Comparative Analysis of Docosahexaenoic Acid (DHA) Content in Mother’s Milk of Term and Preterm Mothers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Population
2.3. Data Collection
2.4. Samples Collection
2.5. Laboratory Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vogel, J.P.; Oladapo, O.T.; Manu, A.; Gülmezoglu, A.M.; Bahl, R. New WHO Recommendations to Improve the Outcomes of Preterm Birth. Lancet Glob. Health 2015, 3, e589–e590. [Google Scholar] [CrossRef] [Green Version]
- Shapiro-Mendoza, C.K.; Lackritz, E.M. Epidemiology of Late and Moderate Preterm Birth. Semin. Fetal Neonatal Med. 2012, 17, 120–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, M.M. The Basics of Prematurity. J. Pediatr. Health Care 2006, 20, 238–244. [Google Scholar] [CrossRef]
- Rocha, G.; Guimarães, H.; Pereira-da-Silva, L. The Role of Nutrition in the Prevention and Management of Bronchopulmonary Dysplasia: A Literature Review and Clinical Approach. Int. J. Environ. Res. Public Health 2021, 18, 6245. [Google Scholar] [CrossRef] [PubMed]
- Pammi, M.; Patel, R.M. Nutritional Supplements to Improve Outcomes in Preterm Neonates. Clin. Perinatol. 2022, 49, 485–502. [Google Scholar] [CrossRef] [PubMed]
- Vizzari, G.; Morniroli, D.; Ceroni, F.; Verduci, E.; Consales, A.; Colombo, L.; Cerasani, J.; Mosca, F.; Giannì, M.L. Human Milk, More Than Simple Nourishment. Children 2021, 8, 863. [Google Scholar] [CrossRef]
- Agostoni, C.; Braegger, C.; Decsi, T.; Kolacek, S.; Koletzko, B.; Michaelsen, K.F.; Mihatsch, W.; Moreno, L.A.; Puntis, J.; Shamir, R.; et al. Breast-Feeding: A Commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 112–125. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B.; Lien, E.; Agostoni, C.; Böhles, H.; Campoy, C.; Cetin, I.; Decsi, T.; Dudenhausen, J.W.; Dupont, C.; Forsyth, S.; et al. The Roles of Long-Chain Polyunsaturated Fatty Acids in Pregnancy, Lactation and Infancy: Review of Current Knowledge and Consensus Recommendations. J. Perinat. Med. 2008, 36, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B.; Agostoni, C.; Bergmann, R.; Ritzenthaler, K.; Shamir, R. Physiological Aspects of Human Milk Lipids and Implications for Infant Feeding: A Workshop Report: Human Milk Lipids. Acta Paediatr. 2011, 100, 1405–1415. [Google Scholar] [CrossRef]
- Basak, S.; Mallick, R.; Duttaroy, A.K. Maternal Docosahexaenoic Acid Status during Pregnancy and Its Impact on Infant Neurodevelopment. Nutrients 2020, 12, 3615. [Google Scholar] [CrossRef]
- Lauritzen, L.; Brambilla, P.; Mazzocchi, A.; Harsløf, L.; Ciappolino, V.; Agostoni, C. DHA Effects in Brain Development and Function. Nutrients 2016, 8, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Jong, C.; Kikkert, H.K.; Seggers, J.; Boehm, G.; Decsi, T.; Hadders-Algra, M. Neonatal Fatty Acid Status and Neurodevelopmental Outcome at 9 years. Early Hum. Dev. 2015, 91, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Helland, I.B.; Smith, L.; Saarem, K.; Saugstad, O.D.; Drevon, C.A. Maternal Supplementation With Very-Long-Chain n-3 Fatty Acids During Pregnancy and Lactation Augments Children’s IQ at 4 Years of Age. Pediatrics 2003, 111, e39–e44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellström, A.; Nilsson, A.K.; Wackernagel, D.; Pivodic, A.; Vanpee, M.; Sjöbom, U.; Hellgren, G.; Hallberg, B.; Domellöf, M.; Klevebro, S.; et al. Effect of Enteral Lipid Supplement on Severe Retinopathy of Prematurity: A Randomized Clinical Trial. JAMA Pediatr. 2021, 175, 359. [Google Scholar] [CrossRef]
- Innis, S.M. Perinatal Biochemistry and Physiology of Long-Chain Polyunsaturated Fatty Acids. J. Pediatr. 2003, 143, 1–8. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority (EFSA) Dietary Reference Values for Nutrients Summary Report. EFSA Support. Publ. 2017, 14, e15121. [CrossRef] [Green Version]
- Crawford, M.A.; Williams, G.; Hassam, A.G.; Whitehouse, W.L. Essential Fatty Acids and Fetal Brain Growth. Lancet 1976, 307, 452–453. [Google Scholar] [CrossRef]
- Domellöf, M. Micronutrient Intakes and Health Outcomes in Preterm Infants. In Nestlé Nutrition Institute Workshop Series; Embleton, N.D., Haschke, F., Bode, L., Eds.; Karger Publishers: Basel, Switzerland, 2022; Volume 96, pp. 130–137. ISBN 978-3-318-07033-0. [Google Scholar]
- Smith, S.L.; Rouse, C.A. Docosahexaenoic Acid and the Preterm Infant. Matern. Health Neonatol. Perinatol. 2017, 3, 22. [Google Scholar] [CrossRef] [Green Version]
- Agostoni, C. Role of Long-Chain Polyunsaturated Fatty Acids in the First Year of Life. J. Pediatr. Gastroenterol. Nutr. 2008, 47, S41–S44. [Google Scholar] [CrossRef]
- Makrides, M.; Gibson, R.A.; McPhee, A.J.; Yelland, L.; Quinlivan, J.; Ryan, P. DOMInO Investigative Team, and the Effect of DHA Supplementation During Pregnancy on Maternal Depression and Neurodevelopment of Young Children: A Randomized Controlled Trial. JAMA 2010, 304, 1675. [Google Scholar] [CrossRef]
- Floris, L.M.; Stahl, B.; Abrahamse-Berkeveld, M.; Teller, I.C. Human Milk Fatty Acid Profile across Lactational Stages after Term and Preterm Delivery: A Pooled Data Analysis. Prostaglandins Leukot. Essent. Fat. Acids 2020, 156, 102023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundekilde, U.; Downey, E.; O’Mahony, J.; O’Shea, C.-A.; Ryan, C.; Kelly, A.; Bertram, H. The Effect of Gestational and Lactational Age on the Human Milk Metabolome. Nutrients 2016, 8, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luukkainen, P.; Salo, M.K.; Nikkari, T. Changes in the Fatty Acid Composition of Preterm and Term Human Milk from 1 Week to 6 Months of Lactation. J. Pediatr. Gastroenterol. Nutr. 1994, 18, 355–360. [Google Scholar] [CrossRef]
- Robinson, D.T.; Caplan, M.; Carlson, S.E.; Yoder, R.; Murthy, K.; Frost, B. Early Docosahexaenoic and Arachidonic Acid Supplementation in Extremely-Low-Birth-Weight Infants. Pediatr. Res. 2016, 80, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Baack, M.L.; Puumala, S.E.; Messier, S.E.; Pritchett, D.K.; Harris, W.S. Daily Enteral DHA Supplementation Alleviates Deficiency in Premature Infants. Lipids 2016, 51, 423–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapillonne, A.; Bronsky, J.; Campoy, C.; Embleton, N.; Fewtrell, M.; Fidler Mis, N.; Gerasimidis, K.; Hojsak, I.; Hulst, J.; Indrio, F.; et al. Feeding the Late and Moderately Preterm Infant: A Position Paper of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 259–270. [Google Scholar] [CrossRef]
- Marangoni, F.; Colombo, C.; De Angelis, L.; Gambaro, V.; Agostoni, C.; Giovannini, M.; Galli, C. Cigarette Smoke Negatively and Dose-Dependently Affects the Biosynthetic Pathway of the N−3 Polyunsaturated Fatty Acid Series in Human Mammary Epithelial Cells. Lipids 2004, 39, 633–637. [Google Scholar] [CrossRef]
- Gnagnarella, P.; Dragà, D.; Misotti, A.M.; Sieri, S.; Spaggiari, L.; Cassano, E.; Baldini, F.; Soldati, L.; Maisonneuve, P. Validation of a Short Questionnaire to Record Adherence to the Mediterranean Diet: An Italian Experience. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1140–1147. [Google Scholar] [CrossRef]
- Marangoni, F.; Agostoni, C.; Lammardo, A.M.; Giovannini, M.; Galli, C.; Riva, E. Polyunsaturated Fatty Acid Concentrations in Human Hindmilk Are Stable throughout 12-Months of Lactation and Provide a Sustained Intake to the Infant during Exclusive Breastfeeding: An Italian Study. Br. J. Nutr. 2000, 84, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B. Human Milk Lipids. Ann. Nutr. Metab. 2016, 69, 27–40. [Google Scholar] [CrossRef]
- Kuipers, R.S.; Luxwolda, M.F.; Dijck-Brouwer, D.A.J.; Muskiet, F.A.J. Fatty Acid Compositions of Preterm and Term Colostrum, Transitional and Mature Milks in a Sub-Saharan Population with High Fish Intakes. Prostaglandins Leukot. Essent. Fat. Acids 2012, 86, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Selvalatchmanan, J.; Rukmini, A.V.; Ji, S.; Triebl, A.; Gao, L.; Bendt, A.; Wenk, M.; Gooley, J.; Torta, F. Variability of Lipids in Human Milk. Metabolites 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Van Staveren, W.A.; Deurenberg, P.; Burema, J.; De Groot, L.C.; Hautvast, J.G. Seasonal Variation in Food Intake, Pattern of Physical Activity and Change in Body Weight in a Group of Young Adult Dutch Women Consuming Self-Selected Diets. Int. J. Obes. 1986, 10, 133–145. [Google Scholar] [PubMed]
- Watson, P.E.; McDonald, B.W. Seasonal Variation of Nutrient Intake in Pregnancy: Effects on Infant Measures and Possible Influence on Diseases Related to Season of Birth. Eur. J. Clin. Nutr. 2007, 61, 1271–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Società italiana di Nutrizione Umana Livelli. Di Assunzione Di Riferimento Di Nutrienti Ed Energia per La Popolazione Italiana IV Revisione; SINU: Milan, Italy, 2014. [Google Scholar]
- Juber, B.A.; Jackson, K.H.; Johnson, K.B.; Harris, W.S.; Baack, M.L. Breast Milk DHA Levels May Increase after Informing Women: A Community-Based Cohort Study from South Dakota USA. Int. Breastfeed. J. 2016, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Middleton, P.; Gomersall, J.C.; Gould, J.F.; Shepherd, E.; Olsen, S.F.; Makrides, M. Omega-3 Fatty Acid Addition during Pregnancy. Cochrane Database Syst. Rev. 2018, 2018. [Google Scholar] [CrossRef]
- Carlson, S.E.; Gajewski, B.J.; Valentine, C.J.; Kerling, E.H.; Weiner, C.P.; Cackovic, M.; Buhimschi, C.S.; Rogers, L.K.; Sands, S.A.; Brown, A.R.; et al. Higher Dose Docosahexaenoic Acid Supplementation during Pregnancy and Early Preterm Birth: A Randomised, Double-Blind, Adaptive-Design Superiority Trial. EClinicalMedicine 2021, 36, 100905. [Google Scholar] [CrossRef]
- Xue, B.; Yang, Z.; Wang, X.; Shi, H. Omega-3 Polyunsaturated Fatty Acids Antagonize Macrophage Inflammation via Activation of AMPK/SIRT1 Pathway. PLoS ONE 2012, 7, e45990. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 Polyunsaturated Fatty Acids and Inflammatory Processes: Nutrition or Pharmacology?: Omega-3 Fatty Acids and Inflammation. Br. J. Clin. Pharm. 2013, 75, 645–662. [Google Scholar] [CrossRef] [Green Version]
- Heaton, A.E.; Meldrum, S.J.; Foster, J.K.; Prescott, S.L.; Simmer, K. Does Docosahexaenoic Acid Supplementation in Term Infants Enhance Neurocognitive Functioning in Infancy? Front. Hum. Neurosci. 2013, 7, 774. [Google Scholar] [CrossRef]
- Baack, M.L.; Norris, A.W.; Yao, J.; Colaizy, T. Long-Chain Polyunsaturated Fatty Acid Levels in US Donor Human Milk: Meeting the Needs of Premature Infants? J. Perinatol. 2012, 32, 598–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Insull, W.; Hirsch, J.; James, T.; Ahrens, E.H. The fatty acids of human milk. II. Alterations produced by manipulation of caloric balance and exchange of dietary fats. J. Clin. Investig. 1959, 38, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Amaral, Y.; Marano, D.; Silva, L.; Guimarães, A.; Moreira, M. Are There Changes in the Fatty Acid Profile of Breast Milk with Supplementation of Omega-3 Sources? A Systematic Review. Rev. Bras. Ginecol. E Obs./RBGO Gynecol. Obstet. 2017, 39, 128–141. [Google Scholar] [CrossRef] [Green Version]
- Oken, E.; Wright, R.O.; Kleinman, K.P.; Bellinger, D.; Amarasiriwardena, C.J.; Hu, H.; Rich-Edwards, J.W.; Gillman, M.W. Maternal Fish Consumption, Hair Mercury, and Infant Cognition in a U.S. Cohort. Environ. Health Perspect. 2005, 113, 1376–1380. [Google Scholar] [CrossRef] [PubMed]
- Bzikowska-Jura, A.; Czerwonogrodzka-Senczyna, A.; Olędzka, G.; Szostak-Węgierek, D.; Weker, H.; Wesołowska, A. Maternal Nutrition and Body Composition During Breastfeeding: Association with Human Milk Composition. Nutrients 2018, 10, 1379. [Google Scholar] [CrossRef] [Green Version]
- Bravi, F.; Di Maso, M.; Eussen, S.R.B.M.; Agostoni, C.; Salvatori, G.; Profeti, C.; Tonetto, P.; Quitadamo, P.A.; Kazmierska, I.; Vacca, E.; et al. Dietary Patterns of Breastfeeding Mothers and Human Milk Composition: Data from the Italian MEDIDIET Study. Nutrients 2021, 13, 1722. [Google Scholar] [CrossRef]
- Fares, S.; Sethom, M.M.; Feki, M.; Cheour, M.; Sanhaji, H.; Kacem, S.; Kaabachi, N. Fatty Acids Profile in Preterm Colostrum of Tunisian Women. Association with Selected Maternal Characteristics. Prostaglandins Leukot Essent. Fat. Acids 2016, 112, 32–36. [Google Scholar] [CrossRef]
- Lapillonne, A.; Jensen, C.L. Reevaluation of the DHA Requirement for the Premature Infant. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 143–150. [Google Scholar] [CrossRef]
- Nilsson, A.K.; Löfqvist, C.; Najm, S.; Hellgren, G.; Sävman, K.; Andersson, M.X.; Smith, L.E.H.; Hellström, A. Long-Chain Polyunsaturated Fatty Acids Decline Rapidly in Milk from Mothers Delivering Extremely Preterm Indicating the Need for Supplementation. Acta Paediatr. 2018, 107, 1020–1027. [Google Scholar] [CrossRef] [Green Version]
- Miliku, K.; Duan, Q.L.; Moraes, T.J.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.L.; Sears, M.R.; Subbarao, P.; Field, C.J.; et al. Human Milk Fatty Acid Composition Is Associated with Dietary, Genetic, Sociodemographic, and Environmental Factors in the CHILD Cohort Study. Am. J. Clin. Nutr. 2019, 110, 1370–1383. [Google Scholar] [CrossRef]
- Bokor, S.; Koletzko, B.; Decsi, T. Systematic Review of Fatty Acid Composition of Human Milk from Mothers of Preterm Compared to Full-Term Infants. Ann. Nutr. Metab. 2007, 51, 550–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheong, J.L.; Doyle, L.W.; Burnett, A.C.; Lee, K.J.; Walsh, J.M.; Potter, C.R.; Treyvaud, K.; Thompson, D.K.; Olsen, J.E.; Anderson, P.J.; et al. Association Between Moderate and Late Preterm Birth and Neurodevelopment and Social-Emotional Development at Age 2 Years. JAMA Pediatr. 2017, 171, e164805. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Shamsi, B.H.; Hao, M.; Cao, C.-H.; Yang, W.-Y. A Study on the Neurodevelopment Outcomes of Late Preterm Infants. BMC Neurol. 2019, 19, 108. [Google Scholar] [CrossRef] [PubMed]
- Lapillonne, A. Enteral and Parenteral Lipid Requirements of Preterm Infants. In World Review of Nutrition and Dietetics; Koletzko, B., Poindexter, B., Uauy, R., Eds.; Karger Publishers: Basel, Switzerland, 2014; Volume 110, pp. 82–98. ISBN 978-3-318-02640-5. [Google Scholar]
Newborns (n226) | Term Newborns (n105) | Preterm Newborns (n121) | ||||
---|---|---|---|---|---|---|
Mean | (±SD) | Mean | (±SD) | Mean | (±SD) | |
Birth weight (g) | 2743.3 | 730.5 | 3349.5 | 378.4 | 2217.3 | 525.5 |
Gestational age (weeks) | 36.7 | 2.7 | 39.14 | 1.113 | 34.5 | 1.67 |
Twins n(%) | 71 (31.4%) | 4 (3.8%) | 67 (55.3%) | |||
Newborn AGA n(%) | 191 (84.5%) | 93 (88.5%) | 98 (81%) |
Fatty Acids | Population (n = 191) | Term Population (n = 103) | Preterm Population (n = 88) | Sign. (p) |
---|---|---|---|---|
Mother’s Milk Samples (n = 173) | Mother’s Milk Samples (n = 96) | Mother’s Milk Samples (n = 77) | ||
16:0 | 26.63 (±2.01) | 26.51 (±2.07) | 26.78 (±1.94) | 0.378 |
16:1n7 | 1.83 [1.51–2.20] | 1.78 [1.48–2.12] | 1.96 [1.62–2.38] | 0.004 |
18:0 | 6.68 [6.04–7.45] | 6.90 [6.18–7.49] | 6.4 [5.85–7.28] | 0.059 |
18:1n9 | 45.45 [43–47.53] | 45.42 [43.12–47.52] | 45.46 [42.72–47.53] | 0.829 |
18:1n7 | 2.56 [2.22–3.06] | 2.53 [2.25–3.04] | 2.64 [2.20–3.10] | 0.393 |
18:2n6 (LA) | 11.81 [10.36–13.27] | 11.47 [10.22–12.82] | 12.31 [10.46–13.93] | 0.113 |
18:3n3 (ALA) | 0.38 [0.32–0.47] | 0.38 [0.33–0.50] | 0.37 [0.31–0.46] | 0.334 |
20:3n9 | 0.04 [0.03–0.07] | 0.04 [0.03–0.07] | 0.04 [0.03–0.07] | 0.943 |
20:3n6 | 0.82 [0.68–1.04] | 0.86 [0.71–1.05] | 0.76 [0.64–1.03] | 0.133 |
20:4n6 (ARA) | 1.01 [0.87–1.24] | 1.05 [0.88–1.26] | 1.0 [0.83–1.18] | 0.110 |
20:5n3 (EPA) | 0.08 [0.05–0.28] | 0.08 [0.06–0.13] | 0.11 [0.05–0.45] | 0.060 |
22:0 | 0.19 [0.14–0.26] | 0.19 [0.14–0.27] | 0.2 [0.14–0.26] | 0.273 |
22:5n3 | 0.27 [0.20–0.40] | 0.33 [0.23–0.43] | 0.22 [0.16–0.32] | 0.276 |
24:0 | 0.27 [0.20–0.34] | 0.29 [0.23–0.37] | 0.22 [0.17–0.30] | 0.006 |
22:6n3 (DHA) | 0.59 [0.44–0.86] | 0.71 [0.52–0.94] | 0.51 [0.38–0.69] | 0.001 |
24:1 | 0.47 [0.36–0.57] | 0.49 [0.41–0.59] | 0.42 [0.33–0.54] | 0.010 |
SFA | 33.63 [32–35.40] | 33.72 [32.07–35.38] | 33.59 [31.97–33.56] | 0.553 |
MUFA | 50.35 [48.24–52.66] | 50.28 [48.26–52.84] | 50.57 [48.18–52.51] | 0.933 |
PUFA | 15.44 [14.03–17.07] | 15.23 [13.81–17.05] | 15.48 [14.09–17.12] | 0.234 |
Omega-3 TOT | 1.49 [1.19–1.91] | 1.57 [1.23–1.96] | 1.4 [1.07–1.74] | 0.003 |
Omega-6 TOT | 13.81 [12.28–15.43] | 13.57 [12.20–15.03] | 14.17 [12.42–15.70] | 0.178 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vizzari, G.; Morniroli, D.; Alessandretti, F.; Galli, V.; Colombo, L.; Turolo, S.; Syren, M.-L.; Pesenti, N.; Agostoni, C.; Mosca, F.; et al. Comparative Analysis of Docosahexaenoic Acid (DHA) Content in Mother’s Milk of Term and Preterm Mothers. Nutrients 2022, 14, 4595. https://doi.org/10.3390/nu14214595
Vizzari G, Morniroli D, Alessandretti F, Galli V, Colombo L, Turolo S, Syren M-L, Pesenti N, Agostoni C, Mosca F, et al. Comparative Analysis of Docosahexaenoic Acid (DHA) Content in Mother’s Milk of Term and Preterm Mothers. Nutrients. 2022; 14(21):4595. https://doi.org/10.3390/nu14214595
Chicago/Turabian StyleVizzari, Giulia, Daniela Morniroli, Francesca Alessandretti, Vittoria Galli, Lorenzo Colombo, Stefano Turolo, Marie-Louise Syren, Nicola Pesenti, Carlo Agostoni, Fabio Mosca, and et al. 2022. "Comparative Analysis of Docosahexaenoic Acid (DHA) Content in Mother’s Milk of Term and Preterm Mothers" Nutrients 14, no. 21: 4595. https://doi.org/10.3390/nu14214595
APA StyleVizzari, G., Morniroli, D., Alessandretti, F., Galli, V., Colombo, L., Turolo, S., Syren, M. -L., Pesenti, N., Agostoni, C., Mosca, F., & Giannì, M. L. (2022). Comparative Analysis of Docosahexaenoic Acid (DHA) Content in Mother’s Milk of Term and Preterm Mothers. Nutrients, 14(21), 4595. https://doi.org/10.3390/nu14214595