The Acute Effects of Milk Consumption on Systemic Inflammation after Combined Resistance and Plyometric Exercise in Young Adult Females
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Blood Sample Collection and Biochemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Dietary Intake
3.2. Absolute Concentrations of Cytokines
3.3. Relative Change in Cytokine Concentrations at 48 h Post-Exercise
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peake, J.M.; Neubauer, O.; Della Gatta, P.A.; Nosaka, K. Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Howard, E.E.; Pasiakos, S.M.; Blesso, C.N.; Fussell, M.A.; Rodriguez, N.R. Divergent Roles of Inflammation in Skeletal Muscle Recovery From Injury. Front. Physiol. 2020, 11, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urso, M.L. Anti-inflammatory interventions and skeletal muscle injury: Benefit or detriment? J. Appl. Physiol. 2013, 115, 920–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howatson, G.; van Someren, K.A. The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008, 38, 483–503. [Google Scholar] [CrossRef] [PubMed]
- Russo, I.; Camoes-Costa, V.; Gaskell, S.K.; Porter, J.; Burke, L.M.; Costa, R.J.S. Systematic Literature Review: The Effect of Dairy Milk on Markers of Recovery Optimisation in Response to Endurance Exercise. Int. J. Sport. Sci. 2019, 9, 69–85. [Google Scholar]
- Amiri, M.; Ghiasvand, R.; Kaviani, M.; Forbes, S.C.; Salehi-Abargouei, A. Chocolate milk for recovery from exercise: A systematic review and meta-analysis of controlled clinical trials. Eur. J. Clin. Nutr. 2019, 73, 835–849. [Google Scholar] [CrossRef] [Green Version]
- James, L.J.; Stevenson, E.J.; Rumbold, P.L.S.; Hulston, C.J. Cow’s milk as a post-exercise recovery drink: Implications for performance and health. Eur. J. Sport Sci. 2019, 19, 40–48. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulven, S.M.; Holven, K.B.; Gil, A.; Rangel-Huerta, O.D. Milk and Dairy Product Consumption and Inflammatory Biomarkers: An Updated Systematic Review of Randomized Clinical Trials. Adv. Nutr. 2019, 10, S239–S250. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.S.; Rudkowska, I. Dairy nutrients and their effect on inflammatory profile in molecular studies. Mol. Nutr. Food Res. 2015, 59, 1249–1263. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, S.; Ichiyama, T.; Sonaka, I.; Ohsaki, A.; Hirano, R.; Haneda, Y.; Fukano, R.; Hara, M.; Furukawa, S. Amino acids exhibit anti-inflammatory effects in human monocytic leukemia cell line, THP-1 cells. Inflamm. Res. 2011, 60, 1013–1019. [Google Scholar] [CrossRef]
- Zemel, M.B.; Sun, X. Dietary calcium and dairy products modulate oxidative and inflammatory stress in mice and humans. J. Nutr. 2008, 138, 1047–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcantara, J.M.A.; Sanchez-Delgado, G.; Martinez-Tellez, B.; Labayen, I.; Ruiz, J.R. Impact of cow’s milk intake on exercise performance and recovery of muscle function: A systematic review. J. Int. Soc. Sports Nutr. 2019, 16, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson-Stegall, L.; McCleave, E.L.; Ding, Z.; Doerner, P.G., 3rd; Wang, B.; Liao, Y.H.; Kammer, L.; Liu, Y.; Hwang, J.; Dessard, B.M.; et al. Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. J. Strength Cond. Res. 2011, 25, 1210–1224. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, J.R.; Walber-Rankin, J.; Smith, L.L.; Gwazdauskas, F.C. Comparison of carbohydrate and milk-based beverages on muscle damage and glycogen following exercise. Int. J. Sport Nutr. Exerc. Metab. 2001, 11, 406–419. [Google Scholar] [CrossRef] [PubMed]
- Margioris, A.N. Fatty acids and postprandial inflammation. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Rankin, P.; Landy, A.; Stevenson, E.; Cockburn, E. Milk: An Effective Recovery Drink for Female Athletes. Nutrients 2018, 10, 228. [Google Scholar] [CrossRef] [Green Version]
- Rankin, P.; Lawlor, M.J.; Hills, F.A.; Bell, P.G.; Stevenson, E.J.; Cockburn, E. The effect of milk on recovery from repeat-sprint cycling in female team-sport athletes. Appl. Physiol. Nutr. Metab. 2018, 43, 113–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rankin, P.; Callanan, D.; O’Brien, K.; Davison, G.; Stevenson, E.J.; Cockburn, E. Can Milk Affect Recovery from Simulated Team-Sport Match Play? Nutrients 2019, 12, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prowting, J.L.; Skelly, L.E.; Kurgan, N.; Fraschetti, E.C.; Klentrou, P.; Josse, A.R. Acute Effects of Milk vs. Carbohydrate on Bone Turnover Biomarkers Following Loading Exercise in Young Adult Females. Front. Nutr. 2022, 9, 840973. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Hubal, M.J. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 2002, 81, S52–S69. [Google Scholar] [CrossRef]
- Hayden, M.S.; Ghosh, S. NF-kappaB in immunobiology. Cell Res. 2011, 21, 223–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Hu, P. Skeletal muscle regeneration is modulated by inflammation. J. Orthop. Translat. 2018, 13, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Kerasioti, E.; Stagos, D.; Jamurtas, A.; Kiskini, A.; Koutedakis, Y.; Goutzourelas, N.; Pournaras, S.; Tsatsakis, A.M.; Kouretas, D. Anti-inflammatory effects of a special carbohydrate-whey protein cake after exhaustive cycling in humans. Food Chem. Toxicol. 2013, 61, 42–46. [Google Scholar] [CrossRef] [PubMed]
- McKinlay, B.J.; Theocharidis, A.; Adebero, T.; Kurgan, N.; Fajardo, V.A.; Roy, B.D.; Josse, A.R.; Logan-Sprenger, H.M.; Falk, B.; Klentrou, P. Effects of Post-Exercise Whey Protein Consumption on Recovery Indices in Adolescent Swimmers. Int. J. Environ. Res. Public Health 2020, 17, 7761. [Google Scholar] [CrossRef] [PubMed]
- Afroundeh, R.; Siahkouhian, M.; Khalili, A. The effect of post-exercise carbohydrate ingestion on inflammatory responses to short time, high-force eccentric exercise. J. Sports Med. Phys. Fit. 2010, 50, 182–188. [Google Scholar]
- Thorning, T.K.; Bertram, H.C.; Bonjour, J.P.; de Groot, L.; Dupont, D.; Feeney, E.; Ipsen, R.; Lecerf, J.M.; Mackie, A.; McKinley, M.C.; et al. Whole dairy matrix or single nutrients in assessment of health effects: Current evidence and knowledge gaps. Am. J. Clin. Nutr. 2017, 105, 1033–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinlay, B.J.; Wallace, P.J.; Olansky, S.; Woods, S.; Kurgan, N.; Roy, B.D.; Josse, A.R.; Falk, B.; Klentrou, P. Intensified training in adolescent female athletes: A crossover study of Greek yogurt effects on indices of recovery. J. Int. Soc. Sports Nutr. 2022, 19, 17–33. [Google Scholar] [CrossRef]
- Petersen, A.M.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennigar, S.R.; McClung, J.P.; Pasiakos, S.M. Nutritional interventions and the IL-6 response to exercise. FASEB J. 2017, 31, 3719–3728. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, B.K.; Ostrowski, K.; Rohde, T.; Bruunsgaard, H. The cytokine response to strenuous exercise. Can. J. Physiol. Pharmacol. 1998, 76, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Shek, P.N.; Shephard, R.J. Physical exercise as a human model of limited inflammatory response. Can. J. Physiol. Pharmacol. 1998, 76, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Della Gatta, P.; Suzuki, K.; Nieman, D.C. Cytokine expression and secretion by skeletal muscle cells: Regulatory mechanisms and exercise effects. Exerc. Immunol. Rev. 2015, 21, 8–25. [Google Scholar] [PubMed]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligne, B.; Ganzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
Dietary Variable | CHO | MILK | p Value |
---|---|---|---|
Energy intake (kcal) | 1757 ± 627 | 1673 ± 616 | 0.46 |
Protein (g) | 67 ± 27 | 61 ± 28 | 0.09 |
Carbohydrate (g) | 221 ± 91 | 212 ± 102 | 0.55 |
Fat (g) | 68 ± 30 | 68 ± 24 | 0.97 |
Vitamin D (IU) | 47 ± 54 | 48 ± 50 | 0.96 |
Calcium (mg) | 561 ± 374 | 473 ± 266 | 0.18 |
Iron (mg) | 10 ± 4 | 10 ± 6 | 1.00 |
Magnesium (mg) | 194 ± 145 | 202 ± 113 | 0.76 |
Potassium (mg) | 1768 ± 1379 | 1914 ± 1316 | 0.35 |
Selenium (mcg) | 60 ± 36 | 62 ± 33 | 0.91 |
Cytokine (pg/mL) | CHO | MILK | RM-ANOVA p-Values | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Ex | 15-min | 75-min | 24 h | 48 h | Pre-Ex | 15-min | 75-min | 24 h | 48 h | Group | Time | Int | |
IL-6 | 1.59 (2.15) | 1.74 * (2.25) | 1.73 (2.27) | 1.79 (2.65) | 1.63 (2.65) | 1.54 (3.66) | 1.58 * (3.81) | 1.60 (3.59) | 1.52 (3.34) | 1.32 (3.14) | 0.67 | 0.017 | 0.37 |
TNF-α | 6.81 (3.21) | 6.87 (2.93) | 6.53 (2.91) | 7.01 (2.47) | 6.86 (1.76) | 6.32 (5.25) | 5.65 (4.29) | 6.38 (4.95) | 6.68 (5.42) | 6.53 (5.97) | 0.98 | 0.27 | 0.81 |
IL-10 | 5.25 (3.85) | 7.43 † (4.92) | 5.94 (4.03) | 5.24 (4.20) | 5.46 † (4.73) | 5.74 (2.92) | 6.39 # (1.43) | 5.46 (2.40) | 5.63 (3.27) | 5.24 † (2.11) | 0.76 | 0.12 | 0.018 |
IL-1β | 1.96 (0.77) | 2.00 (0.82) | 2.03 (0.82) | 1.98 (0.78) | 2.00 (0.75) | 2.29 (1.16) | 2.31 (1.16) | 2.22 (1.03) | 2.32 (1.18) | 2.11 (0.96) | 0.31 | 0.46 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraschetti, E.C.; Skelly, L.E.; Prowting, J.L.; Abdul-Sater, A.A.; Josse, A.R. The Acute Effects of Milk Consumption on Systemic Inflammation after Combined Resistance and Plyometric Exercise in Young Adult Females. Nutrients 2022, 14, 4532. https://doi.org/10.3390/nu14214532
Fraschetti EC, Skelly LE, Prowting JL, Abdul-Sater AA, Josse AR. The Acute Effects of Milk Consumption on Systemic Inflammation after Combined Resistance and Plyometric Exercise in Young Adult Females. Nutrients. 2022; 14(21):4532. https://doi.org/10.3390/nu14214532
Chicago/Turabian StyleFraschetti, Emily C., Lauren E. Skelly, Joel L. Prowting, Ali A. Abdul-Sater, and Andrea R. Josse. 2022. "The Acute Effects of Milk Consumption on Systemic Inflammation after Combined Resistance and Plyometric Exercise in Young Adult Females" Nutrients 14, no. 21: 4532. https://doi.org/10.3390/nu14214532
APA StyleFraschetti, E. C., Skelly, L. E., Prowting, J. L., Abdul-Sater, A. A., & Josse, A. R. (2022). The Acute Effects of Milk Consumption on Systemic Inflammation after Combined Resistance and Plyometric Exercise in Young Adult Females. Nutrients, 14(21), 4532. https://doi.org/10.3390/nu14214532