Novel Therapeutic Approaches for Mitigating Complications in Short Bowel Syndrome
Abstract
:1. Introduction
2. Alterations of Mechanical Signaling and Effects of TPN on the Body
2.1. Gut-Liver Axis
2.1.1. Role of FGF19 on Bile Acid Synthesis
2.1.2. TGR5-GLP Pathway
2.1.3. Gut Mucosal Atrophy
2.1.4. Gut Microbiota
2.2. Gut-Brain Axis
2.3. Gut-Lung Axis
3. Novel Therapeutics (Table 1)
3.1. GLP-1 and GLP-2
Therapeutic | Mechanism of Action | Overall Effect | Adverse Effects |
---|---|---|---|
GLP2 | Adenylate cyclase activating peptide | ↑ Total small bowel weight ↑ Villus height ↑ Crypt depth ↑ Total mucosal surface area | Polyuria Decreased stoma output Stoma complications Decreased thirst Edema |
GLP1 | Adenylate cyclase activating peptide Vagus nerve inhibition Decrease in gastric emptying, gastric acid secretion | ↓ Fecal wet weight loss ↓ Energy loss ↓ Nitrogen loss ↓ Sodium loss ↓ Potassium loss | Not yet explored |
Peptide YY | Secreted by ileal L cells | Not yet explored | Not yet explored |
IGF-I | Increases protein synthesis in jejunal muscularis layer Increases mucosal DNA and protein | ↑ Crypt depth ↑ Body weight ↑ Intestinal mucosal cellularity | Not yet explored |
Ghrelin | Stimulates release of GH and IGF-1 Promotes intestinal epithelial cell proliferation through PI3K/Akt pathway EGFR trans-activation Ultimately converges to ERK ½ phosphorylation | ↑ Villus height ↑ Crypt depth ↑ Crypt cell proliferation rate | Not yet explored |
Thyroid Hormone | Trophic hormone Regulation of gene transcription Induction of intestinal alkaline phosphatase (IAP) mRNA | ↑ Jejunum weight ↑ Ileum weight ↑ Jejunal villus height ↑ Crypt depth ↑ Enterocyte proliferation | Not yet explored |
Cholecystokinin | Peptide hormone secreted by endocrine cells Stimulates gallbladder contraction Promotes small intestine motility | ↓ Incidence of gallbladder stasis ↓ Gallbladder: hepatic bile 3H-cholic acid specific activity ratio ↓ Incidence of detrimental changes in bile composition and hepatic bile secretion ↓ IL-1 level ↓ TNF-alpha levels ↓ Bilirubin level ↑ Bile flow | Not yet explored |
Omega 3 | Polyunsaturated fat | ↑ Bowel weight ↑ Mucosal weight ↑ Mucosal cDNA ↑ Protein expression ↑ Villous height ↑ Crypt depth ↑ Cell proliferation ↑ Apoptosis ↓ Bilirubin level | Not yet explored |
TGR5 Agonist | Increases secretion of GLP | No significant improvement in growth or proliferation of cells | Not yet explored |
Rapamycin | Immunosuppressive drug mTOR kinase inhibitor Prevents progression of cell growth | ↓ Autophagy ↓ Reactive oxygen species ↓ Binding immunoglobulin protein (BIP) ↓ Spliced X-box-binding protein-1 (sXBP1) ↓ Steatosis↑ Hepatic Function | Not yet explored |
Chenodeoxycholic Acid (CDCA) | Dual agonist of FXR and TGR5 | ↓ Direct bilirubin level ↓ Serum Triglyceride ↓ Bile acid ↑ Weight gain ↓ Incidence of pigmented gallstones | Not yet explored |
Carbamazepine | Anti-epileptic Inhibition of voltage-gated sodium and calcium channels | ↑ Clearance of misfolded proteins ↓ Hepatic Load ↓ Fibrosis ↓ Hepatic cholestasis deposits ↓ GGT in TPN | Elevated GGT Elevated ALT Elevated AST |
Surgical Management | Liver, small intestine, or multivisceral transplantation Longitudinal intestinal lengthening and tailoring (LILT) Serial transverse enteroplasty (STEP) | Surgical Cure | Variable survival rate |
3.2. Peptide YY
3.3. IGF-1
3.4. Thyroid Hormone
3.5. Cholecystokinin
3.6. Omega-3
3.7. TGR-5 Agonists
3.8. Rapamycin
3.9. Chenodeoxycholic Acid (CDCA)
3.10. Carbamazepine
4. Surgical Management of SBS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seetharam, P.; Rodrigues, G. Short bowel syndrome: A review of management options. Saudi J. Gastroenterol. 2011, 17, 229–235. [Google Scholar]
- Wales, P.W.; de Silva, N.; Kim, J.; Lecce, L.; To, T.; Moore, A. Neonatal short bowel syndrome: Population-based estimates of incidence and mortality rates. J. Pediatr. Surg. 2004, 39, 690–695. [Google Scholar] [CrossRef]
- Thompson, J.S.; DiBaise, J.K.; Iyer, K.R.; Yeats, M.; Sudan, D.L. Postoperative short bowel syndrome. J. Am. Coll. Surg. 2005, 201, 85–89. [Google Scholar] [CrossRef]
- Hessov, I.; Andersson, H.; Isaksson, B. Effects of a low-fat diet on mineral absorption in small-bowel disease. Scand. J. Gastroenterol. 1983, 18, 551–554. [Google Scholar] [CrossRef]
- Nightingale, J.M.; Kamm, M.A.; Van Der Sijp, J.R.; Morris, G.P.; Walker, E.R.; Mather, S.J.; Britton, K.E.; Lennard-Jones, J.E. Disturbed gastric emptying in the short bowel syndrome. Evidence for a ‘colonic brake’. Gut 1993, 34, 1171–1176. [Google Scholar] [CrossRef] [Green Version]
- Williams, N.S.; Evans, P.; King, R.F. Gastric acid secretion and gastrin production in the short bowel syndrome. Gut 1985, 26, 914–919. [Google Scholar] [CrossRef]
- Merritt, R.J.; Cohran, V.; Raphael, B.P.; Sentongo, T.; Volpert, D.; Warner, B.W.; Goday, P.S. Intestinal Rehabilitation Programs in the Management of Pediatric Intestinal Failure and Short Bowel Syndrome. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 588–596. [Google Scholar] [CrossRef]
- Chandra, R.; Kesavan, A. Current treatment paradigms in pediatric short bowel syndrome. Clin. J. Gastroenterol. 2017, 11, 103–112. [Google Scholar] [CrossRef]
- Lezo, A.; Diamanti, A.; Marinier, E.M.; Tabbers, M.; Guz-Mark, A.; Gandullia, P.; Spagnuolo, M.I.; Protheroe, S.; Peretti, N.; Merras-Salmio, L.; et al. Chronic Intestinal Failure in Children: An International Multicenter Cross-Sectional Survey. Nutrients 2022, 14, 1889. [Google Scholar] [CrossRef]
- Villalona, G.; Price, A.; Ba, K.B.; Manithody, C.; Saxena, S.; Ratchford, T.; Bs, M.W.; Kakarla, V.; Bs, S.P.; Bs, W.P.; et al. No Gut No Gain! Enteral Bile Acid Treatment Preserves Gut Growth but Not Parenteral Nutrition-Associated Liver Injury in a Novel Extensive Short Bowel Animal Model. J. Parenter. Enter. Nutr. 2018, 42, 1238–1251. [Google Scholar] [CrossRef] [Green Version]
- Buchman, A.L.; Neely, M.; Grossie, V.B.; Truong, L., Jr.; Lykissa, E.; Ahn, C. Organ heavy-metal accumulation during parenteral nutrition is associated with pathologic abnormalities in rats. Nutrition 2001, 17, 600–606. [Google Scholar] [CrossRef]
- Premkumar, M.H.; Soraisham, A.; Bagga, N.; Massieu, L.A.; Maheshwari, A. Nutritional Management of Short Bowel Syndrome. Clin. Perinatol. 2022, 49, 557–572. [Google Scholar] [CrossRef]
- Kumpf, V.J. Pharmacologic management of diarrhea in patients with short bowel syndrome. J. Parenter. Enter. Nutr. 2014, 38, 38S–44S. [Google Scholar] [CrossRef]
- Niv, Y.; Charash, B.; Sperber, A.D.; Oren, M. Effect of octreotide on gastrostomy, duodenostomy, and cholecystostomy effluents: A physiologic study of fluid and electrolyte balance. Am. J. Gastroenterol. 1997, 92, 2107–2111. [Google Scholar]
- Schmidt, T.; Pfeiffer, A.; Hackelsberger, N.; Widmer, R.; Meisel, C.; Kaess, H. Effect of intestinal resection on human small bowel motility. Gut 1996, 38, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y.L.; Ferrell, J.M. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am. J. Physiol. Liver Physiol. 2020, 318, G554–G573. [Google Scholar] [CrossRef]
- Kir, S.; Beddow, S.A.; Samuel, V.T.; Miller, P.; Previs, S.F.; Suino-Powell, K.; Xu, H.E.; Shulman, G.I.; Kliewer, S.A.; Mangelsdorf, D.J. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 2011, 331, 1621–1624. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K.; Stoll, B.; Burrin, D.G.; Holst, J.J.; Moore, D.D. Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs. Am. J. Physiol. Liver Physiol. 2012, 302, G218–G224. [Google Scholar] [CrossRef] [Green Version]
- Holter, M.M.; Chirikjian, M.K.; Govani, V.N.; Cummings, B.P. TGR5 Signaling in Hepatic Metabolic Health. Nutrients 2020, 12, 2598. [Google Scholar] [CrossRef]
- Guglielmi, F.W.; Regano, N.; Mazzuoli, S.; Fregnan, S.; Leogrande, G.; Guglielmi, A.; Merli, M.; Pironi, L.; Penco, J.M.; Francavilla, A. Cholestasis induced by total parenteral nutrition. Clin. Liver Dis. 2008, 12, 97–110. [Google Scholar] [CrossRef]
- Denton, C.; Price, A.; Friend, J.; Manithody, C.; Blomenkamp, K.; Westrich, M.; Kakarla, V.; Phillips, W.; Krebs, J.; Munoz, S.A.; et al. Role of the Gut⁻Liver Axis in Driving Parenteral Nutrition-Associated Injury. Children 2018, 5, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niinikoski, H.; Stoll, B.; Guan, X.; Kansagra, K.; Lambert, B.; Stephens, J.; Hartmann, B.; Holst, J.J.; Burrin, D.G. Onset of small intestinal atrophy is associated with reduced intestinal blood flow in TPN-fed neonatal piglets. J. Nutr. 2004, 134, 1467–1474. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Teckman, J. Newly Identified Mechanisms of Total Parenteral Nutrition Related Liver Injury. Adv. Hepatol. 2014, 2014, 621380. [Google Scholar] [CrossRef] [Green Version]
- Sugita, K.; Kaji, T.; Yano, K.; Matsukubo, M.; Nagano, A.; Matsui, M.; Murakami, M.; Harumatsu, T.; Onishi, S.; Yamada, K.; et al. The protective effects of hepatocyte growth factor on the intestinal mucosal atrophy induced by total parenteral nutrition in a rat model. Pediatr. Surg. Int. 2021, 37, 1743–1753. [Google Scholar] [CrossRef]
- Jain, A.K.; Sharma, A.; Arora, S.; Blomenkamp, K.; Jun, I.C.; Luong, R.; Westrich, D.J.; Mittal, A.; Buchanan, P.M.; Guzman, M.A.; et al. Preserved Gut Microbial Diversity Accompanies Upregulation of TGR5 and Hepatobiliary Transporters in Bile Acid-Treated Animals Receiving Parenteral Nutrition. J. Parenter. Enter. Nutr. 2016, 41, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K.; Wen, J.X.; Blomenkamp, K.S.; Arora, S.; Blaufuss, T.A.; Rodrigues, J.; Long, J.P.; Neuschwander-Tetri, B.A.; Teckman, J.H. Oleanolic Acid Improves Gut Atrophy Induced by Parenteral Nutrition. J. Parenter. Enter. Nutr. 2015, 40, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K.; Wen, J.X.; Arora, S.; Blomenkamp, K.S.; Rodrigues, J.; Blaufuss, T.A.; Liou, V.; Burrin, D.; Long, J.P.; Teckman, J. Validating hyperbilirubinemia and gut mucosal atrophy with a novel ultramobile ambulatory total parenteral nutrition piglet model. Nutr. Res. 2015, 35, 169–174. [Google Scholar] [CrossRef]
- Newton, K.P.; Hou, J.; Crimmins, N.A.; LaVine, J.E.; Barlow, S.E.; Xanthakos, S.A.; Africa, J.; Behling, C.; Donithan, M.; Clark, J.M.; et al. Prevalence of Prediabetes and Type 2 Diabetes in Children with Nonalcoholic Fatty Liver Disease. JAMA Pediatr. 2016, 170, e161971. [Google Scholar] [CrossRef]
- Samaddar, A.; van Nispen, J.; Armstrong, A.; Song, E.; Voigt, M.; Murali, V.; Krebs, J.; Manithody, C.; Denton, C.; Ericsson, A.C.; et al. Lower systemic inflammation is associated with gut firmicutes dominance and reduced liver injury in a novel ambulatory model of parenteral nutrition. Ann. Med. 2022, 54, 1701–1713. [Google Scholar] [CrossRef]
- Wu, S.; Powell, J.; Mathioudakis, N.; Kane, S.; Fernandez, E.; Sears, C.L. Bacteroides fragilis enterotoxin induces intestinal epithelial cell secretion of interleukin-8 through mitogen-activated protein kinases and a tyrosine kinase-regulated nuclear factor-kappaB pathway. Infect. Immun. 2004, 72, 5832–5839. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.M.; Lee, J.Y.; Yoo, D.; Sim, Y.S.; Kim, Y.J.; Oh, Y.K.; Kang, J.S.; Kim, S.; Kim, J.S.; Kim, J.M. Bacteroides fragilis enterotoxin induces human beta-defensin-2 expression in intestinal epithelial cells via a mitogen-activated protein kinase/I kappaB kinase/NF-kappaB-dependent pathway. Infect. Immun. 2010, 78, 2024–2033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remacle, A.G.; Shiryaev, S.A.; Strongin, A.Y. Distinct interactions with cellular E-cadherin of the two virulent metalloproteinases encoded by a Bacteroides fragilis pathogenicity island. PLoS ONE 2014, 9, e113896. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Lim, K.C.; Huang, J.; Saidi, R.F.; Sears, C.L. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc. Natl. Acad. Sci. USA 1998, 95, 14979–14984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, R.M.; Beier, D.; Gollan, J.L. Regulation of hepatocyte bile salt transporters by endotoxin and inflammatory cytokines in rodents. Gastroenterology 1996, 111, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Alrefai, W.A.; Gill, R.K. Bile acid transporters: Structure, function, regulation and pathophysiological implications. Pharm. Res. 2007, 24, 1803–1823. [Google Scholar] [CrossRef] [PubMed]
- Trauner, M.; Arrese, M.; Lee, H.; Boyer, J.L.; Karpen, S.J. Endotoxin downregulates rat hepatic ntcp gene expression via decreased activity of critical transcription factors. J. Clin. Investig. 1998, 101, 2092–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtman, S.N.; Keku, J.; Schwab, J.H.; Sartor, R. Hepatic injury associated with small bowel bacterial overgrowth in rats is prevented by metronidazole and tetracycline. Gastroenterology 1991, 100, 513–519. [Google Scholar] [CrossRef]
- Freund, H.R.; Muggia-Sullam, M.; LaFrance, R.; Enrione, E.B.; Popp, M.B.; Bjornson, H. A possible beneficial effect of metronidazole in reducing TPN-associated liver function derangements. J. Surg. Res. 1985, 38, 356–363. [Google Scholar] [CrossRef]
- Koga, H.; Sakisaka, S.; Yoshitake, M.; Harada, M.; Kumemura, H.; Hanada, S.; Taniguchi, E.; Kawaguchi, T.; Kumashiro, R.; Sata, M. Abnormal accumulation in lipopolysaccharide in biliary epithelial cells of rats with self-filling blind loop. Int. J. Mol. Med. 2002, 9, 621–626. [Google Scholar] [CrossRef]
- Whiting, J.F.; Green, R.M.; Rosenbluth, A.B.; Gollan, J.L. Tumor necrosis factor-alpha decreases hepatocyte bile salt uptake and mediates endotoxin-induced cholestasis. Hepatology 1995, 22 Pt 1, 1273–1278. [Google Scholar]
- Zheng, Y.; Tam, Y.; Coutts, R. Endotoxin and cytokine released during parenteral nutrition. J. Parenter. Enter. Nutr. 2004, 28, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, G.L.; Carreras, F.I.; Soria, L.R.; Gradilone, S.A.; Marinelli, R.A. LPS induces the TNF-alpha-mediated downregulation of rat liver aquaporin-8: Role in sepsis-associated cholestasis. Am. J. Physiol. Liver Physiol. 2008, 294, G567–G575. [Google Scholar]
- Meguid, M.M.; Kubota, A.; Yang, Z.J.; Montante, A.; Gleason, J.R. Effects of TPN on brain, liver, and food intake in rats. J. Surg. Res. 1995, 58, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Lopez, S.M.; Rassin, D.K. Brain large neutral amino acids and catecholamines in parenterally nourished preterm rabbits. Int. J. Dev. Neurosci. 1995, 13, 619–626. [Google Scholar] [CrossRef]
- Radmacher, P.G.; Hilton, M.A.; Hilton, F.K.; Duncan, S.D.; Adamkin, D.H. Use of the soluble peptide gamma-L-glutamyl-L-tyrosine to provide tyrosine in total parenteral nutrition in rats. J. Parenter. Enter. Nutr. 1993, 17, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, G.; Kulkarni, M.; Vlaardingerbroek, H.; Stoll, B.; Ng, K.; Martin, C.; Belmont, J.; Hadsell, D.; Heird, W.; Newgard, C.B.; et al. Multi-omic profiles of hepatic metabolism in TPN-fed preterm pigs administered new generation lipid emulsions. J. Lipid Res. 2016, 57, 1696–1711. [Google Scholar] [CrossRef] [Green Version]
- Maciá-Botejara, E.; Morán-Penco, J.M.; Espín-Jaime, M.T.; Botello-Martínez, F.; Salas-Martínez, J.; Caballero-Loscos, M.J.; Molina-Fernández, M. Brain lipid composition in rabbits after total parenteral nutrition with two different lipid emulsions. Nutrition 2013, 29, 313–317. [Google Scholar] [CrossRef]
- Lee, M.C.; Mannon, P.J.; Grant, J.P.; Pappas, T.N. Total parenteral nutrition alters NPY/PYY receptor levels in the rat brain. Physiol. Behav. 1997, 62, 1219–1223. [Google Scholar] [CrossRef]
- De Nardo, M.C.; Mario, C.D.; Laccetta, G.; Boscarino, G.; Terrin, G. Enteral and parenteral energy intake and neurodevelopment in preterm infants: A systematic review. Nutrition 2021, 97, 111572. [Google Scholar] [CrossRef]
- Pinto-Sanchez, M.I.; Gadowsky, S.; McKenzie, S.; Raphael, M.J.; Childs, A.; Thabane, M.; Hansen, S.; Marshall, J.K.; Armstrong, D. Anxiety, Depression and Quality of Life Improve After One Month and Three Months of Home Parenteral Nutrition: A Pilot Study in a Canadian Population. J. Can. Assoc. Gastroenterol. 2018, 2, 178–185. [Google Scholar] [CrossRef]
- Van Oers, H.A.; Haverman, L.; Olieman, J.F.; Neelis, E.G.; Jonkers-Schuitema, C.F.; Grootenhuis, M.A.; Tabbers, M.M. Health-related quality of life, anxiety, depression and distress of mothers and fathers of children on Home parenteral nutrition. Clin. Nutr. 2019, 38, 1905–1912. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, P.B.; Pertkiewicz, M.; Messing, B.; Iyer, K.; Seidner, D.L.; O’Keefe, S.J.; Forbes, A.; Heinze, H.; Joelsson, B. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastroenterology 2012, 143, 1473–1481.e3. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, J.S.; Peng, S.H.; Deng, X.Y.; Zhu, D.M.; Javidiparsijani, S.; Wang, G.-R.; Li, D.-Q.; Li, L.-X.; Luo, J.M. Gut-lung crosstalk in pulmonary involvement with inflammatory bowel diseases. World J. Gastroenterol. 2013, 19, 6794–6804. [Google Scholar] [CrossRef] [PubMed]
- Keely, S.; Talley, N.J.; Hansbro, P.M. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol. 2012, 5, 7–18. [Google Scholar] [CrossRef]
- Zhang, Z.; Hener, P.; Frossard, N.; Kato, S.; Metzger, D.; Li, M.; Chambon, P. Thymic stromal lymphopoietin overproduced by keratinocytes in mouse skin aggravates experimental asthma. Proc. Natl. Acad. Sci. USA 2009, 106, 1536–1541. [Google Scholar] [CrossRef] [Green Version]
- Donovan, C.; Liu, G.; Shen, S.; Marshall, J.E.; Kim, R.Y.; Alemao, C.A.; Budden, K.F.; Choi, J.P.; Kohonen-Corish, M.; El-Omar, E.M.; et al. The role of the microbiome and the NLRP3 inflammasome in the gut and lung. J. Leukoc. Biol. 2020, 108, 925–935. [Google Scholar] [CrossRef]
- Yang, J.; Sun, H.; Tian, F.; Wan, S.; Mamtawla, G.; Wang, P.; Gao, X.; Zhang, L.; Li, J.; Shen, Y.; et al. Autophagy suppression plays a role in parenteral nutrition-associated lung injury. Clin. Nutr. 2020, 40, 560–570. [Google Scholar] [CrossRef]
- Hermsen, J.L.; Gomez, F.E.; Sano, Y.; Kang, W.; Maeshima, Y.; Kudsk, K.A. Parenteral feeding depletes pulmonary lymphocyte populations. J. Parenter. Enter. Nutr. 2009, 33, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Fan, T.; Lu, L.; Jin, R.; Sui, A.; Guan, R.; Cui, F.; Qu, Z.; Liu, D. Change of intestinal microbiota in mice model of bronchopulmonary dysplasia. PeerJ 2022, 10, e13295. [Google Scholar] [CrossRef]
- Duran, B. The effects of long-term total parenteral nutrition on gut mucosal immunity in children with short bowel syndrome: A systematic review. BMC Nurs. 2005, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Kaji, T.; Tanaka, H.; Holst, J.J.; Redstone, H.; Wallace, L.; de Heuval, E.; Sigalet, D.L. The effects of variations in dose and method of administration on glucagon like peptide-2 activity in the rat. Eur. J. Pharmacol. 2008, 596, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.R.; Wallace, L.E.; Hartmann, B.; Holst, J.J.; Demchyshyn, L.; Toney, K.; Sigalet, D.L. Nutrient-stimulated GLP-2 release and crypt cell proliferation in experimental short bowel syndrome. Am. J. Physiol. Liver Physiol. 2005, 288, G431–G438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, D.W.; Wales, P.W.; Josephson, J.K.; Nation, P.N.; Wizzard, P.R.; Sergi, C.M.; Field, C.J.; Sigalet, D.L.; Turner, J.M. Glucagon-Like Peptide 2 Improves Cholestasis in Parenteral Nutrition--Associated Liver Disease. J. Parenter. Enter. Nutr. 2014, 40, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Yano, K.; Kaji, T.; Onishi, S.; Machigashira, S.; Nagai, T.; Harumatsu, T.; Yamada, K.; Yamada, W.; Muto, M.; Nakame, K.; et al. Novel effect of glucagon-like peptide-2 for hepatocellular injury in a parenterally fed rat model of short bowel syndrome. Pediatr. Surg. Int. 2019, 35, 1345–1351. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, P.B.; Gabe, S.M.; Seidner, D.L.; Lee, H.-M.; Olivier, C. Factors Associated With Response to Teduglutide in Patients With Short-Bowel Syndrome and Intestinal Failure. Gastroenterology 2018, 154, 874–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocoshis, S.A.; Merritt, R.J.; Hill, S.; Protheroe, S.; Carter, B.A.; Horslen, S.; Hu, S.; Kaufman, S.S.; Mercer, D.F.; Pakarinen, M.P.; et al. Safety and Efficacy of Teduglutide in Pediatric Patients With Intestinal Failure due to Short Bowel Syndrome: A 24-Week, Phase III Study. J. Parenter. Enter. Nutr. 2019, 44, 621–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, L.K.; O’Keefe, S.; Fujioka, K.; Gabe, S.M.; Lamprecht, G.; Pape, U.-F.; Li, B.; Youssef, N.N.; Jeppesen, P.B. Long-Term Teduglutide for the Treatment of Patients With Intestinal Failure Associated With Short Bowel Syndrome. Clin. Transl. Gastroenterol. 2016, 7, e142. [Google Scholar] [CrossRef] [Green Version]
- Eliasson, J.; Hvistendahl, M.K.; Freund, N.; Bolognani, F.; Meyer, C.; Jeppesen, P.B. Apraglutide, a novel glucagon-like peptide-2 analog, improves fluid absorption in patients with short bowel syndrome intestinal failure: Findings from a placebo-controlled, randomized phase 2 trial. J. Parenter. Enter. Nutr. 2022, 46, 896–904. [Google Scholar] [CrossRef]
- Hunt, J.E.; Holst, J.J.; Jeppesen, P.B.; Kissow, H. GLP-1 and Intestinal Diseases. Biomedicines 2021, 9, 383. [Google Scholar] [CrossRef]
- Imeryüz, N.; Yeğen, B.C.; Bozkurt, A.; Coşkun, T.; Villanueva-Peñacarrillo, M.L.; Ulusoy, N.B. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am. J. Physiol. Liver Physiol. 1997, 273, G920–G927. [Google Scholar]
- Kunkel, D.; Basseri, B.; Low, K.; Lezcano, S.; Soffer, E.E.; Conklin, J.L.; Mathur, R.; Pimentel, M. Efficacy of the glucagon-like peptide-1 agonist exenatide in the treatment of short bowel syndrome. Neurogastroenterol. Motil. 2011, 23, 739-e328. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K.; Askov-Hansen, C.; Naimi, R.; Brandt, C.; Hartmann, B.; Holst, J.; Mortensen, P.; Jeppesen, P. Acute effects of continuous infusions of glucagon-like peptide (GLP)-1, GLP-2 and the combination (GLP-1+GLP-2) on intestinal absorption in short bowel syndrome (SBS) patients. A placebo-controlled study. Regul. Pept. 2013, 184, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Tappenden, K.A. Pathophysiology of short bowel syndrome: Considerations of resected and residual anatomy. J. Parenter. Enter. Nutr. 2014, 38, 14S–22S. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, J.M.; Kamm, M.A.; van der Sijp, J.R.; Ghatei, M.A.; Bloom, S.R.; Lennard-Jones, J.E. Gastrointestinal hormones in short bowel syndrome. Peptide YY may be the ‘colonic brake’ to gastric emptying. Gut 1996, 39, 267–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lund, P.K. Molecular basis of intestinal adaptation: The role of the insulin-like growth factor system. Ann. N. Y. Acad. Sci. 1998, 859, 18–36. [Google Scholar] [CrossRef]
- Gillingham, M.B.; Dahly, E.M.; Murali, S.G.; Ney, D.M. IGF-I treatment facilitates transition from parenteral to enteral nutrition in rats with short bowel syndrome. Am. J. Physiol. Integr. Comp. Physiol. 2003, 284, R363–R371. [Google Scholar] [CrossRef]
- Tomasetto, C.; Karam, S.M.; Ribieras, S.; Masson, R.; Lefèbvre, O.; Staub, A.; Alexander, G.; Chenard, M.-P.; Rio, M.-C. Identification and characterization of a novel gastric peptide hormone: The motilin-related peptide. Gastroenterology 2000, 119, 395–405. [Google Scholar] [CrossRef]
- Waseem, T.; Duxbury, M.; Ashley, S.W.; Robinson, M.K. Ghrelin promotes intestinal epithelial cell proliferation through PI3K/Akt pathway and EGFR trans-activation both converging to ERK 1/2 phosphorylation. Peptides 2014, 52, 113–121. [Google Scholar] [CrossRef]
- Fava, G.; Ueno, Y.; Glaser, S.; Francis, H.; Demorrow, S.; Marucci, L.; Marzioni, M.; Benedetti, A.; Venter, J.; Vaculin, B.; et al. Thyroid hormone inhibits biliary growth in bile duct-ligated rats by PLC/IP(3)/Ca(2+)-dependent downregulation of SRC/ERK1/2. Am. J. Physiol. Cell Physiol. 2007, 292, C1467–C1475. [Google Scholar] [CrossRef] [Green Version]
- Henning, S.J. Postnatal development: Coordination of feeding, digestion, and metabolism. Am. J. Physiol. 1981, 241, G199–G214. [Google Scholar] [CrossRef]
- Yuksel, O.; Tatlicioglu, E.; Poyraz, A.; Sahin, T.; Pasaoglu, H.; Ekinci, O.; Salman, B.; Yilmaz, U. Effects of thyroid hormone on the adaptation in short bowel syndrome. J. Surg. Res. 2009, 155, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Brent, G.A. The molecular basis of thyroid hormone action. N. Engl. J. Med. 1994, 331, 847–853. [Google Scholar] [PubMed]
- Chin, W.W. Molecular mechanisms of thyroid hormone action. Thyroid 1994, 4, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Lazar, M.A. Thyroid hormone receptors: Multiple forms, multiple possibilities. Endocr. Rev. 1993, 14, 184–193. [Google Scholar]
- Hodin, R.A.; Shei, A.; Morin, M.; Meng, S. Thyroid hormone and the gut: Selective transcriptional activation of a villus-enterocyte marker. Surgery 1996, 120, 138–143. [Google Scholar] [CrossRef]
- Barrett, K.E.; Barman, S.M.; Brooks, H.L.; Yuan, J.X.J. Overview of Gastrointestinal Function & Regulation. In Ganong’s Review of Medical Physiology, 26e; McGraw-Hill Education: New York, NY, USA, 2009. [Google Scholar]
- Doty, J.E.; Pitt, H.A.; Porter-Fink, V.; Denbesten, L. Cholecystokinin prophylaxis of parenteral nutrition-induced gallbladder disease. Ann. Surg. 1985, 201, 76–80. [Google Scholar]
- Innis, S.M. Effect of cholecystokinin-octapeptide on total parenteral nutrition-induced changes in hepatic bile secretion and composition in the rat. J. Pediatr. Gastroenterol. Nutr. 1986, 5, 793–798. [Google Scholar] [CrossRef]
- García-Urkia, N.; Asensio, A.B.; Cano, A.; Samprón, N.; García-Arenzana, J.M.; Bachiller, P.; Aldazabal, P.; Eizaguirre, I. Effect of the administration of cholecystokinin on the cholestasis associated with total parenteral nutrition in experimental short bowel. Cir. Pediatr. 2007, 20, 180–182. [Google Scholar]
- Dawes, L.G.; Muldoon, J.P.; Greiner, M.A.; Bertolotti, M. Cholecystokinin increases bile acid synthesis with total parenteral nutrition but does not prevent stone formation. J. Surg. Res. 1997, 67, 84–89. [Google Scholar] [CrossRef]
- Curran, T.J.; Uzoaru, I.; Das, J.B.; Ansari, G.; Raffensperger, J.G. The effect of cholecystokinin-octapeptide on the hepatobiliary dysfunction caused by total parenteral nutrition. J. Pediatr. Surg. 1995, 30, 242–247. [Google Scholar] [CrossRef]
- Teitelbaum, D.H.; Han-Markey, T.; Schumacher, R.E. Treatment of parenteral nutrition-associated cholestasis with cholecystokinin-octapeptide. J. Pediatr. Surg. 1995, 30, 1082–1085. [Google Scholar] [CrossRef]
- Teitelbaum, D.H.; Han-Markey, T.; Drongowski, R.A.; Coran, A.G.; Bayar, B.; Geiger, J.D.; Uitvlugt, N.; Schork, M.A. Use of cholecystokinin to prevent the development of parenteral nutrition-associated cholestasis. J. Parenter. Enter. Nutr. 1997, 21, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Rintala, R.J.; Lindahl, H.; Pohjavuori, M. Total parenteral nutrition-associated cholestasis in surgical neonates may be reversed by intravenous cholecystokinin: A preliminary report. J. Pediatr. Surg. 1995, 30, 827–830. [Google Scholar] [CrossRef]
- Sukhotnik, I.; Shany, A.; Bashenko, Y.; Hayari, L.; Chemodanov, E.; Mogilner, J.; Coran, A.G.; Shaoul, R. Parenteral but not enteral omega-3 fatty acids (Omegaven) modulate intestinal regrowth after massive small bowel resection in rats. J. Parenter. Enter. Nutr. 2010, 34, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, Y.; Wang, J.; Wu, B.; Li, J. Effect of omega-3 polyunsaturated fatty acids to reverse biopsy-proven parenteral nutrition-associated liver disease in adults. Clin. Nutr. 2011, 31, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Diamond, I.R.; Sterescu, A.; Pencharz, P.B.; Wales, P.W. The rationale for the use of parenteral omega-3 lipids in children with short bowel syndrome and liver disease. Pediatr. Surg. Int. 2008, 24, 773–778. [Google Scholar] [CrossRef]
- Katsuma, S.; Hirasawa, A.; Tsujimoto, G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun. 2005, 329, 386–390. [Google Scholar] [CrossRef]
- Lin, S.; Stoll, B.; Robinson, J.; Pastor, J.J.; Marini, J.C.; Ipharraguerre, I.R.; Hartmann, B.; Holst, J.J.; Cruz, S.; Lau, P.; et al. Differential action of TGR5 agonists on GLP-2 secretion and promotion of intestinal adaptation in a piglet short bowel model. Am. J. Physiol. Liver Physiol. 2019, 316, G641–G652. [Google Scholar] [CrossRef]
- Ballou, L.M.; Lin, R.Z. Rapamycin and mTOR kinase inhibitors. J. Chem. Biol. 2008, 1, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Guertin, D.A.; Sabatini, D.M. An expanding role for mTOR in cancer. Trends Mol. Med. 2005, 11, 353–361. [Google Scholar] [CrossRef]
- Beyer-Berjot, L.; Joly, F.; Dokmak, S.; Bretagnol, F.; Corcos, O.; Bouhnik, Y.; Belghiti, J.; Panis, Y. Intestinal transplantation: Indications and prospects. J. Visc. Surg. 2012, 149, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, T.M.; Kaufman, S.S.; Florman, S.S.; Gondolesi, G.E.; Schiano, T.; Kim-Schluger, L.; Magid, M.; Harpaz, N.; Tschernia, A.; Leibowitz, A.; et al. Isolated intestinal transplantation: Proof of clinical efficacy. Transplantation 2003, 76, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Ghadimi, M.; Dashti-Khavidaki, S.; Khalili, H. mTOR inhibitors for management of encapsulating peritoneal sclerosis: A review of literatures. Ren. Fail. 2016, 38, 1574–1580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishida, S.; Levi, D.; Kato, T.; Nery, J.R.; Mittal, N.; Hadjis, N.; Madariaga, J.; Tzakis, A.G. Ninety-five cases of intestinal transplantation at the University of Miami. J. Gastrointest. Surg. 2002, 6, 233–239. [Google Scholar] [CrossRef]
- Ueno, T.; Toyama, C.; Deguchi, K.; Masahata, K.; Nomura, M.; Watanabe, M.; Kamiyama, M.; Tazuke, Y.; Bessho, K.; Okuyama, H. Early Use of Everolimus as a Third Immunosuppressive Agent for Intestinal Transplantation: A Report of 2 Cases. Transplant. Proc. 2022, 54, 472–475. [Google Scholar] [CrossRef]
- Zhang, T.; Yan, J.; Wang, N.; Dai, L.; Wang, Y.; Cai, W. Autophagy May Protect Against Parenteral Nutrition-Associated Liver Disease by Suppressing Endoplasmic Reticulum Stress. J. Parenter. Enter. Nutr. 2018, 43, 96–106. [Google Scholar] [CrossRef]
- Zhong, M.; Cui, B.; Xiang, J.; Wu, X.; Wen, Q.; Li, Q.; Zhang, F. Rapamycin is Effective for Upper but not for Lower Gastrointestinal Crohn’s Disease-Related Stricture: A Pilot Study. Front. Pharmacol. 2021, 11, 617535. [Google Scholar] [CrossRef]
- Broughton, G.; Fitzgibbons, R.J., 2nd; Geiss, R.W., Jr.; Adrian, T.E.; Anthone, G. IV chenodeoxycholate prevents calcium bilirubinate gallstones during total parenteral nutrition in the prairie dog. J. Parenter. Enteral. Nutr. 1996, 20, 187–193. [Google Scholar] [CrossRef]
- Guertin, F.; Roy, C.C.; Lepage, G.; Perea, A.; Giguère, R.; Yousef, I.; Tuchweber, B. Effect of taurine on total parenteral nutrition-associated cholestasis. J. Parenter. Enter. Nutr. 1991, 15, 247–251. [Google Scholar] [CrossRef]
- Heubi, J.E.; Wiechmann, D.A.; Creutzinger, V.; Setchell, K.D.; Squires, R.; Couser, R.; Rhodes, P. Tauroursodeoxycholic acid (TUDCA) in the prevention of total parenteral nutrition-associated liver disease. J. Pediatr. 2002, 141, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Maan, J.S.; Duong, T.V.H.; Saadabadi, A. Carbamazepine. [Updated 2022 Jul 12]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482455/ (accessed on 25 August 2022).
- Fuhr, L.M.; Marok, F.Z.; Hanke, N.; Selzer, D.; Lehr, T. Pharmacokinetics of the CYP3A4 and CYP2B6 Inducer Carbamazepine and Its Drug-Drug Interaction Potential: A Physiologically Based Pharmacokinetic Modeling Approach. Pharmaceutics 2021, 13, 270. [Google Scholar] [CrossRef] [PubMed]
- Petreñas, L.; Santiago, B.; Baldominos Utrilla, G.; Infantes, M.R. Oral antibiotics absortion in patients with short bowel syndrome. Aten. Farm. 2006, 8, 374–379. [Google Scholar]
- LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012. Carbamazepine. [Updated 15 January 2017]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548097/ (accessed on 25 August 2022).
- Hidvegi, T.; Ewing, M.; Hale, P.; Dippold, C.; Beckett, C.; Kemp, C.; Maurice, N.; Mukherjee, A.; Goldbach, C.; Watkins, S.; et al. An Autophagy-Enhancing Drug Promotes Degradation of Mutant α1-Antitrypsin Z and Reduces Hepatic Fibrosis. Science 2010, 329, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Song, E.; Nagarapu, A.; van Nispen, J.; Armstrong, A.; Manithody, C.; Murali, V.; Voigt, M.; Samaddar, A.; Hutchinson, C.; Jain, S.; et al. Carbamazepine mitigates parenteral nutrition-associated liver disease in a novel ambulatory piglet model. J. Parenter. Enter. Nutr. 2022, 46, 1384–1392. [Google Scholar] [CrossRef]
- Grant, D.; Abu-Elmagd, K.; Mazariegos, G.; Vianna, R.; Langnas, A.; Mangus, R.; Farmer, D.G.; Lacaille, F.; Iyer, K.; Fishbein, T. Intestinal transplant registry report: Global activity and trends. Am. J. Transplant. 2014, 15, 210–219. [Google Scholar] [CrossRef]
- Raghu, V.K.; Beaumont, J.L.; Everly, M.J.; Venick, R.S.; Lacaille, F.; Mazariegos, G.V. Pediatric intestinal transplantation: Analysis of the intestinal transplant registry. Pediatr. Transplant. 2019, 23, e13580. [Google Scholar] [CrossRef]
- Bianchi, A. Intestinal loop lengthening--a technique for increasing small intestinal length. J. Pediatr. Surg. 1980, 15, 145–151. [Google Scholar] [CrossRef]
- Bonnard, A.; Staub, G.; Segura, J.F.; Malbezin, S.; Dorgeret, S.; Aigrain, Y.; de Lagausie, P. Evaluation of intestinal absorption after longitudinal intestinal lengthening for short bowel syndrome. J. Pediatr. Surg. 2005, 40, 1587–1591. [Google Scholar] [CrossRef]
- Reinshagen, K.; Kabs, C.; Wirth, H.; Hable, N.; Brade, J.; Zahn, K.; Hagl, C.; Jester, I.; Waag, K. Long-term outcome in patients with short bowel syndrome after longitudinal intestinal lengthening and tailoring. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 573–578. [Google Scholar] [CrossRef]
- Kim, H.B.; Fauza, D.; Garza, J.; Oh, J.T.; Nurko, S.; Jaksic, T. Serial transverse enteroplasty (STEP): A novel bowel lengthening procedure. J. Pediatr. Surg. 2003, 38, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Frongia, G.; Kessler, M.; Weih, S.; Nickkholgh, A.; Mehrabi, A.; Holland-Cunz, S. Comparison of LILT and STEP procedures in children with short bowel syndrome—A systematic review of the literature. J. Pediatr. Surg. 2013, 48, 1794–1805. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.A.; Hull, M.A.; Potanos, K.M.; Zurakowski, D.; Fitzgibbons, S.C.; Ching, A.Y.; Duggan, C.; Jaksic, T.; Kim, H.B. Report of 111 consecutive patients enrolled in the International Serial Transverse Enteroplasty (STEP) Data Registry: A retrospective observational study. J. Am. Coll. Surg. 2013, 216, 438–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duggan, C.P.; Jaksic, T. Pediatric Intestinal Failure. N. Engl. J. Med. 2017, 377, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Mackby, M.J.; Richards, V.; Gilfillan, R.S.; Floridia, R. Methods of increasing the efficiency of residual small bowel segments: A preliminary study. Am. J. Surg. 1965, 109, 32–38. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bettag, J.; Po, L.; Cunningham, C.; Tallam, R.; Kurashima, K.; Nagarapu, A.; Hutchinson, C.; Morfin, S.; Nazzal, M.; Lin, C.-J.; et al. Novel Therapeutic Approaches for Mitigating Complications in Short Bowel Syndrome. Nutrients 2022, 14, 4660. https://doi.org/10.3390/nu14214660
Bettag J, Po L, Cunningham C, Tallam R, Kurashima K, Nagarapu A, Hutchinson C, Morfin S, Nazzal M, Lin C-J, et al. Novel Therapeutic Approaches for Mitigating Complications in Short Bowel Syndrome. Nutrients. 2022; 14(21):4660. https://doi.org/10.3390/nu14214660
Chicago/Turabian StyleBettag, Jeffery, Loren Po, Cassius Cunningham, Rahul Tallam, Kento Kurashima, Aakash Nagarapu, Chelsea Hutchinson, Sylvia Morfin, Mustafa Nazzal, Chien-Jung Lin, and et al. 2022. "Novel Therapeutic Approaches for Mitigating Complications in Short Bowel Syndrome" Nutrients 14, no. 21: 4660. https://doi.org/10.3390/nu14214660
APA StyleBettag, J., Po, L., Cunningham, C., Tallam, R., Kurashima, K., Nagarapu, A., Hutchinson, C., Morfin, S., Nazzal, M., Lin, C. -J., Mathur, A., Aurora, R., & Jain, A. K. (2022). Novel Therapeutic Approaches for Mitigating Complications in Short Bowel Syndrome. Nutrients, 14(21), 4660. https://doi.org/10.3390/nu14214660