Is the Association between Age and Fertility Problems Modified by Diet Quality? Findings from a National Study of Reproductive Age Women in Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Exposure Variables
2.4. Outcome Variable
2.5. Confounding Variables
2.6. Statistical Analysis
3. Results
3.1. Participants
3.2. Effect Modification of Diet on Age and Fertility Problems
3.3. Dietary Change and Fertility Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; et al. The International Glossary on Infertility and Fertility Care, 2017. Fertil. Steril. 2017, 108, 393–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ombelet, W.; Cooke, I.; Dyer, S.; Serour, G.; Devroey, P. Infertility and the provision of infertility medical services in developing countries. Hum. Reprod. Update 2008, 14, 605–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Gong, T.-T.; Jiang, Y.-T.; Zhang, S.; Zhao, Y.-H.; Wu, Q.-J. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990–2017: Results from a global burden of disease study, 2017. Aging 2019, 11, 10952–10991. [Google Scholar] [CrossRef] [PubMed]
- Global Buren of Disease (GBD). Population and fertility by age and sex for 195 countries and territories, 1950–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1995–2051. [Google Scholar] [CrossRef] [Green Version]
- Loxton, D.; Lucke, J. Reproductive Health: Findings from the Australian Longitudinal Study on Women’s Health; Final Report Prepared for the Australian Government Department of Health and Ageing; Australian Government: Canberra, Australia, June 2009.
- Mena, G.P.; Mielke, G.I.; Brown, W.J. Do physical activity, sitting time and body mass index affect fertility over a 15-year period in women? Data from a large population-based cohort study. Hum. Reprod. 2020, 35, 676–683. [Google Scholar] [CrossRef]
- Hart, R.J. Physiological Aspects of Female Fertility: Role of the Environment, Modern Lifestyle, and Genetics. Physiol. Rev. 2016, 96, 873–909. [Google Scholar] [CrossRef]
- Johnson, J.A.; Tough, S. Delayed child-bearing. J. Obstet. Gynaecol. Can. 2012, 34, 80–93. [Google Scholar] [CrossRef]
- Eijkemans, M.J.; van Poppel, F.; Habbema, D.F.; Smith, K.R.; Leridon, H.; te Velde, E.R. Too old to have children? Lessons from natural fertility populations. Hum. Reprod. 2014, 29, 1304–1312. [Google Scholar] [CrossRef] [Green Version]
- Australian Institute of Family Studies 2020. Australian Government. Births in Australia. Number of Births and Fertility Rate. 2020. Available online: https://aifs.gov.au/facts-and-figures/births-in-australia (accessed on 7 March 2022).
- Hammarberg, K.; Clarke, V.E. Reasons for delaying childbearing—A survey of women aged over 35 years seeking assisted reproductive technology. Aust. Fam. Physician 2005, 34, 187–188, 206. [Google Scholar]
- Broughton, D.E.; Moley, K.H. Obesity and female infertility: Potential mediators of obesity’s impact. Fertil. Steril. 2017, 107, 840–847. [Google Scholar] [CrossRef] [Green Version]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef]
- Legro, R.S. Preconception weight loss in the obese patient: Overhyped or underutilized? Fertil. Steril. 2022, 118, 431–433. [Google Scholar] [CrossRef] [PubMed]
- Fontana, R.; Della Torre, S. The Deep Correlation between Energy Metabolism and Reproduction: A View on the Effects of Nutrition for Women Fertility. Nutrients 2016, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Gaskins, A.J.; Chavarro, J.E. Diet and fertility: A review. Am. J. Obstet. Gynecol. 2018, 218, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Grieger, J.A. Preconception diet, fertility, and later health in pregnancy. Curr. Opin. Obstet. Gynecol. 2020, 32, 227–232. [Google Scholar] [CrossRef]
- Chavarro, J.E.; Rich-Edwards, J.W.; Rosner, B.A.; Willett, W.C. Diet and Lifestyle in the Prevention of Ovulatory Disorder Infertility. Obstet. Gynecol. 2007, 110, 1050–1058. [Google Scholar] [CrossRef] [Green Version]
- Karayiannis, D.; Kontogianni, M.D.; Mendorou, C.; Mastrominas, M.; Yiannakouris, N. Adherence to the Mediterranean diet and IVF success rate among non-obese women attempting fertility. Hum. Reprod. 2018, 33, 494–502. [Google Scholar] [CrossRef]
- Vujkovic, M.; de Vries, J.H.; Lindemans, J.; Macklon, N.S.; van der Spek, P.J.; Steegers, E.A.; Steegers-Theunissen, R.P. The preconception Mediterranean dietary pattern in couples undergoing in vitro fertilization/intracytoplasmic sperm injection treatment increases the chance of pregnancy. Fertil. Steril. 2010, 94, 2096–2101. [Google Scholar] [CrossRef]
- Grieger, J.A.; Grzeskowiak, L.E.; Bianco-Miotto, T.; Jankovic-Karasoulos, T.; Moran, L.J.; Wilson, R.L.; Leemaqz, S.Y.; Poston, L.; McCowan, L.; Kenny, L.C.; et al. Pre-pregnancy fast food and fruit intake is associated with time to pregnancy. Hum. Reprod. 2018, 33, 1063–1070. [Google Scholar] [CrossRef] [Green Version]
- Hatch, E.E.; Wesselink, A.K.; Hahn, K.A.; Michiel, J.J.; Mikkelsen, E.M.; Sorensen, H.T.; Rothman, K.J.; Wise, L.A. Intake of Sugar-sweetened Beverages and Fecundability in a North American Preconception Cohort. Epidemiology 2018, 29, 369–378. [Google Scholar] [CrossRef]
- Habibi, N.; Livingstone, K.M.; Edwards, S.; Grieger, J.A. Do Older Women of Reproductive Age Have Better Diet Quality than Younger Women of Reproductive Age? Nutrients 2021, 13, 3830. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.D.; Schoenaker, D.A.J.M.; Mihrshahi, S.; Dobson, A.J. How do women’s diets compare with the new Australian dietary guidelines? Public Health Nutr. 2015, 18, 218–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ALSWH. Australian Longitudinal Study on Women’s Health. Available online: http://www.alswh.org.au (accessed on 21 March 2021).
- Dobson, A.J.; Hockey, R.; Brown, W.J.; Byles, J.E.; Loxton, D.J.; McLaughlin, D.; Tooth, L.R.; Mishra, G.D. Cohort Profile Update: Australian Longitudinal Study on Women’s Health. Int. J. Epidemiol. 2015, 44, 1547–1547f. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, L.J.; Ranasinha, S.; Zoungas, S.; McNaughton, S.A.; Brown, W.J.; Teede, H.J. The contribution of diet, physical activity and sedentary behaviour to body mass index in women with and without polycystic ovary syndrome. Hum. Reprod. 2013, 28, 2276–2283. [Google Scholar] [CrossRef] [Green Version]
- Collins, C.E.; Young, A.F.; Hodge, A. Diet quality is associated with higher nutrient intake and self-rated health in mid-aged women. J. Am. Coll. Nutr. 2008, 27, 146–157. [Google Scholar] [CrossRef]
- Hodge, A.; Patterson, A.J.; Brown, W.J.; Ireland, P.; Giles, G. The Anti Cancer Council of Victoria FFQ: Relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation. Aust. N. Z. J. Public Health 2000, 24, 576–583. [Google Scholar] [CrossRef]
- Australian Government; National Health and Medical Research Council (NHMRC). Australian Guidelines to Reduce Health Risks from Drinking Alcohol. Available online: https://www.nhmrc.gov.au/health-advice/alcohol (accessed on 19 September 2021).
- Awoke, M.A.; Earnest, A.; Joham, A.E.; Hodge, A.M.; Teede, H.J.; Brown, W.J.; Moran, L.J. Weight gain and lifestyle factors in women with and without polycystic ovary syndrome. Hum. Reprod. 2021, 37, 129–141. [Google Scholar] [CrossRef]
- Knol, M.J.; VanderWeele, T.J. Recommendations for presenting analyses of effect modification and interaction. Int. J. Epidemiol. 2012, 41, 514–520. [Google Scholar] [CrossRef] [Green Version]
- VanderWeele, T.J. On the distinction between interaction and effect modification. Epidemiology 2009, 20, 863–871. [Google Scholar] [CrossRef]
- Knol, M.J.; van der Tweel, I.; Grobbee, D.E.; Numans, M.E.; Geerlings, M.I. Estimating interaction on an additive scale between continuous determinants in a logistic regression model. Int. J. Epidemiol. 2007, 36, 1111–1118. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.L.; Rollo, M.E.; Schumacher, T.; Collins, C.E. Diet Quality Scores of Australian Adults Who Have Completed the Healthy Eating Quiz. Nutrients 2017, 9, 880. [Google Scholar] [CrossRef] [PubMed]
- Eggert, J.; Theobald, H.; Engfeldt, P. Effects of alcohol consumption on female fertility during an 18-year period. Fertil Steril 2004, 81, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Mac Dougall, K.; Beyene, Y.; Nachtigall, R.D. Age shock: Misperceptions of the impact of age on fertility before and after IVF in women who conceived after age 40. Hum. Reprod. 2013, 28, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.; Sayami, J.T.; Thapa, P.; Sayami, M.; Kandel, B.P.; Banjara, M.R. Dietary intake patterns and nutritional status of women of reproductive age in Nepal: Findings from a health survey. Arch. Public Health 2016, 74, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padmadas, S.S.; Dias, J.G.; Willekens, F.J. Disentangling women’s responses on complex dietary intake patterns from an Indian cross-sectional survey: A latent class analysis. Public Health Nutr. 2006, 9, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Opie, R.S.; Ball, K.; Abbott, G.; Crawford, D.; Teychenne, M.; McNaughton, S.A. Adherence to the Australian dietary guidelines and development of depressive symptoms at 5 years follow-up amongst women in the READI cohort study. Nutr. J. 2020, 19, 30. [Google Scholar] [CrossRef] [Green Version]
- Widaman, A.M.; Witbracht, M.G.; Forester, S.M.; Laugero, K.D.; Keim, N.L. Chronic Stress Is Associated with Indicators of Diet Quality in Habitual Breakfast Skippers. J. Acad. Nutr. Diet. 2016, 116, 1776–1784. [Google Scholar] [CrossRef]
- Nkrumah, I.; North, M.; Kothe, E.; Chai, T.L.; Pirotta, S.; Lim, S.; Hill, B. The Relationship Between Pregnancy Intentions and Diet or Physical Activity Behaviors in the Preconception and Antenatal Periods: A Systematic Review and Meta-Analysis. J. Midwifery Womens Health 2020, 65, 660–680. [Google Scholar] [CrossRef]
- Malek, L.; Umberger, W.J.; Makrides, M.; ShaoJia, Z. Predicting healthy eating intention and adherence to dietary recommendations during pregnancy in Australia using the Theory of Planned Behaviour. Appetite 2017, 116, 431–441. [Google Scholar] [CrossRef]
Survey 3 | Survey 5 | |||
---|---|---|---|---|
No fertility Problems (n = 2799) | Fertility Problems (n = 588) | No Fertility Problems (n = 4293) | Fertility Problems (n = 1321) | |
Age (years), Median (IQR) | 28.1 (26.9–29.2) | 28.3 (26.8–29.2) | 33.9 (32.6–35.1) | 33.8 (32.6–35.0) |
Range | 24.6–30.8 | 24.9–30.8 | 30.4–37.1 | 31.0–37.3 |
Age (categorical), n (%) | ||||
Younger | 1404 (50.2) | 280 (47.6) | 2111 (49.2) | 666 (50.4) |
Older | 1395 (49.8) | 308 (52.4) | 2182 (50.8) | 655 (49.6) |
ARFS, Mean (SD) | 28.9 (9.3) | 27.8 (9.1) | 32.5 (8.8) | 31.5 (8.7) |
Median (IQR) | 29 (22–35) | 28 (22–34) | 33 (27–39) | 32 (25–38) |
Range | 4–60 | 4–51 | 3–63 | 2–55 |
ARFS (categorical), n (%) | ||||
Good-quality diet (≥39) | 440 (15.7) | 76 (12.9) | 1097 (25.6) | 288 (21.8) |
Poor-quality diet (<39) | 2359 (84.3) | 512 (87.1) | 3196 (74.4) | 1033 (78.2) |
BMI kg/m2, Mean (SD) | 25.5 (5.4) | 27.0 (6.8) | 25.6 (5.5) | 26.6 (6.4) |
Missing | 646 (23.1) | 120 (20.4) | 81 (1.9) | 24 (1.8) |
Energy (kJ/day), Mean (SD) | 7397.0 (2413.0) | 7269.6 (2510.1) | 6985.0 (2272.7) | 6918.7 (2270.9) |
Alcohol grams/day, Mean (SD) | 6.0 (10.0) | 6.1 (10.4) | 7.6 (11.8) | 7.5 (11.8) |
Metabolic minutes of exercise, Median (IQR) | 550 (200–999) | 533.8 (200–1099) | 450 (150–999) | 400 (117–999) |
Time spent sitting (mins/week), Median (IQR) | 2040 (1380–2880) | 2340 (1680–3360) | 1950 (1260–2760) | 2220 (1500–3120) |
SEIFA, Mean (SD) | 977.4 (84.6) | 970.2 (81.8) | 1006.1 (89.8) | 1005.6 (91.8) |
Irregular periods last 12 months, n (%) | ||||
No | 2078 (74.2) | 290 (49.3) | 3068 (71.5) | 730 (55.3) |
Rarely | 222 (7.9) | 49 (8.3) | 494 (11.5) | 168 (12.7) |
Sometimes | 271 (9.7) | 76 (12.9) | 436 (10.2) | 166 (12.6) |
Often | 218 (7.8) | 171 (29.1) | 218 (5.1) | 234 (17.7) |
Missing | 10 (0.4) | 2 (0.3) | 77 (1.8) | 23 (1.7) |
Polycystic Ovary Syndrome, n (%) | 66 (2.4) | 110 (18.7) | 87 (2.0) | 225 (17.0) |
Missing | 604 (21.6) | 112 (19.0) | 363 (8.5) | 96 (7.3) |
Use vitamins/minerals, n (%) | 3621 (84.3) | 1164 (88.1) | ||
Missing | 3 (0.1) | 2 (0.2) | ||
Ever smoked, n (%) | 660 (23.6) | 171 (29.1) | 562 (13.1) | 161 (12.2) |
Missing | 4 (0.1) | 2 (0.3) | 3 (0.1) | 1 (0.1) |
Country of birth, n (%) | ||||
Australian born | 2465 (88.1) | 521 (88.6) | 3751 (87.4) | 1151 (87.1) |
Other English-speaking background | 85 (3.0) | 19 (3.2) | 150 (3.5) | 46 (3.5) |
Europe | 16 (0.6) | 2 (0.3) | 30 (0.7) | 10 (0.8) |
Asia | 29 (1.0) | 5 (0.9) | 54 (1.3) | 11 (0.8) |
Other | 19 (0.7) | 2 (0.3) | 32 (0.7) | 3 (0.2) |
Missing | 185 (6.6) | 39 (6.6) | 276 (6.4) | 100 (7.6) |
Highest education, n (%) | ||||
Up to year 12 | 1199 (42.8) | 241 (41.0) | 984 (22.9) | 313 (23.7) |
Trade or certificate/diploma | 773 (27.6) | 199 (33.8) | 1131 (26.3) | 383 (29.0) |
University or higher university degree | 728 (26.0) | 128 (21.8) | 2070 (48.2) | 602 (45.6) |
Missing | 99 (3.5) | 20 (3.4) | 108 (2.5) | 23 (1.7) |
Household income updated, n (%) | ||||
No income | 13 (0.5) | 1 (0.2) | 11 (0.3) | 6 (0.5) |
AUD 1–AUD 36,999 annually | 711 (25.4) | 146 (24.8) | 328 (8.0) | 79 (6.2) |
AUD 37,000–AUD 51,999 annually | 591 (21.1) | 103 (17.5) | 372 (9.1) | 121 (9.5) |
AUD 52,000 to AUD 77,999 annually | 613 (21.9) | 139 (23.6) | 775 (19.0) | 249 (19.6) |
AUD 78,000 or more annually | 502 (17.9) | 124 (21.1) | ||
AUD 78,000–AUD 103,000 annually | 926 (22.7) | 275 (21.7) | ||
AUD 104,000 or more annually | 1417 (34.7) | 459 (36.2) | ||
Don’t know/don’t want to answer | 202 (7.2) | 44 (7.5) | 256 (6.3) | 79 (6.2) |
Missing | 167 (6.0) | 31 (5.3) | 562 (13.1) | 161 (12.2) |
Younger Age Group | Older Age Group | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Good-Quality Diet | Poor-Quality Diet | Good-Quality Diet | Poor-Quality Diet | ||||||||
Cases/Women | 37/252 | 243/1432 | 39/264 | 269/1439 | |||||||
RR (95% CI) | RR (95% CI) | p-Value | RR (95% CI) | p-Value | RR (95% CI) | p-Value | RERI (95% CI) | p-Value | Int * (95% CI) | p-Value | |
Model 1 | Reference | 1.21 (0.97, 1.51) | 0.090 | 1.09 (0.94, 1.26) | 0.257 | 1.32 (1.01, 1.26) | 0.043 | ||||
Model 2 | Reference | 1.25 (0.89, 1.76) | 0.193 | 1.25 (0.81, 1.95) | 0.318 | 1.43 (1.02, 2.01) | 0.039 | −0.08 (−0.70, 0.55) | 0.811 | 0.91 (0.57, 1.46) | 0.699 |
Model 3 | Reference | 1.30 (0.87, 1.94) | 0.198 | 1.34 (0.79, 2.25) | 0.275 | 1.59 (1.07, 2.37) | 0.023 | −0.04 (−0.82, 0.73) | 0.910 | 0.92 (0.53, 1.59) | 0.755 |
Model 4 | Reference | 1.44 (0.95, 2.18) | 0.089 | 1.69 (0.98, 2.91) | 0.058 | 1.74 (1.15, 2.62) | 0.009 | −0.39 (−1.40, 0.62) | 0.449 | 0.72 (0.40, 1.27) | 0.254 |
Younger Age Group | Older Age Group | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Good-Quality Diet | Poor-Quality Diet | Good-Quality Diet | Poor-Quality Diet | ||||||||
Cases/Women | 150/706 | 516/2071 | 138/679 | 517/2158 | |||||||
RR (95% CI) | RR (95% CI) | p-Value | RR (95% CI) | p-Value | RR (95% CI) | p-Value | RERI (95% CI) | p-Value | Int * (95% CI) | p-Value | |
Model 1 | Reference | 1.18 (1.05, 1.32) | 0.006 | 0.96 (0.87, 1.06) | 0.402 | 1.13 (0.97, 1.31) | 0.108 | ||||
Model 2 | Reference | 1.06 (0.89, 1.26) | 0.492 | 0.94 (0.76, 1.18) | 0.613 | 1.09 (0.91, 1.29) | 0.355 | 0.08 (−0.17, 0.32) | 0.528 | 1.08 (0.84, 1.39) | 0.536 |
Model 3 | Reference | 1.06 (0.89, 1.26) | 0.505 | 0.95 (0.76, 1.18) | 0.623 | 1.08 (0.90, 1.29) | 0.406 | 0.07 (−0.15, 0.30) | 0.538 | 1.07 (0.84, 1.38) | 0.577 |
Model 4 | Reference | 1.07 (0.90, 1.27) | 0.440 | 0.96 (0.77, 1.20) | 0.735 | 1.10 (0.92, 1.31) | 0.290 | 0.07 (−0.17, 0.31) | 0.580 | 1.07 (0.83, 1.37) | 0.608 |
No Fertility Problems at Survey 5 | Fertility Problems at Survey 5 | Total | |
---|---|---|---|
(n = 1671) | (n = 498) | (n = 2169) | |
Diet quality change | |||
No change (healthy) | 153 (9.2) | 44 (8.8) | 197 (9.1) |
No change (unhealthy) | 1204 (72.1) | 359 (72.1) | 1563 (72.1) |
Diet quality improved | 207 (12.4) | 67 (13.5) | 274 (12.6) |
Diet quality worsened | 107 (6.4) | 28 (5.6) | 135 (6.2) |
UNADJUSTED | MODEL 1 | MODEL 2 | MODEL 3 | |||||
---|---|---|---|---|---|---|---|---|
Diet Quality Change Category | RR (95% CI) | p | RR (95% CI) | p | RR (95% CI) | p | RR (95% CI) | p |
No change (healthy) | Reference | 0.468 * | Reference | 0.254 * | Reference | 0.262 * | Reference | 0.413 * |
No change (unhealthy) | 0.92 (0.76, 1.13) | 0.444 | 0.98 (0.77, 1.25) | 0.884 | 0.98 (0.77, 1.25) | 0.856 | 1.01 (0.79, 1.29) | 0.955 |
Diet quality improved | 0.98 (0.77, 1.24) | 0.847 | 1.16 (0.87, 1.56) | 0.313 | 1.15 (0.85, 1.54) | 0.360 | 1.15 (0.85, 1.55) | 0.379 |
Diet quality worsened | 0.81 (0.61, 1.08) | 0.153 | 0.86 (0.60, 1.22) | 0.390 | 0.84 (0.58, 1.21) | 0.345 | 0.86 (0.59, 1.25) | 0.426 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habibi, N.; Hall, K.A.; Moran, L.J.; Haag, D.G.; Hodge, A.M.; Grieger, J.A. Is the Association between Age and Fertility Problems Modified by Diet Quality? Findings from a National Study of Reproductive Age Women in Australia. Nutrients 2022, 14, 4355. https://doi.org/10.3390/nu14204355
Habibi N, Hall KA, Moran LJ, Haag DG, Hodge AM, Grieger JA. Is the Association between Age and Fertility Problems Modified by Diet Quality? Findings from a National Study of Reproductive Age Women in Australia. Nutrients. 2022; 14(20):4355. https://doi.org/10.3390/nu14204355
Chicago/Turabian StyleHabibi, Nahal, Kelly A. Hall, Lisa J. Moran, Dandara G. Haag, Allison M. Hodge, and Jessica A. Grieger. 2022. "Is the Association between Age and Fertility Problems Modified by Diet Quality? Findings from a National Study of Reproductive Age Women in Australia" Nutrients 14, no. 20: 4355. https://doi.org/10.3390/nu14204355
APA StyleHabibi, N., Hall, K. A., Moran, L. J., Haag, D. G., Hodge, A. M., & Grieger, J. A. (2022). Is the Association between Age and Fertility Problems Modified by Diet Quality? Findings from a National Study of Reproductive Age Women in Australia. Nutrients, 14(20), 4355. https://doi.org/10.3390/nu14204355