Fucoidan Improves Growth, Digestive Tract Maturation, and Gut Microbiota in Large Yellow Croaker (Larimichthys crocea) Larvae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diet Formulation
2.2. Experimental Procedure
2.3. Sampling and Dissection
2.4. Analytical Methods
2.4.1. Intestinal Histology Analysis
2.4.2. cDNA Synthesis and Real-Time Quantitative Polymerase Chain Reaction (qPCR)
2.4.3. Digestive Enzyme Activities Assay
2.4.4. Microbiota Analyses
2.5. Calculations and Statistical Analysis
3. Results
3.1. Dietary Fuc Improved the Growth of Larvae
3.2. Dietary Fuc Promoted Maturation of the Digestive Tract
3.2.1. Dietary Fuc Improved Intestinal Morphology
3.2.2. Dietary Fuc Regulated Intestinal Cell Proliferation, Differentiation-Related Genes, and Intestinal Barrier-Related Gene Expression
3.2.3. Long-Term Dietary Fuc Improved Larval Digestive Functions
3.3. Dietary Fuc Improved Larval Gut Microbiota
3.3.1. Dietary Fuc Altered the Overall Structure of the Gut Microbiota
3.3.2. Dietary Fuc Modulated Gut Microbiota Composition
3.3.3. Dietary Fuc Affected Oxygen Utilization of the Microbial Community
3.3.4. The Association between Gut Microbiota and the Selected Intestinal Gene Markers
4. Discussion
4.1. Dietary Fuc Boosted Healthy Growth of Fish Larvae
4.2. Dietary Fuc Promoted Maturation of the Digestive Tract
4.3. Dietary Fuc Improved the Gut Microbiota of Fish Larvae
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giatsis, C.; Sipkema, D.; Smidt, H.; Verreth, J.; Verdegem, M. The Colonization Dynamics of the Gut Microbiota in Tilapia Larvae. PLoS ONE 2014, 9, e103641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López Nadal, A.; Ikeda-Ohtsubo, W.; Sipkema, D.; Peggs, D.; McGurk, C.; Forlenza, M.; Wiegertjes, G.; Brugman, S. Feed, Microbiota, and Gut Immunity: Using the Zebrafish Model to Understand Fish Health. Front. Immunol. 2020, 11, 114. [Google Scholar] [CrossRef] [PubMed]
- Chadaideh, K.S.; Carmody, R.N. Host-microbial interactions in the metabolism of different dietary fats. Cell Metab. 2021, 33, 857–872. [Google Scholar] [CrossRef]
- Yan, Q.; van der Gast, C.; Yu, Y. Bacterial community assembly and turnover within the intestines of developing zebrafish. PLoS ONE 2012, 7, e30603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogra, S.; Sakwinska, O.; Soh, S.-E.; Ngom-Bru, C.; Brück, W.M.; Berger, B.; Brüssow, H.; Lee, Y.S.; Yap, F.; Chong, Y.-S.; et al. Dynamics of Infant Gut Microbiota Are Influenced by Delivery Mode and Gestational Duration and Are Associated with Aubsequent Adiposity. mBio 2015, 6, e02419-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.T.B.; Chung, H.-J.; Kim, H.-J.; Hong, S.-T. Establishment of an ideal gut microbiota to boost healthy growth of neonates. Crit. Rev. Microbiol. 2019, 45, 118–129. [Google Scholar] [CrossRef]
- Stephens, W.Z.; Burns, A.R.; Stagaman, K.; Wong, S.; Rawls, J.F.; Guillemin, K.; Bohannan, B.J.M. The composition of the zebrafish intestinal microbial community varies across development. ISME J. 2016, 10, 644–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatesoupe, F.-J.; Huelvan, C.; Le Bayon, N.; Le Delliou, H.; Madec, L.; Mouchel, O.; Quazuguel, P.; Mazurais, D.; Zambonino-Infante, J.-L. The highly variable microbiota associated to intestinal mucosa correlates with growth and hypoxia resistance of sea bass, Dicentrarchus labrax, submitted to different nutritional histories. BMC Microbiol. 2016, 16, 266. [Google Scholar] [CrossRef] [Green Version]
- El Aidy, S.; Hooiveld, G.; Tremaroli, V.; Bäckhed, F.; Kleerebezem, M. The gut microbiota and mucosal homeostasis. Gut Microbes 2013, 4, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gensollen, T.; Iyer, S.; Kasper, D.; Blumberg, R. How colonization by microbiota in early life shapes the immune system. Science 2016, 352, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Romano-Keeler, J.; Moore, D.J.; Wang, C.; Brucker, R.M.; Fonnesbeck, C.; Slaughter, J.C.; Li, H.; Curran, D.P.; Meng, S.; Correa, H.; et al. Early life establishment of site-specific microbial communities in the gut. Gut Microbes 2014, 5, 192–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, N.; Keller-Costa, T.; Sanches-Fernandes, G.M.M.; Louvado, A.; Gomes, N.C.M.; Costa, R. Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. Annu. Rev. Anim. Biosci. 2021, 9, 423–452. [Google Scholar] [CrossRef] [PubMed]
- de Jesus Raposo, M.F.; de Morais, A.M.M.B.; de Morais, R.M.S.C. Emergent Sources of Prebiotics: Seaweeds and Microalgae. Mar. Drugs 2016, 14, 27. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Chang, Y.; Gao, Y.; Wang, X.; Chen, X.; Wang, Y.; Xue, C.; Tang, Q. Dietary fucoidan of Acaudina molpadioides alters gut microbiota and mitigates intestinal mucosal injury induced by cyclophosphamide. Food Funct. 2017, 8, 3383–3393. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.-Y.; Kim, E.-A.; Kang, S.I.; Yang, H.-W.; Ryu, B.; Wang, L.; Lee, J.-S.; Jeon, Y.-J. Protective Effects of Fucoidan Isolated from Celluclast-Assisted Extract of Undaria pinnatifida Sporophylls against AAPH-Induced Oxidative Stress In Vitro and In Vivo Zebrafish Model. Molecules 2020, 25, 2361. [Google Scholar] [CrossRef]
- Azuma, K.; Ishihara, T.; Nakamoto, H.; Amaha, T.; Osaki, T.; Tsuka, T.; Imagawa, T.; Minami, S.; Takashima, O.; Ifuku, S.; et al. Effects of oral administration of fucoidan extracted from Cladosiphon okamuranus on tumor growth and survival time in a tumor-bearing mouse model. Mar. Drugs 2012, 10, 2337–2348. [Google Scholar] [CrossRef]
- Fitton, J.H.; Stringer, D.N.; Park, A.Y.; Karpiniec, S.S. Therapies from Fucoidan: New Developments. Mar. Drugs 2019, 17, 571. [Google Scholar] [CrossRef] [Green Version]
- Mir, I.N.; Sahu, N.P.; Pal, A.K.; Makesh, M. Synergistic effect of l-methionine and fucoidan rich extract in eliciting growth and non-specific immune response of Labeo rohita fingerlings against Aeromonas hydrophila. Aquaculture 2017, 479, 396–403. [Google Scholar] [CrossRef]
- Shang, Q.; Jiang, H.; Cai, C.; Hao, J.; Li, G.; Yu, G. Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview. Carbohydr. Polym. 2018, 179, 173–185. [Google Scholar] [CrossRef]
- Shang, Q.; Shan, X.; Cai, C.; Hao, J.; Li, G.; Yu, G. Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae. Food Funct. 2016, 7, 3224–3232. [Google Scholar] [CrossRef]
- Fang, W.; Chen, Q.; Cui, K.; Chen, Q.; Li, X.; Xu, N.; Mai, K.; Ai, Q. Lipid overload impairs hepatic VLDL secretion via oxidative stress-mediated PKCδ-HNF4α-MTP pathway in large yellow croaker (Larimichthys crocea). Free Radical Biol. Med. 2021, 172, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Yao, C.; Liu, Y.; Xu, N.; Yin, Z.; Xu, W.; Miao, Y.; Mai, K.; Ai, Q. Dietary Allicin Improved the Survival and Growth of Large Yellow Croaker (Larimichthys crocea) Larvae via Promoting Intestinal Development, Alleviating Inflammation and Enhancing Appetite. Front. Physiol. 2020, 11, 587674. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Miao, Y.; Xu, N.; Ding, T.; Cui, K.; Chen, Q.; Zhang, J.; Fang, W.; Mai, K.; Ai, Q. Effects of dietary Astragalus polysaccharides (APS) on survival, growth performance, activities of digestive enzyme, antioxidant responses and intestinal development of large yellow croaker (Larimichthys crocea) larvae. Aquaculture 2020, 517, 734752. [Google Scholar] [CrossRef]
- Yao, C.; Huang, W.; Liu, Y.; Yin, Z.; Xu, N.; He, Y.; Wu, X.; Mai, K.; Ai, Q. Effects of dietary silymarin (SM) supplementation on growth performance, digestive enzyme activities, antioxidant capacity and lipid metabolism gene expression in large yellow croaker (Larimichthys crocea) larvae. Aquacult. Nutr. 2020, 26, 2225–2234. [Google Scholar] [CrossRef]
- Cahu, C.L.; Infante, J.L.Z. Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: Effect on digestive enzymes. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1994, 109, 213–222. [Google Scholar] [CrossRef]
- Mai, K.; Yu, H.; Ma, H.; Duan, Q.; Gisbert, E.; Infante, J.L.Z.; Cahu, C.L. A histological study on the development of the digestive system of Pseudosciaena crocea larvae and juveniles. J. Fish Biol. 2005, 67, 1094–1106. [Google Scholar] [CrossRef]
- Yang, B.; Zhou, Y.; Wu, M.; Li, X.; Mai, K.; Ai, Q. ω-6 Polyunsaturated fatty acids (linoleic acid) activate both autophagy and antioxidation in a synergistic feedback loop via TOR-dependent and TOR-independent signaling pathways. Cell Death Dis. 2020, 11, 607. [Google Scholar] [CrossRef]
- Crane, R.K.; Boge, G.; Rigal, A. Isolation of brush border membranes in vesicular form from the intestinal spiral valve of the small dogfish (Scyliorhinus canicula). Biochim. Biophys. Acta 1979, 554, 264–267. [Google Scholar] [CrossRef]
- Maroux, S.; Louvard, D.; Baratti, J. The aminopeptidase from hog intestinal brush border. Biochim. Biophys. Acta 1973, 321, 282–295. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, T.; Larson, J.; Meulemans, J.; Hillmann, B.; Lynch, J.; Sidiropoulos, D.; Spear, J.; Caporaso, G.; Blekhman, R.; Knight, R.; et al. BugBase predicts organism-level microbiome phenotypes. bioRxiv 2017, 133462. [Google Scholar] [CrossRef]
- Xiang, Q.; Wu, X.; Pan, Y.; Wang, L.; Cui, C.; Guo, Y.; Zhu, L.; Peng, J.; Wei, H. Early-Life Intervention Using Fecal Microbiota Combined with Probiotics Promotes Gut Microbiota Maturation, Regulates Immune System Development, and Alleviates Weaning Stress in Piglets. Int. J. Mol. Sci. 2020, 21, 503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawls, J.F.; Samuel, B.S.; Gordon, J.I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA 2004, 101, 4596–4601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.; Wang, Z.; Liu, J.; Wang, Y.; Wang, Z.; Fu, J.; Wan, Z.; Li, R.; Li, Q.; Helen Fitton, J.; et al. Effects of a highly purified fucoidan from Undaria pinnatifida on growth performance and intestine health status of gibel carp Carassius auratus gibelio. Aquacult. Nutr. 2020, 26, 47–59. [Google Scholar] [CrossRef]
- Heim, G.; Walsh, A.M.; Sweeney, T.; Doyle, D.N.; O’Shea, C.J.; Ryan, M.T.; O’Doherty, J.V. Effect of seaweed-derived laminarin and fucoidan and zinc oxide on gut morphology, nutrient transporters, nutrient digestibility, growth performance and selected microbial populations in weaned pigs. Br. J. Nutr 2014, 111, 1577–1585. [Google Scholar] [CrossRef]
- Sivagnanavelmurugan, M.; Thaddaeus, B.J.; Palavesam, A.; Immanuel, G. Dietary effect of Sargassum wightii fucoidan to enhance growth, prophenoloxidase gene expression of Penaeus monodon and immune resistance to Vibrio parahaemolyticus. Fish Shellfish Immunol. 2014, 39, 439–449. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, J.; Yan, L.; Cheng, Y.; Li, Q.; Wu, S.; Chen, L.; Thring, R.W.; Yang, Y.; Gao, Y.; et al. Sargassum fusiforme Fucoidan Alleviates High-Fat Diet-Induced Obesity and Insulin Resistance Associated with the Improvement of Hepatic Oxidative Stress and Gut Microbiota Profile. J. Agric. Food Chem. 2020, 68, 10626–10638. [Google Scholar] [CrossRef]
- Sánchez-Hernández, J.; Nunn, A.D.; Adams, C.E.; Amundsen, P.-A. Causes and consequences of ontogenetic dietary shifts: A global synthesis using fish models. Biol. Rev. 2019, 94, 539–554. [Google Scholar] [CrossRef] [Green Version]
- Zambonino Infante, J.L.; Cahu, C.L. Ontogeny of the gastrointestinal tract of marine fish larvae. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 130, 477–487. [Google Scholar] [CrossRef]
- Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.-J. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 2008, 27, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Read, N.W. Physiological and Clinical Aspects of Short Chain Fatty Acids. Gut 1996, 38, 156–157. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Liu, Q.; Liu, Y.; Gao, S.; He, Y.; Yao, C.; Huang, W.; Gong, Y.; Mai, K.; Ai, Q. Early Life Intervention Using Probiotic Clostridium butyricum Improves Intestinal Development, Immune Response, and Gut Microbiota in Large Yellow Croaker (Larimichthys crocea) Larvae. Front. Immunol. 2021, 12, 640767. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, J.; Mao, G.; Wu, T.; Hu, Y.; Ye, X.; Tian, D.; Linhardt, R.J.; Chen, S. A fucoidan from sea cucumber Pearsonothuria graeffei with well-repeated structure alleviates gut microbiota dysbiosis and metabolic syndromes in HFD-fed mice. Food Funct. 2018, 9, 5371–5380. [Google Scholar] [CrossRef]
- Kim, K.-T.; Rioux, L.-E.; Turgeon, S.L. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry 2014, 98, 27–33. [Google Scholar] [CrossRef]
- Ma, H.; Cahu, C.; Zambonino, J.; Yu, H.; Duan, Q.; Le Gall, M.-M.; Mai, K. Activities of selected digestive enzymes during larval development of large yellow croaker (Pseudosciaena crocea). Aquaculture 2005, 245, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Bates, J.M.; Akerlund, J.; Mittge, E.; Guillemin, K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2007, 2, 371–382. [Google Scholar] [CrossRef] [Green Version]
- Kokou, F.; Sasson, G.; Friedman, J.; Eyal, S.; Ovadia, O.; Harpaz, S.; Cnaani, A.; Mizrahi, I. Core gut microbial communities are maintained by beneficial interactions and strain variability in fish. Nat. Microbiol. 2019, 4, 2456–2465. [Google Scholar] [CrossRef]
- Wang, A.R.; Ran, C.; Ringø, E.; Zhou, Z.G. Progress in fish gastrointestinal microbiota research. Rev. Aquacult. 2018, 10, 626–640. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Ma, X.; Liu, Y.; Ma, L.; Chen, Z.; Lin, X.; Si, L.; Ma, X.; Chen, X. Gut Microbiota Interventions with Clostridium butyricum and Norfloxacin Modulate Immune Response in Experimental Autoimmune Encephalomyelitis Mice. Front. Immunol. 2019, 10, 1662. [Google Scholar] [CrossRef]
- Roggero, P.; Liotto, N.; Pozzi, C.; Braga, D.; Troisi, J.; Menis, C.; Giannì, M.L.; Berni Canani, R.; Paparo, L.; Nocerino, R.; et al. Analysis of immune, microbiota and metabolome maturation in infants in a clinical trial of Lactobacillus paracasei CBA L74-fermented formula. Nat. Commun. 2020, 11, 2703. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, M.; Zhang, P.; Fan, S.; Huang, J.; Yu, S.; Zhang, C.; Li, H. Fucoidan and galactooligosaccharides ameliorate high-fat diet-induced dyslipidemia in rats by modulating the gut microbiota and bile acid metabolism. Nutrition 2019, 65, 50–59. [Google Scholar] [CrossRef] [PubMed]
Parameters | Experimental Diets (Fuc%) | |||
---|---|---|---|---|
Fuc0 (0.00%) | Fuc0.5 (0.50%) | Fuc1 (1.00%) | Fuc2 (2.00%) | |
Initial weight (mg) | 3.45 ± 0.20 | 3.37 ± 0.13 | 3.38 ± 0.09 | 3.14 ± 0.09 |
Final weight (mg) | 81.52 ± 2.97 b | 102.77 ± 7.09 a | 101.53 ± 2.97 a | 106.14 ± 2.39 a |
Initial length (mm) | 6.00 ± 0.07 | 5.94 ± 0.07 | 5.83 ± 0.04 | 5.87 ± 0.15 |
Final length (mm) | 16.20 ± 0.13 b | 18.02 ± 0.10 a | 17.90 ± 0.32 a | 17.51 ± 0.20 a |
Survival rate (%) | 23.30 ± 4.91 | 18.13 ± 3.85 | 26.75 ± 4.58 | 26.02 ± 2.11 |
Weight gain rate (%) | 2270.87 ± 97.38 b | 2945.55 ± 147.06 a | 2909.42 ± 161.38 a | 3277.67 ± 60.01 a |
Specific growth rate (%/day) | 10.55 ± 0.14 b | 11.38 ± 0.16 a | 11.34 ± 0.17 a | 11.73 ± 0.06 a |
Parameters | Experimental Diets (Fuc%) | |||
---|---|---|---|---|
Fuc0 (0.00%) | Fuc0.5 (0.50%) | Fuc1 (1.00%) | Fuc2 (2.00%) | |
Villus height (μm) | 85.67 ± 4.17 c | 125.86 ± 10.16 b | 156.85 ± 3.04 a | 118.52 ± 6.91 b |
Villus width (μm) | 40.28 ± 2.36 b | 57.60 ± 5.27 ab | 75.71 ± 4.27 a | 59.27 ± 9.42 ab |
Muscular thickness (μm) | 14.57 ± 0.66 b | 23.67 ± 2.87 ab | 28.11 ± 4.04 a | 25.82 ± 2.46 ab |
Parameters | DAH 3 | Experimental Diets (Fuc%) | |||
---|---|---|---|---|---|
Fuc0 | Fuc0.5 | Fuc1 | Fuc2 | ||
0.00% | 0.50% | 1.00% | 2.00% | ||
AKP 2,3 | 22 | 1583.22 ± 269.21 | 1474.55 ± 179.29 | 1497.24 ± 221.74 | 1985.62 ± 238.67 |
27 | 1517.57 ± 333.17 | 2916.42 ± 282.13 | 2784.35 ± 451.22 | 3774.64 ± 959.48 | |
37 | 3446.03 ± 152.81 c | 4294.91 ± 120.97 b | 4624.98 ± 82.03 b | 5414.87 ± 190.84 a | |
47 | 4456.80 ± 463.26 c | 5453.86 ± 183.89 bc | 6060.50 ± 207.81 ab | 7239.89 ± 336.34 a | |
LAP 2,3 | 22 | 4.39 ± 0.58 | 4.12 ± 0.76 | 3.81 ± 0.51 | 4.80 ± 0.45 |
27 | 12.98 ± 2.15 | 9.81 ± 1.59 | 10.97 ± 1.13 | 10.06 ± 0.90 | |
37 | 8.02 ± 1.17 b | 17.68 ± 2.12 ab | 18.93 ± 2.72 ab | 28.18 ± 5.67 a | |
47 | 30.39 ± 3.45 b | 37.98 ± 0.62 b | 39.28 ± 1.55 b | 51.56 ± 2.13 a |
Parameters | Tissue | DAH 4 | Experimental Diets (Fuc%) | |||
---|---|---|---|---|---|---|
Fuc0 | Fuc0.5 | Fuc1 | Fuc2 | |||
0.00% | 0.50% | 1.00% | 2.00% | |||
Lipase 2,4 | PS 4 | 22 | 3.80 ± 1.40 | 4.54 ± 1.00 | 4.28 ± 1.09 | 3.10 ± 0.16 |
27 | 4.02 ± 0.31 | 4.14 ± 0.15 | 4.81 ± 0.18 | 4.31 ± 0.12 | ||
37 | 3.98 ± 0.74 b | 5.28 ± 0.30 ab | 6.53 ± 0.54 a | 5.26 ± 0.15 ab | ||
47 | 1.77 ± 0.10 c | 2.85 ± 0.04 b | 3.87 ± 0.29 a | 2.16 ± 0.31 bc | ||
IS 4 | 22 | 2.33 ± 1.10 | 3.27 ± 0.87 | 3.14 ± 0.25 | 2.57 ± 0.19 | |
27 | 4.37 ± 1.04 | 4.11 ± 0.68 | 4.96 ± 0.68 | 3.64 ± 0.41 | ||
37 | 6.02 ± 0.12 c | 8.16 ± 0.13 a | 7.85 ± 0.67 ab | 6.21 ± 0.27 bc | ||
47 | 1.96 ± 0.24 b | 5.48 ± 0.09 a | 5.63 ± 0.50 a | 6.26 ± 0.20 a | ||
Trypsin 3,4 | PS 4 | 22 | 1.28 ± 0.05 | 1.11 ± 0.04 | 1.13 ± 0.07 | 1.34 ± 0.04 |
27 | 2.13 ± 0.15 | 2.50 ± 0.18 | 2.12 ± 0.06 | 2.18 ± 0.12 | ||
37 | 2.21 ± 0.18 | 2.37 ± 0.13 | 2.19 ± 0.05 | 2.11 ± 0.10 | ||
47 | 3.18 ± 0.12 | 2.16 ± 0.25 | 2.83 ± 0.48 | 2.91 ± 0.44 | ||
IS 4 | 22 | 5.84 ± 1.12 | 4.48 ± 0.39 | 3.88 ± 0.31 | 5.59 ± 0.68 | |
27 | 1.52 ± 0.19 | 1.42 ± 0.04 | 1.36 ± 0.05 | 1.72 ± 0.14 | ||
37 | 7.08 ± 0.99 | 6.81 ± 0.73 | 5.43 ± 0.99 | 5.73 ± 0.60 | ||
47 | 10.48 ± 1.14 | 8.78 ± 2.13 | 10.80 ± 2.13 | 8.60 ± 0.26 | ||
α-amylase 3,4 | PS 4 | 22 | 0.32 ± 0.02 | 0.32 ± 0.00 | 0.31 ± 0.02 | 0.31 ± 0.02 |
27 | 0.25 ± 0.04 | 0.24 ± 0.01 | 0.24 ± 0.04 | 0.22 ± 0.03 | ||
37 | 0.68 ± 0.07 a | 0.37 ± 0.05 b | 0.40 ± 0.02 b | 0.47 ± 0.02 b | ||
47 | 0.55 ± 0.01 a | 0.32 ± 0.01 c | 0.48 ± 0.01 a | 0.43 ± 0.04 ab | ||
IS 4 | 22 | 0.57 ± 0.05 | 0.52 ± 0.04 | 0.63 ± 0.04 | 0.54 ± 0.02 | |
27 | 0.26 ± 0.05 ab | 0.20 ± 0.02 ab | 0.12 ± 0.00 b | 0.27 ± 0.04 a | ||
37 | 0.68 ± 0.03 a | 0.57 ± 0.03 ab | 0.44 ± 0.04 bc | 0.31 ± 0.04 c | ||
47 | 0.57 ± 0.02 a | 0.45 ± 0.02 bc | 0.41 ± 0.02 c | 0.50 ± 0.01 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Gong, Y.; Liu, Y.; He, Y.; Yao, C.; Huang, W.; Mai, K.; Ai, Q. Fucoidan Improves Growth, Digestive Tract Maturation, and Gut Microbiota in Large Yellow Croaker (Larimichthys crocea) Larvae. Nutrients 2022, 14, 4504. https://doi.org/10.3390/nu14214504
Yin Z, Gong Y, Liu Y, He Y, Yao C, Huang W, Mai K, Ai Q. Fucoidan Improves Growth, Digestive Tract Maturation, and Gut Microbiota in Large Yellow Croaker (Larimichthys crocea) Larvae. Nutrients. 2022; 14(21):4504. https://doi.org/10.3390/nu14214504
Chicago/Turabian StyleYin, Zhaoyang, Ye Gong, Yongtao Liu, Yuliang He, Chuanwei Yao, Wenxing Huang, Kangsen Mai, and Qinghui Ai. 2022. "Fucoidan Improves Growth, Digestive Tract Maturation, and Gut Microbiota in Large Yellow Croaker (Larimichthys crocea) Larvae" Nutrients 14, no. 21: 4504. https://doi.org/10.3390/nu14214504
APA StyleYin, Z., Gong, Y., Liu, Y., He, Y., Yao, C., Huang, W., Mai, K., & Ai, Q. (2022). Fucoidan Improves Growth, Digestive Tract Maturation, and Gut Microbiota in Large Yellow Croaker (Larimichthys crocea) Larvae. Nutrients, 14(21), 4504. https://doi.org/10.3390/nu14214504