Behavior between Metabolically Healthy and Unhealthy Obesity Phenotypes in Asian Children and Adolescents. Nutrients. 2022; 14(22):4796. https://doi.org/10.3390/nu14224796
Chicago/Turabian StyleOoi, Delicia Shu Qin, Jia Ying Toh, Lucas Yan Bin Ng, Zikang Peng, Supeng Yang, Nurul Syafiqah Binte Said Abdul Rashid, Andrew Anjian Sng, Yiong Huak Chan, Mary Foong-Fong Chong, and Yung Seng Lee. 2022. "Dietary Intakes and Eating Behavior between Metabolically Healthy and Unhealthy Obesity Phenotypes in Asian Children and Adolescents" Nutrients 14, no. 22: 4796. https://doi.org/10.3390/nu14224796
APA StyleOoi, D. S. Q., Toh, J. Y., Ng, L. Y. B., Peng, Z., Yang, S., Rashid, N. S. B. S. A., Sng, A. A., Chan, Y. H., Chong, M. F. -F., & Lee, Y. S. (2022). Dietary Intakes and Eating Behavior between Metabolically Healthy and Unhealthy Obesity Phenotypes in Asian Children and Adolescents. Nutrients, 14(22), 4796. https://doi.org/10.3390/nu14224796