Using Online 24-h Dietary Methodology to Validate the Psychometric Properties of a Dietary Scoring Tool with an International Sample of Adults Living with Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurements
2.2.1. Dietary Intake Assessment and Dietary Intake Data
2.2.2. Diet Habits Questionnaire
2.2.3. Other Measures
2.3. Statistical and Data Analysis
3. Results
3.1. Characteristics of the Study Participants
3.2. Intake of Nutrients and Food Groups
3.3. Evaluation of the DHQ
3.3.1. Construct Validity
3.3.2. Assessment of Reliability
3.4. Principal Component Analysis Dietary Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. J. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Karnoe, A.; Pedersen, L.M.; Karlsen, S.; Boesen, F.; Skovgaard, L.; Kayser, L. How people with multiple sclerosis experience the influence of nutrition and lifestyle factors on the disease. Disabil. Rehabil. 2019, 42, 3504–3515. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Bonavita, S.; Sparaco, M.; Gallo, A.; Tedeschi, G. The role of diet in multiple sclerosis: A review. Nutr. Neurosci. 2018, 21, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Tredinnick, A.R.; Probst, Y.C. Evaluating the Effects of Dietary Interventions on Disease Progression and Symptoms of Adults with Multiple Sclerosis: An Umbrella Review. Adv. Nutr. 2020, 11, 1603–1615. [Google Scholar] [CrossRef]
- Fitzgerald, K.C.; Tyry, T.; Salter, A.; Cofield, S.S.; Cutter, G.; Fox, R.; Marrie, R.A. Diet quality is associated with disability and symptom severity in multiple sclerosis. Neurology 2018, 90, e1–e11. [Google Scholar] [CrossRef]
- Marck, C.H.; Probst, Y.; Chen, J.; Taylor, B.; van der Mei, I. Dietary patterns and associations with health outcomes in Australian people with multiple sclerosis. Eur. J. Clin. Nutr. 2021, 75, 1506–1514. [Google Scholar] [CrossRef]
- Beckett, J.M.; Bird, M.L.; Pittaway, J.K.; Ahuja, K.D. Diet and Multiple Sclerosis: Scoping Review of Web-Based Recommendations. Interact. J. Med. Res. 2019, 8, e10050. [Google Scholar] [CrossRef]
- Evans, E.; Levasseur, V.; Cross, A.H.; Piccio, L. An overview of the current state of evidence for the role of specific diets in multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 36, 101393. [Google Scholar] [CrossRef]
- Multiple Sclerosis Australia. The Impact of Food Groups on MS. Available online: https://www.msaustralia.org.au/news/the-impact-of-food-groups-on-ms/ (accessed on 16 September 2022).
- Ocké, M.C. Evaluation of methodologies for assessing the overall diet: Dietary quality scores and dietary pattern analysis. Proc. Nutr. Soc. 2013, 72, 191–199. [Google Scholar] [CrossRef]
- Waijers, P.M.C.M.; Feskens, E.J.M.; Ocké, M.C. A critical review of predefined diet quality scores. Br. J. Nutr. 2007, 97, 219–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadgkiss, E.J.; Jelinek, G.A.; Weiland, T.J.; Pereira, N.G.; Marck, C.H.; van der Meer, D.M. Methodology of an International Study of People with Multiple Sclerosis Recruited through Web 2.0 Platforms: Demographics, Lifestyle, and Disease Characteristics. Neurol. Res. Int. 2013, 2013, 580596. [Google Scholar] [CrossRef] [Green Version]
- McKellar, S.; Horsley, P.; Chambers, R.; Pullen, M.; Vandersee, P.; Clarke, C.; Callum, H.; Bauer, J.D. Development of the Diet Habits Questionnaire for Use in Cardiac Rehabilitation. Aust. J. Prim. Health 2008, 14, 43–47. [Google Scholar] [CrossRef]
- Russell, R.D.; Lucas, R.M.; Brennan, V.; Sherriff, J.L.; Begley, A.; Ausimmune Investigator Group; Black, L.J.; Chapman, C.; Coulthard, A.; Dear, K.; et al. Reported Changes in Dietary Behavior Following a First Clinical Diagnosis of Central Nervous System Demyelination. Front. Neurol. 2018, 9, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoare, S.; Lithander, F.; van der Mei, I.; Ponsonby, A.L.; Lucas, R. Higher intake of omega-3 polyunsaturated fatty acids is associated with a decreased risk of a first clinical diagnosis of central nervous system demyelination: Results from the Ausimmune Study. Mult. Scler. 2016, 22, 884–892. [Google Scholar] [CrossRef]
- Hadgkiss, E.J.; Jelinek, G.A.; Weiland, T.J.; Pereira, N.G.; Marck, C.H.; van der Meer, D.M. The association of diet with quality of life, disability, and relapse rate in an international sample of people with multiple sclerosis. Nutr. Neurosci. 2015, 18, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Jelinek, G.A.; Hadgkiss, E.J.; Weiland, T.J.; Pereira, N.G.; Marck, C.H.; van der Meer, D.M. Association of fish consumption and Ω 3 supplementation with quality of life, disability and disease activity in an international cohort of people with multiple sclerosis. Int. J. Neurosci. 2013, 123, 792–800. [Google Scholar] [CrossRef] [Green Version]
- National Health and Medical Research Council. Australian Dietary Guidelines; NHMRC: Canberra, Australia, 2013.
- Serra-Majem, L.; Frost Andersen, L.; Henríque-Sánchez, P.; Doreste-Alonso, J.; Sánchez-Villegas, A.; Ortiz-Andrelluchi, A.; Negri, E.; La Vecchia, C. Evaluating the quality of dietary intake validation studies. Br. J. Nutr. 2009, 102, S3–S9. [Google Scholar] [CrossRef] [Green Version]
- Learmonth, Y.C.; Motl, R.W.; Sandroff, B.M.; Pula, J.H.; Cadavid, D. Validation of patient determined disease steps (PDDS) scale scores in persons with multiple sclerosis. BMC Neurol. 2013, 13, 37. [Google Scholar] [CrossRef] [Green Version]
- Weiland, T.J.; De Livera, A.M.; Brown, C.R.; Jelinek, G.A.; Aitken, Z.; Simpson, S.L., Jr.; Neate, S.L.; Taylor, K.L.; O’Kearney, E.; Bevens, W.; et al. Health Outcomes and Lifestyle in a Sample of People With Multiple Sclerosis (HOLISM): Longitudinal and Validation Cohorts. Front. Neurol. 2018, 9, 1074. [Google Scholar] [CrossRef]
- National Cancer Institute. ASA24-Australia. Available online: https://epi.grants.cancer.gov/asa24/respondent/australia.html. (accessed on 26 August 2022).
- Food Standards Australia New Zealand. AUSNUT 2011-13-Australian Food, Supplement and Nutrient Database for Estimation of Population Nutrient Intakes; FSANZ: Canberra, Australia, 2014.
- Kirkpatrick, S.I.; Subar, A.F.; Douglass, D.; Zimmerman, T.P.; Thompson, F.E.; Kahle, L.L.; George, S.M.; Dodd, K.W.; Potischman, N. Performance of the Automated Self-Administered 24-hour Recall relative to a measure of true intakes and to an interviewer-administered 24-h recall. Am. J. Clin. Nutr. 2014, 100, 233–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Probst, Y.; Guan, V.; Neale, E. Development of a Choline Database to Estimate Australian Population Intakes. Nutrients 2019, 11, 913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stadlmayr, B.; Wijesinha-Bettoni, R.; Haytowitz, D.; Rittenschober, D.; Cunningham, J.; Sobolewski, R.; Eisenwagen, S.; Bines, J.; Probst, Y.; Fitt, E.; et al. FAO/INFOODS Guidelines for Food Matching; FAO: Rome, Italy, 2012. [Google Scholar]
- Food Standards Australia and New Zealand. Assessing the 2011-13 AHS against the Australian Dietary Guidelines. Available online: http://www.foodstandards.gov.au/science/monitoringnutrients/australianhealthsurveyandaustraliandietaryguidelines/Pages/default.aspx (accessed on 15 October 2019).
- Zoszak, K.; Neale, E.; Tapsell, L.; Probst, Y. Exploring dietary changes in an interdisciplinary intervention trial: Application of a dietary guidelines food composition database. J. Hum. Nutr. Diet. 2021, 34, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. Australian Health Survey: Users’ Guide, 2011–2013, Discretionary Food. Available online: https://www.abs.gov.au/ausstats/[email protected]/Lookup/4363.0.55.001Chapter65062011-13 (accessed on 15 October 2019).
- Harttig, U.; Haubrock, J.; Knuppel, S.; Boeing, H. The MSM program: Web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur. J. Clin. Nutr. 2011, 65, S87–S91. [Google Scholar] [CrossRef] [Green Version]
- Simpson-Yap, S.; Nag, N.; Probst, Y.; Jelinek, G.; Neate, S. Higher-quality diet and non-consumption of meat are associated with less self-determined disability progression in people with multiple sclerosis: A longitudinal cohort study. Eur. J. Neurol. 2022, 29, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.E.; Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the Healthy Eating Index-2015. J. Acad. Nutr. Diet. 2018, 118, 1622–1633. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Demographic Variables. 1999. Available online: http://www.abs.gov.au/ausstats/[email protected]/Lookup/8A82CE62440E5D2DCA25697E0018FEA8?opendocument (accessed on 12 December 2019).
- Willett, W.; Lenart, E. Nutritional Epidemiology; Oxford University Press: New York, NY, USA, 1998; pp. 101–147. [Google Scholar]
- Nunnally, J.C.; Bernstein, I.H. Psychometric Theory, 3rd ed.; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Kirkpatrick, S.I.; Reedy, J.; Butler, E.N.; Dodd, K.W.; Subar, A.F.; Thompson, F.E.; McKinnon, R.A. Dietary assessment in food environment research: A systematic review. Am. J. Prev. Med. 2014, 46, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Australian Bureau of Statistics. Dietary Behaviour: Key Statistics and Data about Child and Adult Consumption of Fruit, Vegetables, Sugar Sweetened, and Diet Drinks. 2022. Available online: https://www.abs.gov.au/statistics/health/health-conditions-and-risks/dietary-behaviour/latest-release (accessed on 17 June 2022).
- Hebert, J.R.; Hurley, T.G.; Peterson, K.E.; Resnicow, K.; Thompson, F.E.; Yaroch, A.L.; Ehlers, M.; Midthune, D.; Williams, G.C.; Greene, G.W.; et al. Social Desirability Trait Influences on Self-Reported Dietary Measures among Diverse Participants in a Multicenter Multiple Risk Factor Trial. J. Nutr. 2008, 138, 226S–234S. [Google Scholar] [CrossRef] [Green Version]
- Swank, R.L. Multiple sclerosis: Fat-oil relationship. Nutrition 1991, 7, 368–376. [Google Scholar] [PubMed]
- Parks, N.E.; Jackson-Tarlton, C.S.; Vacchi, L.; Merdad, R.; Johnston, B.C. Dietary interventions for multiple sclerosis-related outcomes. Cochrane Database Syst. Rev. 2020, 2020, CD004192. [Google Scholar]
- Black, L.J.; Rowley, C.; Sherriff, J.; Pereira, G.; Ponsonby, A.-L.; Lucas, R.M. A healthy dietary pattern associates with a lower risk of a first clinical diagnosis of central nervous system demyelination. Mult. Scler. J. 2018, 25, 1514–1525. [Google Scholar] [CrossRef] [PubMed]
- Simpson-Yap, S.; Oddy, W.H.; Taylor, B.; Lucas, R.M.; Black, L.J.; Ponsonby, A.-L.; Blizzard, L.; van der Mei, I. High Prudent diet factor score predicts lower relapse hazard in early multiple sclerosis. Mult. Scler. J. 2021, 27, 1112–1124. [Google Scholar] [CrossRef]
- Balder, H.F.; Virtanen, M.; Brants, H.A.M.; Krogh, V.; Dixon, L.B.; Tan, F.; Mannisto, S.; Bellocco, R.; Pietinen, P.; Wolk, A.; et al. Common and Country-Specific Dietary Patterns in Four European Cohort Studies. J. Nutr. 2003, 133, 4246–4251. [Google Scholar] [CrossRef] [Green Version]
- Saul, A.; Taylor, B.V.; Blizzard, L.; Simpson-Yap, S.; Oddy, W.H.; Probst, Y.C.; Black, L.J.; Ponsonby, A.L.; Broadley, S.A.; Lechner-Scott, J.; et al. Associations between diet quality and depression, anxiety, and fatigue in multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 63, 103910. [Google Scholar] [CrossRef] [PubMed]
- Guan, V.X.; Probst, Y.C.; Neale, E.P.; Tapsell, L.C. Evaluation of the dietary intake data coding process in a clinical setting: Implications for research practice. PLoS ONE 2019, 14, e0221047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subar, A.F.; Kipnis, V.; Troiano, R.P.; Midthune, D.; Schoeller, D.A.; Bingham, S.; Sharbaugh, C.O.; Trabulsi, J.; Runswick, S.; Ballard-Barbash, R.; et al. Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: The OPEN study. Am. J. Epidemiol. 2003, 158, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.C.; Tyry, T.; Salter, A.; Cofield, S.S.; Cutter, G.; Fox, R.J.; Marrie, R.A. A survey of dietary characteristics in a large population of people with multiple sclerosis. Mult. Scler. Relat. Disord. 2018, 22, 12–18. [Google Scholar] [CrossRef]
Australia | New Zealand | United Kingdom/Ireland | United States/Canada | Total | |
---|---|---|---|---|---|
(n = 41) | (n = 9) | (n = 27) | (n = 19) | (n = 96) | |
Female sex | 34 (82.9%) | 7 (77.8%) | 19 (70.4%) | 19 (100.0%) | 79 (82.3%) |
Age (yr) * | 52.7 ± 10.9 * | 55.7± 7.2 * | 53.0 ± 7.3 * | 48.5 ± 8.3 * | 52.2 ± 9.3 * |
Weight (kg) | 65.0 (57.1, 76.2) ^ | 64.2 ± 12.7 * | 60.0 (56.0, 70.9) ^ | 73.2 (60.0, 78.2) ^ | 65.0 (57.5, 73.9) ^ |
BMI (kg/m2) | 23.6 (21.6, 26.1) ^ | 22.8 ± 4.4 * | 22.7 (19.8, 21.1) ^ | 24.7 (21.7, 26.2) ^ | 23.19 (21.1, 25.7) ^ |
BMI category | |||||
Normal | 28 (68.3%) | 7 (77.8%) | 19 (70.4%) | 12 (63.2%) | 66 (68.8%) |
Overweight | 9 (22.0%) | 1 (11.1%) | 5 (18.5%) | 5 (26.3%) | 20 (20.8%) |
Obese | 4 (9.8%) | 1 (11.1%) | 3 (11.1%) | 2 (10.5%) | 10 (10.4%) |
MS phenotype at baseline | |||||
Benign a | 4 (9.8%) | 1 (11.1%) | 1 (3.7%) | 0 (0.0%) | 6 (6.3%) |
Relapsing-remitting | 31 (75.6%) | 7 (77.8%) | 23 (85.2%) | 16 (84.2%) | 77 (80.2%) |
Secondary-progressive | 1 (2.4%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (1.0%) |
Unsure/other | 5 (12.2%) | 1 (11.1%) | 3 (11.1%) | 3 (15.8%) | 12 (12.5%) |
Duration since diagnosis (years) | 4.4 (2.3, 9.0) ^ | 4.4 ± 2.5 * | 2.4 (2.4, 11.0) ^ | 2.4 (1.4, 11.4) ^ | 3.9 (1.8, 8.6) ^ |
Duration since onset (years) | 8.6 (4.2, 17.4) ^ | 8.5 ± 6.0 * | 7.4 (4.4, 20.5) ^ | 10.3 (6.5, 14.4) ^ | 8.5 (4.4, 17.1) ^ |
Australia | New Zealand | United Kingdom/Ireland | United States/Canada | Total | |
---|---|---|---|---|---|
(n = 41) | (n = 9) | (n = 27) | (n = 19) | (n = 96) | |
Diet Habits Questionnaire total score | 84.5 (75.8, 88.1) ^ | 88.5 ± 9.3 * | 87.5 ± 8.1 * | 79.2 ± 11.4 * | 85.5 (77.04, 91.83) ^ |
ASA-24 Food groups | |||||
Cereals (serves) | 4.7 ± 1.9 * | 5.0 ± 1.7 * | 6.4 ± 2.4 * | 5.4 ± 2.0 * | 5.4 ± 2.1 * |
Vegetables (serves) | 6.5 (4.3, 10) ^ | 8.4 (5.0, 10.2) ^ | 6.6 (4.7, 9.5) ^ | 6.1 (4.2, 8.1) ^ | 6.5 (4.5, 9.6) ^ |
Fruits (serves) | 1.5 (0.8, 2.7) ^ | 2.1 (1.0, 3.3) ^ | 2.5 (1.5, 3.4) ^ | 1.5 (0.8, 2.7) ^ | 1.8 (1.0, 2.8) ^ |
Milk and alternatives (serves) | 0.9 (0.4, 1.7) ^ | 0.5 (0.3, 0.9) ^ | 0.5 (0.4, 1.5) ^ | 0.9 (0.5, 1.6) ^ | 0.8 (0.4, 1.6) ^ |
Meat and alternatives (serves) | 2.5 (1.8, 3.3) ^ | 2.6 (1.6, 3.2) ^ | 1.9 (1.5, 2.7) ^ | 2.3 (1.5, 2.6) ^ | 2.2 (1.6, 3.0) ^ |
Discretionary foods (serves) | 3.0 (1.7, 4.2) ^ | 2.8 (1.7, 4.4) ^ | 2.4 (1.4, 3.4) ^ | 1.6 (1.3, 1.9) ^ | 2.2 (1.4, 3.8) ^ |
ASA-24 Total daily energy intake (MJ) | 8.0 ± 2.1 * | 7.7 ± 1.8 * | 8.5 ± 2.1 * | 7.9 ± 1.8 * | 8.1 ± 2.0 * |
ASA-24 Nutrients | |||||
Protein (g) | 73.5 (54.1, 91.9) ^ | 73.0 ± 15.6 * | 80.0 ± 23.0 * | 72.6 ± 21.5 * | 75.2 (57.9, 93.3) ^ |
Carbohydrate (g) | 199.4 ± 74.5 * | 201.9 ± 47.5 * | 243.4 ± 74.3 * | 234.9 ± 74.5 * | 219.1 ± 74.2 * |
Total Fat (g) | 72.0 (61.0, 89.2) ^ | 62.8 (53.0, 71.3) ^ | 69.9 ± 20.7 * | 68.2 ± 17.4 * | 67.5 (58.3, 82.7) ^ |
Fatty acids, total saturated (g) | 18.0 (13.4, 25.0) ^ | 14.1 ± 3.0 * | 16.0 ± 7.1 * | 16.0 (10.7, 20.8) ^ | 15.8 (12.1, 21.6) ^ |
Fatty acids, total monounsaturated (g) | 28.9 (24.4, 38.9) ^ | 24.8 (20.0, 28.8) ^ | 27.3 (23.3, 32.3) ^ | 26.0 ± 6.8 * | 27.3 (23.3, 32.7) ^ |
Fatty acids, total polyunsaturated (g) | 17.4 (14.9, 22.5) ^ | 17.4 ± 7.3 * | 17.9 ± 6.6 * | 18.4 ± 6.1 * | 17.0 (14.5, 22.3) ^ |
Omega fatty acids (EPA+DPA+DHA) (mg) | 133.1 (63.8, 897.3) ^ | 131.9 (64.7, 710.8) ^ | 108.0 (32.0, 471.1) ^ | 61.6 (31.8, 484.1) ^ | 113.0 (34.8, 480.8) ^ |
Sugars, total (g) | 79.9 (50.3, 110.1) ^ | 79.2 (62.8, 102.5) ^ | 97.9 ± 39.6 * | 84.8 ± 30.9 * | 87.6 (59.7, 110.6) ^ |
Fiber, total dietary (g) | 33.0 ± 13.7 * | 37.9 ± 16.9 * | 44.5 ± 18.9 * | 29.6 ± 10.4 * | 34.1 (24.7, 46.6) ^ |
Alcohol (g) | 2.2 (0.7, 10.4) ^ | 10.8 (0.9, 23.5) ^ | 2.1 (0.8, 12.9) ^ | 1.4 (0.8, 15.6) ^ | 2.2 (0.8, 14.3) ^ |
Calcium (mg) | 775.0 ± 318.1 * | 652.1 ± 165.0 * | 849.9 ± 451.6 * | 824.3 (531.4, 1159.5) ^ | 782.4 (526.0, 996.0) ^ |
Iron (mg) | 14.0 ± 4.3 * | 13.7 ± 4.7 * | 16.3 ± 5.3 * | 17.1 ± 6.2 * | 15.2 (11.1, 18.5) ^ |
Magnesium (mg) | 428.1 ± 139.3 * | 504.7 ± 167.9 * | 506.6 ± 174.2 * | 390.0 ± 117.7 * | 449.8 ± 153.6 * |
Potassium (mg) | 3504.9 ± 1271.2 * | 3817.8 ± 1175.2 * | 3975.5 ± 1434.2 * | 3056.4 ± 796.8 * | 3577.8 ± 1259.8 * |
Sodium (mg) | 2409.6 ± 870.2 * | 2099.8 ± 434.1 * | 2335.4 ± 745.0 * | 3055.9 ± 886.2 * | 2359.8 (1903.5, 3060.3) ^ |
Zinc (mg) | 8.9 (7.1, 11.5) ^ | 9.7 ± 2.2 * | 10.3 ± 3.1 * | 9.6 (7.2, 10.9) ^ | 9.6 (7.4, 11.5) ^ |
Vitamin C (mg) | 122.4 (56.1, 163.9) ^ | 226.2 ± 113.9 * | 137.6 (91.0, 208.0) ^ | 88.6 (52.4, 205.3) ^ | 132.2 (64.4, 191.4) ^ |
Thiamin (mg) | 1.4 ± 0.5 * | 1.3 ± 0.4 * | 1.6 ± 0.5 * | 1.7 (1.2, 2.2) ^ | 1.5 (1.1, 1.8) ^ |
Riboflavin (mg) | 1.6 ± 0.7 * | 1.2 (1.1, 1.7) | 1.6 ± 0.8 * | 1.8 (1.5, 2.7) ^ | 1.7 (1.0, 2.2) ^ |
Folate, total (µg) | 503.5 ± 146.6 * | 565.7 ± 201.9 * | 561.4 ± 171.9 * | 535.0 (411.9, 646.5) ^ | 494.1 (420.5, 656.0) ^ |
Vitamin B-12 (µg) | 3.4 (1.5, 4.6) ^ | 2.3 ± 0.9 * | 2.5 (1.4, 3.2) ^ | 3.0 (1.6, 5.6) ^ | 2.7 (1.6, 4.0) ^ |
Retinol equiv (µg) | 1032.2 (908.5, 1742.7) ^ | 1071.7 (751.1, 1646.7) ^ | 1317.1 ± 653.2 * | 882.1 (664.6, 1175.9) ^ | 1048.8 (803.4, 1588.2) ^ |
Beta-carotene (µg) | 4902.9 (3538.9, 7752.1) ^ | 4767.7 (3211.5, 8008.1) ^ | 5946.4 ± 3056.0 * | 5626.3 (3190.2, 7442.4) ^ | 4934.3 (3438.5, 7456.6) ^ |
Q1 (n = 24) | Q2 (n = 24) | Q3 (n = 24) | Q4 (n = 24) | p-Value for Trend a | |
---|---|---|---|---|---|
Diet Habits Questionnaire score | |||||
Total | 68.4 ± 5.7 * | 81.4 ± 2.8 * | 88.6 ± 2.0 * | 94.7 ± 2.3 * | <0.01 |
Cereal | 3.0 (3.0, 3.0) ^ | 3.5 (3.0, 4.0) ^ | 3.75 (3.0, 4.0) ^ | 4.5 (4.0, 5.0) ^ | <0.01 |
Fruit and Vegetables | 3.0 (2.5, 3.0) ^ | 3.5 (3.0, 4.0) ^ | 4.00 (3.6, 4.4) ^ | 4.50 (4.0, 4.5) ^ | <0.01 |
Limit take-away foods | 2.5 (2.0, 3.0) ^ | 3.0 (2.5, 3.5) ^ | 3.00 (3.0, 3.5) ^ | 3.50 (3.5, 3.5) ^ | <0.01 |
Fiber | 3.0 (2.5, 3.4) ^ | 2.5 (3.1, 4.0) ^ | 4.00 (3.5, 4.0) ^ | 4.50 (4.1, 4.5) ^ | <0.01 |
Fat | 3.0 (3.0, 3.0) ^ | 3.5 (3.5, 4.0) ^ | 4.00 (4.0, 4.0) ^ | 4.00 (4.0, 4.5) ^ | <0.01 |
Omega-3 | 3.0 (2.0, 4.0) ^ | 4.0 (2.0, 4.0) ^ | 5.00 (4.0, 5.0) ^ | 4.50 (4.0, 5.0) ^ | <0.01 |
Food choices | 3.5 (2.6, 3.5) ^ | 4.3 (3.6, 4.5) ^ | 4.50 (4.5, 5.0) ^ | 4.50 (4.5, 5.0) ^ | <0.01 |
Food preparation | 3.5 (2.6, 3.5) ^ | 4.3 (3.6, 4.5) ^ | 4.50 (4.5, 5.0) ^ | 4.50 (4.5, 5.0) ^ | <0.01 |
ASA-24 Food groups | |||||
Cereals (serves) | 4.5 ± 2.2 * | 5.9 ± 2.6 * | 5.1 ± 1.4 * | 6.00 ± 2.1 * | 0.055 |
Vegetables (serves) | 3.9 (2.5, 6.9) ^ | 7.1 (4.3, 9.0) ^ | 6.5 (5.1, 9.6) ^ | 9.0 (5.6, 10.8) ^ | <0.01 |
Fruits (serves) | 1.3 (0.5, 2.) ^ | 1.5 (0.9, 3.0) ^ | 2.1 (1.0, 2.8) ^ | 2.5 ± 1.1 * | 0.141 |
Milk and alternatives (serves) | 1.2 (0.4, 1.8) ^ | 1.0 ± 0.7 * | 0.58 (0.3, 1.4) ^ | 0.7 (0.5, 1.5) ^ | 0.210 |
Meat and alternatives (serves) | 1.9 (1.3, 2.5) ^ | 2.3 ± 1.3 * | 2.6 (1.7, 3.1) ^ | 2.6 ± 1.1 * | 0.274 |
Discretionary foods (serves) | 2.0. (1.1, 3.8) ^ | 2.5 ± 1.9 * | 2.4 (1.9, 4.3) ^ | 2.5 ± 1.3 * | 0.647 |
ASA-24 Energy (MJ) | 7.5 ± 2.5 * | 8.3 ± 2.0 * | 8.1 ± 1.8 * | 8.6 ± 1.6 * | 0.331 |
ASA-24 Nutrients | |||||
Protein (g) | 60.40 (44.4, 84.1) ^ | 77.0 ± 27.0 * | 78.3 ± 25.0 * | 81.9 ± 18.8 * | 0.397 |
Carbohydrate (g) | 199.1 ± 87.7 * | 225.4 ± 81.9 * | 219.0 ± 62.5 * | 232.8 ± 61.5 * | 0.440 |
Total Fat (g) | 70.5 ± 21.2 * | 76.5 ± 19.4 * | 68.3 (58.2, 75.4) ^ | 67.4 (61.6, 71.7) ^ | 0.592 |
Fatty acids, total saturated (g) | 16.9 (14.4, 32.5) ^ | 18.1 ± 7.5 * | 15.5 ± 5.1 * | 15.3 ± 4.9 * | <0.01 |
Fatty acids, total monounsaturated (g) | 28.1 ± 8.8 * | 30.1 (23.9, 41.3) ^ | 26.8 (21.9, 30.4) ^ | 26.2 (23.4, 29.2) ^ | 0.547 |
Fatty acids, total polyunsaturated (g) | 14.6 ± 4.8 * | 18.3 (15.0, 23.6) ^ | 18.9 ± 7.0 * | 20.0 ± 5.7 * | <0.01 |
Omega fatty acids (EPA+DPA+DHA) (mg) | 110.6 (32.6, 408.3) ^ | 62.7 (34.4, 278.6) ^ | 194.6 (56.9, 831.1) ^ | 190.0 (37.4, 1360.3) ^ | 0.124 |
Sugars, total (g) | 71.5 (45.1, 112.9) ^ | 78.6 (59.7, 106.1) ^ | 93.8 ± 39.4 * | 93.0 ± 29.8 * | 0.711 |
Fiber, total dietary (g) | 23.5 ± 10.7 * | 36.8 ± 14.8 * | 35.5 ± 11.9 * | 48.2 ± 16.2 * | <0.01 |
Alcohol (g) | 1.5 (0.4, 11.7) ^ | 1.49 (0.9, 2.8) ^ | 2.5 (1.0, 14.2) ^ | 2.3 (0.8, 26.4) ^ | 0.066 |
Calcium (mg) | 804.0 ± 459.8 * | 750.7 ± 301.8 * | 777.1 (509.0, 922.2) ^ | 927.3 ± 365.3 * | 0.403 |
Iron (mg) | 12.0 (8.3, 14.6) ^ | 16.1 ± 5.5 * | 15.1 ± 4.8 * | 17.5 ± 4.2 * | <0.01 |
Magnesium (mg) | 333.6 ± 125.9 * | 447.8 ± 134.7 * | 458.2 ± 129.4 * | 559.6 ± 141.4 * | <0.01 |
Potassium (mg) | 2751.7 ± 1078.2 * | 3356.1 (2498.3, 4218.8) ^ | 3395.9 (3062.3, 4094.7) ^ | 4287.1 ± 978.6 * | <0.01 |
Sodium (mg) | 2517.2 ± 1030.6 * | 2536.0 ± 870.8 * | 2446.6 ± 764.1 * | 2450.7 ± 760.0 * | 0.977 |
Zinc (mg) | 7.8 (6.6, 11.0) ^ | 9.9 ± 3.4 * | 9.2 (7.9, 11.5) ^ | 10.7 ± 2.4 * | 0.696 |
Vitamin C (mg) | 67.8 (46.1, 150.1) ^ | 90.4 (55.1, 201.2) ^ | 139.3 (106.8, 180.6) ^ | 190.3 (133.6, 278.5) ^ | <0.01 |
Thiamine (mg) | 1.2 ± 0.5 * | 1.5 ± 0.6 * | 1.3 (1.1, 1.8) ^ | 1.8 ± 0.6 * | 0.021 |
Riboflavin (mg) | 1.5 (0.9, 1.8) ^ | 1.6 ± 0.7 * | 1.6 (1.0, 2.3) ^ | 1.8 ± 0.7 * | 0.772 |
Folate, total (mcg) | 426.6 ± 127.9 * | 542.8 ± 163.4 * | 487.1 (413.1, 663.9) ^ | 613.2 ± 132.3 * | <0.01 |
Vitamin B-12 (mcg) | 2.6 (1.7, 3.9) ^ | 2.9 (1.2, 3.9) ^ | 3.3 (1.2, 4.8) ^ | 2.5 (1.60, 4.1) ^ | 0.771 |
Vitamin A (mcg) | 1033.9 ± 569.6 * | 1147.1 (825.5, 1684.7) ^ | 1041.0 (865.8, 1564.4) ^ | 1338.0 ± 632.8 * | 0.370 |
Beta-carotene (mcg) | 3479.4 (2598.4, 7023.1) ^ | 5597.2 (3615.8, 7905.3) ^ | 4888.2 (4235.2, 7786.7) ^ | 5712.36 (3754.5, 8701.5) ^ | 0.420 |
Sex | Age Group | ||||||
---|---|---|---|---|---|---|---|
Female (n = 79) | Male (n = 17) | p-Value | 33–44 y (n = 20) | 45–64 y (n = 67) | 65–86 y (n = 9) | p-Value # | |
Diet Habits Questionnaire score | |||||||
Total | 85.5 (76.0, 91.8) | 85.0 (79.6, 90.5) | 0.943 ^ | 79.6 ± 9.3 | 83.9 ± 10.7 | 86.6 ± 10.0 | 0.163 |
Cereal | 3.5 (3.0, 4.5) | 4.0 (3.0, 4.3) | 0.370 ^ | 3.6 ± 0.7 | 3.8 ± 0.8 | 3.7 ± 0.8 | 0.689 |
Fruit and Vegetables | 4.0 (3.0, 4.0) | 3.5 (3.0,4.0) | 0.296 ^ | 3.4 ± 0.8 | 3.7 ± 0.7 | 4.1 ± 0.3 | <0.05 |
Limit take-away foods | 3.0 (2.5, 3.5) | 3.0 (2.5, 3.5) | 0.627 ^ | 2.9 ± 0.7 | 2.9 ± 0.6 | 3.3 ± 0.4 | 0.231 |
Fiber | 4.0 (3.0, 4.5) | 3.5 (3.0, 4.0) | 0.449 ^ | 3.4 ± 0.7 | 3.7 ± 0.7 | 4.1 ± 0.3 | <0.05 |
Fat | 4.0 (3.0, 4.0) | 4.0 (3.5, 4.0) | 0.829 ^ | 3.5 ± 0.5 | 3.7 ± 0.5 | 3.8 ± 0.6 | 0.251 |
Omega-3 | 4.0 (2.0, 5.0) | 5.0 (4.0, 5.0) | <0.05 ^ | 3.4 ± 1.2 | 3.6 ± 1.5 | 4.4 ± 0.5 | 0.132 |
Food choices | 4.0 (3.5, 4.5) | 4.5 (4.25, 5.0) | <0.05 ^ | 3.8 ± 1.0 | 4.2 ± 0.8 | 4.3 ± 0.8 | 0.156 |
Food preparation | 4.0 (3.5, 4.5) | 4.5 (4.25, 5.0) | <0.05 ^ | 3.8 ± 1.0 | 4.2 ± 0.8 | 4.3 ± 0.8 | 0.156 |
ASA-24 Food groups | |||||||
Cereals (serves) | 5.0 ± 1.9 | 7.1 ± 2.3 | <0.01 * | 5.9 ± 2.0 | 5.4 ± 2.2 | 4.2 ± 1.7 | 0.118 |
Vegetables (serves) | 6.5 (4.2, 9.5) | 8.1 (5.2, 10.5) | 0.217 ^ | 7.2 ± 3.0 | 7.5 ± 4.6 | 8.4 ± 3.7 | 0.778 |
Fruits (serves) | 1.7 (1.0, 2.7) | 2.8 (1.1, 3.6) | 0.100 ^ | 1.5 ± 1.2 | 2.3 ± 1.7 | 2.0 ± 0.8 | 0.154 |
Milk and alternatives (serves) | 1.0 (0.5, 1.7) | 0.5 (0.2, 0.8) | 0.077 ^ | 1.2 ± 1.1 | 1.1 ± 0.9 | 0.9 ± 0.6 | 0.534 |
Meat and alternatives (serves) | 2.1 (1.6, 2.8) | 3.0 (1.9, 4.3) | <0.01 ^ | 2.5 ± 1.7 | 2.4 ± 1.1 | 2.4 ± 1.4 | 0.901 |
Discretionary foods (serves) | 2.2 (1.4, 3.4) | 3.0. (1.8, 5.5) | 0.070 ^ | 2.1 ± 1.6 | 2.8 ± 2.0 | 2.6 ± 1.2 | 0.322 |
ASA-24 Energy (MJ) | 7.8 ± 1.7 | 10.1 ± 2.0 | <0.01 * | 8.7 ± 1.6 | 8.1 ± 2.1 | 7.4 ± 1.8 | 0.270 |
ASA-24 Nutrients | |||||||
Protein (g) | 71.9 ± 22.1 | 98.1 ± 35.3 | <0.01 * | 87.9 ± 33.5 | 73.7 ± 22.4 | 72.1 ± 35.0 | 0.099 |
Carbohydrate (g) | 210.8 ± 73.0 | 257.4 ± 69.4 | <0.05 * | 221.2 ± 63.9 | 224.4 ± 78.1 | 174.5 ± 53.5 | 0.165 |
Total Fat (g) | 67.5 ± 15.9 | 91.4 ± 24.0 | <0.01 * | 81.4 ± 15.9 | 69.0 ± 20.2 | 70.9 ± 18.7 | 0.045 |
Fatty acids, total saturated (g) | 15.3 (11.9, 21.5) | 19.7 (14.2, 24.1) | 0.141 ^ | 23.0 ± 9.5 | 16.5 ± 7.4 | 16.3 ± 4.4 | <0.01 |
Fatty acids, total monounsaturated (g) | 26.2 (22.5, 30.2) | 40.9 (29.6, 51.9) | <0.01 ^ | 32.7 ± 8.1 | 28.2 ± 10.1 | 31.9 ± 10.1 | 0.137 |
Fatty acids, total polyunsaturated (g) | 16.7 (14.5, 21.6) | 21.3 (15.4, 27.7) | 0.073 ^ | 19.0 ± 4.7 | 18.2 ± 7.0 | 17.7 ± 3.8 | 0.854 |
Omega fatty acids (EPA+DPA+DHA) (mg) | 108.0 (34.1, 484.1) | 308.9 (46.1, 699.4) | 0.406 ^ | 663.4 ± 1168.8 | 437.3 ± 753.5 | 508.1 ± 557.0 | 0.575 |
Sugars, total (g) | 89.9 (54.8, 113.7) | 83.1 (72.7, 102.9) | 0.608 ^ | 78.8 ± 28.8 | 93.2 ± 42.5 | 78.3 ± 21.4 | 0.245 |
Fiber, total dietary (g) | 32.2 (24.2, 44.3) | 46.59 (29.9, 53.1) | <0.05 ^ | 34.2 ± 11.4 | 36.7 ± 17.3 | 35.0 ± 15.4 | 0.826 |
Alcohol (g) | 1.6 (0.7, 10.8) | 2.3 (1.0, 22.7) | 0.151 ^ | 8.2 ± 15.5 | 9.6 ± 14.2 | 9.2 ± 17.6 | 0.930 |
Calcium (mg) | 802.5 (581.3, 1024.2) | 603.1 (452.6, 859.6) | 0.174 ^ | 875.6 ± 400.8 | 816.3 ± 400.3 | 668.5 ± 156.7 | 0.411 |
Iron (mg) | 14.5 (10.9, 16.9) | 18.0 (13.7, 20.0) | 0.061 ^ | 17.3 ± 5.5 | 14.8 ± 5.0 | 14.0 ± 4.5 | 0.113 |
Magnesium (mg) | 431.7 ± 148.3 | 533.7 ± 154.4 | <0.05 * | 407.0 ± 95.0 | 460.8 ± 167.5 | 463.1 ± 147.0 | 0.379 |
Potassium (mg) | 3399.1 ± 1170.5 | 4408.4 ± 1361.3 | <0.01 * | 3313.6 ± 942.8 | 3590.5 ± 1330.2 | 4071.0 ± 1297.1 | 0.325 |
Sodium (mg) | 2293.9 (1846.4, 2975.6) | 2681.8 (2233.0, 3165.6) | 0.069 ^ | 2799.7 ± 851.6 | 2406.9 ± 845.3 | 2394.7 ± 816.8 | 0.183 |
Zinc (mg) | 9.2 (7.3, 11.3) | 11.4 (8.4, 14.0) | 0.029 ^ | 11.6 ± 5.6 | 9.6 ± 3.1 | 10.3 ± 5.8 | 0.149 |
Vitamin C (mg) | 132.7 (60.1, 191.7) | 114.6 (76.6, 197.1) | 0.905 ^ | 115.8 ± 66.2 | 154.4 ± 107.5 | 181.8 ± 109.9 | 0.195 |
Thiamin (mg) | 1.4 (1.1, 1.7) | 1.9 (1.1, 2.3) | 0.300 ^ | 1.6 ± 0.5 | 1.5 ± 0.78 | 1.4 ± 0.6 | 0.848 |
Riboflavin (mg) | 1.7 (1.0, 2.2) | 1.4 (1.0, 2.1) | 0.561 ^ | 1.9 ± 0.9 | 1.6 ± 0.8 | 1.9 ± 0.6 | 0.351 |
Folate, total (µg) | 481.0 (411.0, 634.0) | 683.5 (527.3, 753.1) | <0.01 ^ | 526.2 ± 118.0 | 534.8 ± 178.3 | 574.6 ± 200.2 | 0.767 |
Vitamin B-12 (µg) | 2.6 (1.5, 4.0) | 2.9 (1.8, 4.6) | 0.542 ^ | 4.7 ± 3.2 | 2.8 ± 2.0 | 3.9 ± 4.1 | <0.01 |
Retinol (µg) | 1032.2 (801.1, 1578.3) | 1288.1 (799.7, 1756.8) | 0.385 ^ | 1245.5 ± 573.4 | 1140.9 ± 541.3 | 1951.3 ± 1148.0 | <0.01 |
Beta-carotene (µg) | 4894.6 (3505.2, 7461.3) | 5838.5 (3404.9, 7472.8) | 0.712 ^ | 5762.5 ± 2689.0 | 5353.1 ± 2612.1 | 9271.6 ± 6359.7 | <0.01 |
Factor | Food Group by Weight in Grams (Factor Loading) | Eigenvalue | % of Variance (Total: 42.12%) |
---|---|---|---|
1 | Miscellaneous a (0.82) Sugar products and dishes (0.81) Non-alcoholic beverages (0.20) Cereals and cereal products (−0.20) | 2.19 | 10.42 |
2 | Special dietary foods b (0.81) Alcoholic beverages (0.73) Fats and oils (0.62) | 1.80 | 8.57 |
3 | Fruit products and dishes (0.63) Fish and seafood products and dishes (0.59) Dairy and meat substitutes (0.52) | 1.72 | 8.19 |
4 | Milk products and dishes (0.79) Meat, poultry and game products and dishes (0.46) Soup (−0.28) | 1.69 | 8.05 |
5 | Confectionery and cereal/nut/fruit/seed bars (0.84) Cereals and cereal products (0.63) Vegetable products and dishes (0.44) Non-alcoholic beverages (0.41) | 1.45 | 6.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, V.; Simpson-Yap, S.; Nag, N.; Jelinek, G.; Neate, S.; Probst, Y. Using Online 24-h Dietary Methodology to Validate the Psychometric Properties of a Dietary Scoring Tool with an International Sample of Adults Living with Multiple Sclerosis. Nutrients 2022, 14, 4568. https://doi.org/10.3390/nu14214568
Guan V, Simpson-Yap S, Nag N, Jelinek G, Neate S, Probst Y. Using Online 24-h Dietary Methodology to Validate the Psychometric Properties of a Dietary Scoring Tool with an International Sample of Adults Living with Multiple Sclerosis. Nutrients. 2022; 14(21):4568. https://doi.org/10.3390/nu14214568
Chicago/Turabian StyleGuan, Vivienne, Steve Simpson-Yap, Nupur Nag, George Jelinek, Sandra Neate, and Yasmine Probst. 2022. "Using Online 24-h Dietary Methodology to Validate the Psychometric Properties of a Dietary Scoring Tool with an International Sample of Adults Living with Multiple Sclerosis" Nutrients 14, no. 21: 4568. https://doi.org/10.3390/nu14214568
APA StyleGuan, V., Simpson-Yap, S., Nag, N., Jelinek, G., Neate, S., & Probst, Y. (2022). Using Online 24-h Dietary Methodology to Validate the Psychometric Properties of a Dietary Scoring Tool with an International Sample of Adults Living with Multiple Sclerosis. Nutrients, 14(21), 4568. https://doi.org/10.3390/nu14214568