High-Calorie Food-Cues Impair Conflict Control: EEG Evidence from a Food-Related Stroop Task
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Food-Related Stroop Task
2.3. Behavioral Analysis
2.4. EEG Recording and Analyses
3. Results
3.1. Behavior Results
3.2. EEG Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Georgii, C.; Schulte-Mecklenbeck, M.; Richard, A.; Van Dyck, Z.; Blechert, J. The dynamics of self-control: Within-participant modeling of binary food choices and underlying decision processes as a function of restrained eating. Psychol. Res. 2020, 84, 1777–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumeister, R.F.; Vohs, K.D.; Tice, D.M. The strength model of self-control. Curr. Dir. Psychol. Sci. 2007, 16, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, W.; Friese, M.; Strack, F. Impulse and self-control from a dual-systems perspective. Perspect. Psychol. Sci. 2009, 4, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Wise, R.A. How can drug addiction help us understand obesity? Nat. Neurosci. 2005, 8, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, J.; Zhang, X.; Gao, X.; Xu, W.; Chen, H. Overweight adults are more impulsive than normal weight adults: Evidence from ERPs during a chocolate-related delayed discounting task. Neuropsychologia 2019, 133, 107181. [Google Scholar] [CrossRef]
- Liu, Y.; Quan, H.; Song, S.; Zhang, X.; Yang, C.; Chen, H. Decreased conflict control in overweight Chinese females: Behavioral and event-related potentials evidence. Nutrients 2019, 11, 1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Gao, X.; Zhao, J.; Zhang, L.; Chen, H. Neurocognitive correlates of food-related response inhibition in overweight/obese adults. Brain Topogr. 2020, 33, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Li, Q.; Jiang, Y.; Liu, Y.; Xu, A.; Liu, X.; Chen, H. Do Overweight People Have Worse Cognitive Flexibility? Cues-Triggered Food Craving May Have a Greater Impact. Nutrients 2022, 14, 240. [Google Scholar] [CrossRef]
- Syan, S.K.; Owens, M.M.; Goodman, B.; Epstein, L.H.; Meyre, D.; Sweet, L.H.; MacKillop, J. Deficits in executive function and suppression of default mode network in obesity. NeuroImage Clin. 2019, 24, 102015. [Google Scholar] [CrossRef]
- Yang, Y.; Shields, G.S.; Guo, C.; Liu, Y. Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neurosci. Biobehav. Rev. 2018, 84, 225–244. [Google Scholar] [CrossRef]
- Chen, S.; Jia, Y.; Woltering, S. Neural differences of inhibitory control between adolescents with obesity and their peers. Int. J. Obes. 2018, 42, 1753–1761. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nijs, I.M.; Franken, I.H.; Muris, P. Food-related Stroop interference in obese and normal-weight individuals: Behavioral and electrophysiological indices. Eat. Behav. 2010, 11, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Z.; Zheng, P.; Lu, S.; Qin, M. Impaired Conflict Monitoring to Food Cues in Women Who Binge Eat. Front. Psychol. 2018, 9, 2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, R.; Alkozei, A.; Killgore, W.D. Conflict-related dorsomedial frontal cortex activation during healthy food decisions is associated with increased cravings for high-fat foods. Brain Imaging Behav. 2018, 12, 685–696. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Liu, Y.; Chen, H. More restriction, more overeating: Conflict monitoring ability is impaired by food-thought suppression among restrained eaters. Brain Imaging Behav. 2021, 15, 2069–2080. [Google Scholar] [CrossRef]
- Meule, A.; Skirde, A.K.; Freund, R.; Vögele, C.; Kübler, A. High-calorie food-cues impair working memory performance in high and low food cravers. Appetite 2012, 59, 264–269. [Google Scholar] [CrossRef]
- Asmaro, D.; Jaspers-Fayer, F.; Sramko, V.; Taake, I.; Carolan, P.; Liotti, M. Spatiotemporal dynamics of the hedonic processing of chocolate images in individuals with and without trait chocolate craving. Appetite 2012, 58, 790–799. [Google Scholar] [CrossRef]
- Carbine, K.A.; Christensen, E.; LeCheminant, J.D.; Bailey, B.W.; Tucker, L.A.; Larson, M.J. Testing food-related inhibitory control to high-and low-calorie food stimuli: Electrophysiological responses to high-calorie food stimuli predict calorie and carbohydrate intake. Psychophysiology 2017, 54, 982–997. [Google Scholar] [CrossRef]
- Carbine, K.A.; Rodeback, R.; Modersitzki, E.; Miner, M.; LeCheminant, J.D.; Larson, M.J. The utility of event-related potentials (ERPs) in understanding food-related cognition: A systematic review and recommendations. Appetite 2018, 128, 58–78. [Google Scholar] [CrossRef]
- Kong, F.; Zhang, Y.; Chen, H. Inhibition ability of food cues between successful and unsuccessful restrained eaters: A two-choice oddball task. PLoS ONE 2015, 10, e0120522. [Google Scholar] [CrossRef] [Green Version]
- Watson, T.D.; Garvey, K.T. Neurocognitive correlates of processing food-related stimuli in a Go/No-go paradigm. Appetite 2013, 71, 40–47. [Google Scholar] [CrossRef]
- Carbine, K.A.; Duraccio, K.M.; Kirwan, C.B.; Muncy, N.M.; LeCheminant, J.D.; Larson, M.J. A direct comparison between ERP and fMRI measurements of food-related inhibitory control: Implications for BMI status and dietary intake. NeuroImage 2018, 166, 335–348. [Google Scholar] [CrossRef]
- Franken, I.H.; Huijding, J.; Nijs, I.M.; van Strien, J.W. Electrophysiology of appetitive taste and appetitive taste conditioning in humans. Biol. Psychol. 2011, 86, 273–278. [Google Scholar] [CrossRef]
- Lapenta, O.M.; Di Sierve, K.; de Macedo, E.C.; Fregni, F.; Boggio, P.S. Transcranial direct current stimulation modulates ERP-indexed inhibitory control and reduces food consumption. Appetite 2014, 83, 42–48. [Google Scholar] [CrossRef]
- Woltering, S.; Chen, S.; Jia, Y. Neural Correlates of Attentional Bias to Food Stimuli in Obese Adolescents. Brain Topogr. 2021, 34, 182–191. [Google Scholar] [CrossRef]
- Nigbur, R.; Cohen, M.X.; Ridderinkhof, K.R.; Stürmer, B. Theta dynamics reveal domain-specific control over stimulus and response conflict. J. Cogn. Neurosci. 2012, 24, 1264–1274. [Google Scholar] [CrossRef] [Green Version]
- Womelsdorf, T.; Johnston, K.; Vinck, M.; Everling, S. Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proc. Natl. Acad. Sci. USA 2010, 107, 5248–5253. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, J.F.; Frank, M.J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 2014, 18, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, J.F.; Shackman, A.J. Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. J. Physiol. 2015, 109, 3–15. [Google Scholar] [CrossRef]
- Schmidt, B.; Kanis, H.; Holroyd, C.B.; Miltner, W.H.; Hewig, J. Anxious gambling: Anxiety is associated with higher frontal midline theta predicting less risky decisions. Psychophysiology 2018, 55, e13210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Vijver, I.; van Schie, H.T.; Veling, H.; van Dooren, R.; Holland, R.W. Go/no-go training affects frontal midline theta and mu oscillations to passively observed food stimuli. Neuropsychologia 2018, 119, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Forestell, C.A.; Lau, P.; Gyurovski, I.I.; Dickter, C.L.; Haque, S.S. Attentional biases to foods: The effects of caloric content and cognitive restraint. Appetite 2012, 59, 748–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meule, A.; Kübler, A. Double trouble. Trait food craving and impulsivity interactively predict food-cue affected behavioral inhibition. Appetite 2014, 79, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, W.; Friese, M.; Roefs, A. Three ways to resist temptation: The independent contributions of executive attention, inhibitory control, and affect regulation to the impulse control of eating behavior. J. Exp. Soc. Psychol. 2009, 45, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Strack, F.; Deutsch, R. Reflective and impulsive determinants of social behavior. Personal. Soc. Psychol. Rev. 2004, 8, 220–247. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, E.H.; Charboneau, E.; Dietrich, M.S.; Park, S.; Bradley, B.P.; Mogg, K.; Cowan, R.L. Obese adults have visual attention bias for food cue images: Evidence for altered reward system function. Int. J. Obes. 2009, 33, 1063–1073. [Google Scholar] [CrossRef] [Green Version]
- Allan, K.; Allan, J.L. An obesogenic bias in women’s spatial memory for high calorie snack food. Appetite 2013, 67, 99–104. [Google Scholar] [CrossRef]
- de Vries, R.; Morquecho-Campos, P.; de Vet, E.; de Rijk, M.; Postma, E.; de Graaf, K.; Boesveldt, S. Human spatial memory implicitly prioritizes high-calorie foods. Sci. Rep. 2020, 10, 1–6. [Google Scholar] [CrossRef]
- Folstein, J.R.; van Petten, C. Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology 2008, 45, 152–170. [Google Scholar] [CrossRef]
- Yeung, N.; Botvinick, M.M.; Cohen, J.D. The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychol. Rev. 2004, 111, 931. [Google Scholar] [CrossRef]
- Senderecka, M.; Grabowska, A.; Szewczyk, J.; Gerc, K.; Chmylak, R. Response inhibition of children with ADHD in the stop-signal task: An event-related potential study. Int. J. Psychophysiol. 2012, 85, 93–105. [Google Scholar] [CrossRef]
- Narayanan, N.S.; Cavanagh, J.F.; Frank, M.J.; Laubach, M. Common medial frontal mechanisms of adaptive control in humans and rodents. Nat. Neurosci. 2013, 16, 1888–1895. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, J.F.; Eisenberg, I.; Guitart-Masip, M.; Huys, Q.; Frank, M.J. Frontal theta overrides pavlovian learning biases. J. Neurosci. 2013, 33, 8541–8548. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.X.; Wilmes, K.A.; van de Vijver, I. Cortical electrophysiological network dynamics of feedback learning. Trends Cogn. Sci. 2011, 15, 558–566. [Google Scholar] [CrossRef]
- Cohen, M.X.; van Gaal, S. Dynamic interactions between large-scale brain networks predict behavioral adaptation after perceptual errors. Cereb. Cortex 2013, 23, 1061–1072. [Google Scholar] [CrossRef] [Green Version]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [Green Version]
- Gajewski, P.D.; Falkenstein, M. Effects of task complexity on ERP components in Go/Nogo tasks. Int. J. Psychophysiol. 2013, 87, 273–278. [Google Scholar] [CrossRef]
- Schmajuk, M.; Liotti, M.; Busse, L.; Woldorff, M.G. Electrophysiological activity underlying inhibitory control processes in normal adults. Neuropsychologia 2006, 44, 384–395. [Google Scholar] [CrossRef]
- Albert, J.; López-Martín, S.; Hinojosa, J.A.; Carretié, L. Spatiotemporal characterization of response inhibition. Neuroimage 2013, 76, 272–281. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhao, J.; Zhou, Y.; Yang, R.; Han, B.; Zhao, Y.; Pang, Y.; Yuan, H.; Chen, H. High-Calorie Food-Cues Impair Conflict Control: EEG Evidence from a Food-Related Stroop Task. Nutrients 2022, 14, 4593. https://doi.org/10.3390/nu14214593
Liu Y, Zhao J, Zhou Y, Yang R, Han B, Zhao Y, Pang Y, Yuan H, Chen H. High-Calorie Food-Cues Impair Conflict Control: EEG Evidence from a Food-Related Stroop Task. Nutrients. 2022; 14(21):4593. https://doi.org/10.3390/nu14214593
Chicago/Turabian StyleLiu, Yong, Jia Zhao, Yizhou Zhou, Ruiyu Yang, Beichen Han, Yufei Zhao, Yazhi Pang, Hong Yuan, and Hong Chen. 2022. "High-Calorie Food-Cues Impair Conflict Control: EEG Evidence from a Food-Related Stroop Task" Nutrients 14, no. 21: 4593. https://doi.org/10.3390/nu14214593
APA StyleLiu, Y., Zhao, J., Zhou, Y., Yang, R., Han, B., Zhao, Y., Pang, Y., Yuan, H., & Chen, H. (2022). High-Calorie Food-Cues Impair Conflict Control: EEG Evidence from a Food-Related Stroop Task. Nutrients, 14(21), 4593. https://doi.org/10.3390/nu14214593