Pharmacokinetics and Tissue Distribution of 13C-Labeled Succinic Acid in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Calibration Standards and Quality Control (QC) Sample Preparation
2.3. Analytical Characterization
2.4. Method Validation
2.5. Pharmacokinetic and Tissue Distribution Study
3. Results
3.1. Method Validation
3.2. Pharmacokinetics Parameters
3.3. Tissue Distribution
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Wang, Q.A.; Liu, Y.; Jiang, L. Energy metabolism in brown adipose tissue. FEBS J. 2021, 288, 3647–3662. [Google Scholar] [CrossRef] [PubMed]
- Mills, E.L.; Pierce, K.A.; Jedrychowski, M.P.; Garrity, R.; Winther, S.; Vidoni, S.; Yoneshiro, T.; Spinelli, J.B.; Lu, G.Z.; Kazak, L.; et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 2018, 560, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Ives, S.J.; Zaleski, K.S.; Slocum, C.; Escudero, D.; Sheridan, C.; Legesse, S.; Vidal, K.; Lagalwar, S.; Reynolds, T.H. The effect of succinic acid on the metabolic profile in high-fat diet-induced obesity and insulin resistance. Physiol. Rep. 2020, 8, e14630. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, H.; Zhang, X.; Chen, Q.; Xia, L. Role of succinic acid in the regulation of sepsis. Int. Immunopharmacol. 2022, 110, 109065. [Google Scholar] [CrossRef] [PubMed]
- Hakak, Y.; Lehmann-Bruinsma, K.; Phillips, S.; Le, T.; Liaw, C.; Connolly, D.T.; Behan, D.P. The role of the GPR91 ligand succinate in hematopoiesis. J. Leukoc. Biol. 2009, 85, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Kasarci, G.; Ertugrul, B.; Iplik, E.S.; Cakmakoglu, B. The apoptotic efficacy of succinic acid on renal cancer cell lines. Med. Oncol. 2021, 38, 144. [Google Scholar] [CrossRef] [PubMed]
- Iplik, E.S.; Catmakas, T.; Cakmakoglu, B. A new target for the treatment of endometrium cancer by succinic acid. Cell. Mol. Biol. 2018, 64, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Ertugrul, B.; Iplik, E.S.; Cakmakoglu, B. In Vitro Inhibitory Effect of Succinic Acid on T-Cell Acute Lymphoblastic Leukemia Cell Lines. Arch. Med. Res. 2021, 52, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Ferro, A.; Carbone, E.; Zhang, J.; Marzouk, E.; Villegas, M.; Siegel, A.; Nguyen, D.; Possidente, T.; Hartman, J.; Polley, K.; et al. Short-term succinic acid treatment mitigates cerebellar mitochondrial OXPHOS dysfunction, neurodegeneration and ataxia in a Purkinje-specific spinocerebellar ataxia type 1 (SCA1) mouse model. PLoS ONE 2017, 12, e0188425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidance for Industry, Bioanalytical Method Validation, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CMV). 2018. Available online: https://www.fda.gov/downloads/drugs/guidances/ucm070107.pdf (accessed on 24 May 2021).
- Winkler, J.T. The fundamental flaw in obesity research. Obes. Rev. 2005, 6, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013, 496, 238–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hass, D.T.; Bisbach, C.M.; Robbings, B.M.; Sadilek, M.; Sweet, I.R.; Hurley, J.B. Succinate metabolism in the retinal pigment epithelium uncouples respiration from ATP synthesis. Cell Rep. 2022, 39, 110917. [Google Scholar] [CrossRef] [PubMed]
Analytes | Precursor (m/z) | Production (m/z) | DP (Volts) | CE (Volts) | CXP (Volts) |
---|---|---|---|---|---|
13C4SA | 120.9 | 76.1 | −20 | −16 | −9 |
CAD4 | 194.9 | 114 | −5 | −18 | −13 |
Samples | Standard Curve | R | Linear Range | LLOQ |
---|---|---|---|---|
(ng/mL) | (ng/mL) | |||
Plasma | 0.00096x + 0.000187 | 0.9999 | 0.5–8000 | 0.5 |
Heart | 0.00255x + −0.00384 | 0.9984 | 2.0–500 | 2 |
Liver | 0.00413x + −0.00356 | 0.9997 | 0.5–2000 | 0.5 |
Kidney | 0.00270x + −0.00108 | 0.9982 | 0.5–2000 | 0.5 |
IWAT | 0.00718x + −0.00590 | 0.9996 | 2.0–2000 | 2 |
BAT | 0.00788x + 0.000207 | 0.9953 | 0.5–2000 | 0.5 |
Brain | 0.00634x + −0.01420 | 0.9946 | 2.0–2000 | 0.5 |
Matrix | Concentration (ng/mL) | Intra-Day | Inter-Day | ||||
---|---|---|---|---|---|---|---|
Measured | Precision | Accuracy | Measured | Precision | Accuracy | ||
(ng/mL) | (RSD, %) | (RE, %) | (ng/mL) | (RSD, %) | (RE, %) | ||
Plasma | 0.5 | 0.50 ± 0.04 | 8.1 | 2.8 | 0.48 ± 0.05 | 11.1 | −3 |
500 | 488.34 ± 6.10 | 1.3 | −2.3 | 511.24 ± 36.37 | 7.1 | 2.3 | |
8000 | 7709.59 ± 527.79 | 6.9 | −3.6 | 7799.37 ± 332.90 | 4.3 | −2.5 | |
Heart | 2 | 1.82 ± 0.08 | 4.4 | −6.6 | 1.84 ± 0.10 | 5.2 | −5.7 |
125 | 114.21 ± 9.71 | 8.5 | −8.6 | 121.17 ± 8.71 | 7.2 | −3.1 | |
500 | 461.08 ± 36.01 | 7.8 | −7.8 | 490.41 ± 33.01 | 6.7 | −1.9 | |
Liver | 0.5 | 0.47 ± 0.02 | 3.6 | −4.1 | 0.49 ± 0.04 | 9.2 | −0.2 |
125 | 126.27 ± 4.80 | 3.8 | 1 | 123.58 ± 6.47 | 5.2 | −1.1 | |
2000 | 1971.52 ± 19.63 | 1 | −1.4 | 1946.28 ± 53.68 | 2.8 | −2.7 | |
Kidney | 0.5 | 0.54 ± 0.07 | 13 | 10.3 | 0.53 ± 0.07 | 12.8 | 8.4 |
125 | 121.17 ± 2.71 | 2.2 | −3.1 | 126.34 ± 7.75 | 6.1 | 1.1 | |
2000 | 1902.34 ± 61.46 | 3.2 | −4.9 | 1946.28 ± 53.68 | 2.8 | −2.7 | |
IWAT | 2 | 1.73 ± 0.13 | 7.5 | −11.4 | 1.83 ± 0.19 | 10.4 | −6.1 |
125 | 141.00 ± 6.66 | 4.7 | 12.8 | 132.63 ± 13.79 | 10.4 | 6.1 | |
2000 | 2013.07 ± 63.04 | 3.1 | 0.7 | 1978.04 ± 50.92 | 2.6 | −1.1 | |
BAT | 0.5 | 0.48 ± 0.07 | 14 | −1.4 | 0.53 ± 0.08 | 14.6 | 8.2 |
125 | 129.98 ± 6.78 | 5.2 | 4 | 126.34 ± 7.75 | 6.1 | 1.1 | |
2000 | 2043.73 ± 116.20 | 5.7 | 2.2 | 1946.28 ± 53.68 | 2.8 | −2.7 | |
Brain | 0.5 | 0.50 ± 0.07 | 14 | 2.2 | 0.48 ± 0.06 | 12.5 | −2.1 |
125 | 128.39 ± 7.93 | 6.2 | 2.7 | 128.23 ± 11.63 | 9.1 | 2.6 | |
2000 | 2910.80 ± 55.73 | 2.9 | −4.5 | 1963.54 ± 65.03 | 3.3 | −1.8 |
Matrix | Concentration | Extraction Recovery | Matrix Effect |
---|---|---|---|
(ng/mL) | (%) | (%) | |
Plasma | 0.5 | 89.4 ± 8.0 | 81.4 ± 8.6 |
500 | 89.1 ± 7.2 | 97.9 ± 10.3 | |
8000 | 86.8 ± 3.9 | 86.8 ± 3.8 | |
Heart | 2 | 87.0 ± 14.2 | 88.0 ± 9.4 |
125 | 104.7 ± 5.7 | 89.5 ± 6.2 | |
500 | 97.5 ± 3.1 | 84.3 ± 8.4 | |
Liver | 0.5 | 105.8 ± 9.2 | 85.2 ± 13.2 |
125 | 98.5 ± 7.6 | 83.1 ± 6.2 | |
2000 | 90.7 ± 7.0 | 95.2 ± 9.2 | |
Kidney | 0.5 | 113.5 ± 3.3 | 89.3 ± 4.0 |
125 | 100.3 ± 9.5 | 94.9 ± 3.0 | |
2000 | 90.1 ± 2.5 | 93.0 ± 2.3 | |
IWAT | 2 | 86.6 ± 4.3 | 107.0 ± 2.3 |
125 | 111.8 ± 8.5 | 95.3 ± 0.7 | |
2000 | 104.5 ± 4.5 | 106.1 ± 2.9 | |
BAT | 0.5 | 97.7 ± 12.8 | 95.2 ± 3.7 |
125 | 106.7 ± 9.1 | 97.7 ± 1.5 | |
2000 | 91.3 ± 7.6 | 97.8 ± 6.8 | |
Brain | 0.5 | 95.1 ± 5.1 | 95.0 ± 11.1 |
125 | 108.0 ± 12.1 | 99.6 ± 4.0 | |
2000 | 103.2 ± 10.4 | 90.7 ± 1.8 |
Pharmacokinetics Parameters | 13C4SA | |
---|---|---|
IV | PO | |
(10 mg/kg) | (100 mg/kg) | |
Tmax (h) | 0.08 | 0.25 |
Cmax (ng/mL) | 6226.7 ± 994.9 | 629.7 ± 33.5 |
T1/2 (h) | 0.56 ± 0.09 | 0.83 ± 0.21 |
AUC4h (ng·h/mL) | 2222.8 ± 349.1 | 321.7 ± 60.6 |
AUC∞ (ng·h/mL) | 2223.8 ± 349.4 | 322.5 ± 60.3 |
CL (mL/h/kg) | 4574.5 ± 744.2 | NA |
Vss (mL/kg) | 520.8 ± 88.8 | NA |
MRT4h (h) | 0.11 ± 0.01 | 0.44 ± 0.03 |
MRT∞ (h) | 0.11 ± 0.01 | 0.45 ± 0.02 |
F (%) | NA | 1.45 |
Time (h) | Plasma | Heart | Liver | Kidney | IWAT | BAT | Brain |
---|---|---|---|---|---|---|---|
0.25 | 631.0 ± 99.4 | 44.5 ± 17.0 | 1167.6 ± 183.4 | 128.8 ± 47.5 | 149.0 ± 29.3 | 244.8 ± 68.6 | 11.6 ± 0.8 |
0.5 | 480.7 ± 45.1 | 13.6 ± 2.9 | 360.2 ± 129.8 | 54.5 ± 11.9 | 56.9 ± 24.6 | 80.3 ± 37.4 | 13.3 ± 0.1 |
1 | 46.5 ± 55.6 | BQL | 78.9 ± 11.4 | 19.7 ± 22.2 | 37.1 ± 21.6 | 20.7 ± 14.0 | 13.2 ± 1.6 |
2 | 3.1 ± 0.2 | BQL | 18.3 ± 9.0 | 18.9 ± 10.7 | 15.5 ± 3.2 | 8.7 ± 3.8 | 11.7 ± 1.6 |
4 | 0.7 ± 0.2 | BQL | 15.3 ± 11.6 | 6.5 ± 1.4 | 14.9 ± 0.1 | 5.0 ± 3.2 | 9.6 ± 0.1 |
8 | BQL | BQL | 4.3 ± 1.8 | 4.4 ± 1.1 | 12.9 ± 4.79 | 2.4 ± 1.2 | 9.2 ± 0.3 |
24 | BQL | BQL | 2.3 ± 0.4 | 2.9 ± 1.1 | BQL | BQL | 9.6 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, Y.; Song, J.S.; Ahn, S. Pharmacokinetics and Tissue Distribution of 13C-Labeled Succinic Acid in Mice. Nutrients 2022, 14, 4757. https://doi.org/10.3390/nu14224757
Jung Y, Song JS, Ahn S. Pharmacokinetics and Tissue Distribution of 13C-Labeled Succinic Acid in Mice. Nutrients. 2022; 14(22):4757. https://doi.org/10.3390/nu14224757
Chicago/Turabian StyleJung, Yonghwan, Jin Sook Song, and Sunjoo Ahn. 2022. "Pharmacokinetics and Tissue Distribution of 13C-Labeled Succinic Acid in Mice" Nutrients 14, no. 22: 4757. https://doi.org/10.3390/nu14224757
APA StyleJung, Y., Song, J. S., & Ahn, S. (2022). Pharmacokinetics and Tissue Distribution of 13C-Labeled Succinic Acid in Mice. Nutrients, 14(22), 4757. https://doi.org/10.3390/nu14224757