Hearing Function and Nutritional Status in Aviation Pilots from Spain Exposed to High Acoustic Damage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol
2.2. Statistical Analysis
3. Results
3.1. Sample Description
3.2. Biochemical Parameters
3.3. Hearing Loss and Nutritional Status
4. Discussion
5. Strengths and Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Money, A.; Carder, M.; Turner, S.; Hussey, L.; Agius, R. Surveillance for work-related audiological disease in the UK: 1998–2006. Occupational medicine. Oxf. Engl. 2011, 61, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Tak, S.; Davis, R.R.; Calvert, G.M. Exposure to hazardous workplace noise and use of hearing protection devices among US workers--NHANES, 1999–2004. Am. J. Ind. Med. 2009, 52, 358–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhumika, N.; Prabhu, G.; Ferreira, A.; Kulkarni, M. Noise-induced hearing loss still a problem in shipbuilders: A cross-sectional study in goa, India. Ann. Med. Health Sci. Res. 2013, 3, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Deafness and Hearing Loss. Available online: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss (accessed on 1 May 2022).
- Masterson, E.A.; Tak, S.; Themann, C.L.; Wall, D.K.; Groenewold, M.R.; Deddens, J.A.; Calvert, G.M. Prevalence of hearing loss in the United States by industry. Am. J. Ind. Med. 2013, 56, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Roth, T.N.; Hanebuth, D.; Probst, R. Prevalence of age-related hearing loss in Europe: A review. Eur. Arch. Oto-Rhino-Laryngol. 2011, 268, 1101–1107. [Google Scholar] [CrossRef] [Green Version]
- Dror, A.A.; Avraham, K.B. Hearing loss: Mechanisms revealed by genetics and cell biology. Annu. Rev. Genet. 2009, 43, 411–437. [Google Scholar] [CrossRef] [Green Version]
- Hong, O.; Lusk, S.L.; Ronis, D.L. Ethnic differences in predictors of hearing protection behavior between Black and White workers. Res. Theory Nurs. Pract. 2005, 19, 63–76. [Google Scholar] [CrossRef]
- Leensen, M.C.; van Duivenbooden, J.C.; Dreschler, W.A. A retrospective analysis of noise-induced hearing loss in the Dutch construction industry. Int. Arch. Occup. Environ. Health 2011, 84, 577–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, H.; Marion, S.; Teschke, K. The impact of hearing conservation programs on incidence of noise-induced hearing loss in Canadian workers. Am. J. Ind. Med. 2008, 51, 923–931. [Google Scholar] [CrossRef]
- Puga, A.M.; Pajares, M.A.; Varela-Moreiras, G.; Partearroyo, T. Interplay between Nutrition and Hearing Loss: State of Art. Nutrients 2018, 11, 35. [Google Scholar] [CrossRef]
- Cheslock, M.; De Jesus, O. Presbycusis. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Karli, R.; Gül, A.; Uğur, B. Effect of vitamin B12 deficiency on otoacoustic emissions. Acta Otorhinolaryngol. Ital. 2013, 33, 243–247. [Google Scholar] [PubMed]
- Lasisi, A.O.; Fehintola, F.A.; Yusuf, O.B. Age-related hearing loss, vitamin B12, and folate in the elderly. Otolaryngol.--Head Neck Surg. 2010, 143, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Gok, U.; Halifeoglu, I.; Canatan, H.; Yildiz, M.; Gursu, M.F.; Gur, B. Comparative analysis of serum homocysteine, folic acid and Vitamin B12 levels in patients with noise-induced hearing loss. Auris Nasus Larynx 2004, 31, 19–22. [Google Scholar] [CrossRef]
- De Luca, C.; Deeva, I.; Mariani, S.; Maiani, G.; Stancato, A.; Korkina, L. Monitoring antioxidant defenses and free radical production in space-flight, aviation and railway engine operators, for the prevention and treatment of oxidative stress, immunological impairment, and pre-mature cell aging. Toxicol. Ind. Health 2009, 25, 259–267. [Google Scholar] [CrossRef]
- Irvine, D.; Davies, D.M. The mortality of British Airways pilots, 1966–1989: A proportional mortality study. Aviat. Space Environ. Med. 1992, 63, 276–279. [Google Scholar]
- Lindgren, T.; Wieslander, G.; Dammström, B.G.; Norbäck, D. Tinnitus among airline pilots: Prevalence and effects of age, flight experience, and other noise. Aviat. Space Environ. Med. 2009, 80, 112–116. [Google Scholar] [CrossRef]
- Axelsson, A.; Sandh, A. Tinnitus in noise-induced hearing loss. Br. J. Audiol. 1985, 19, 271–276. [Google Scholar] [CrossRef]
- Real Decreto 286/2006, de 10 de marzo, sobre la protección de la salud y la seguridad de los trabajadores contra los riesgos relacionados con la exposición al ruido. B.O.E. 2006, 60, 9842–9848.
- Atalay, H.; Babakurban, S.; Aydin, E. Evaluation of Hearing Loss in Pilots. Turk Otolarengoloji Ars./Turk. Arch. Otolaryngol. 2016, 53, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Pujol, R. Journey into the World of Hearing. Available online: http://www.cochlea.eu/es (accessed on 1 May 2022).
- Houston, D.K.; Johnson, M.A.; Nozza, R.J.; Gunter, E.W.; Shea, K.J.; Cutler, G.M.; Edmonds, J.T. Age-related hearing loss, vitamin B-12, and folate in elderly women. Am. J. Clin. Nutr. 1999, 69, 564–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadoni, G.; Agostino, S.; Scipione, S.; Galli, J. Low serum folate levels: A risk factor for sudden sensorineural hearing loss? Acta Oto-Laryngol. 2004, 124, 608–611. [Google Scholar] [CrossRef] [PubMed]
- Durga, J.; Verhoef, P.; Anteunis, L.J.; Schouten, E.; Kok, F.J. Effects of folic acid supplementation on hearing in older adults: A randomized, controlled trial. Ann. Intern. Med. 2007, 146, 1–9. [Google Scholar] [CrossRef]
- Jacques, P.F.; Selhub, J.; Bostom, A.G.; Wilson, P.W.; Rosenberg, I.H. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. New Engl. J. Med. 1999, 340, 1449–1454. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Vega, R.; Murillo-Cuesta, S.; Partearroyo, T.; Varela-Moreiras, G.; Varela-Nieto, I.; Pajares, M.A. Long-Term Dietary Folate Deficiency Accelerates Progressive Hearing Loss on CBA/Ca Mice. Front. Aging Neurosci. 2016, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Vega, R.; Garrido, F.; Partearroyo, T.; Cediel, R.; Zeisel, S.H.; Martínez-Álvarez, C.; Varela-Moreiras, G.; Varela-Nieto, I.; Pajares, M.A. Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism. FASEB J. 2015, 29, 418–432. [Google Scholar] [CrossRef] [Green Version]
- Curhan, S.G.; Eavey, R.D.; Wang, M.; Rimm, E.B.; Curhan, G.C. Fish and fatty acid consumption and the risk of hearing loss in women. Am. J. Clin. Nutr. 2014, 100, 1371–1377. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Vega, R.; Partearroyo, T.; Vallecillo, N.; Varela-Moreiras, G.; Pajares, M.A.; Varela-Nieto, I. Long-term omega-3 fatty acid supplementation prevents expression changes in cochlear homocysteine metabolism and ameliorates progressive hearing loss in C57BL/6J mice. J. Nutr. Biochem. 2015, 26, 1424–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asociación Española de Audiología (AEDA). Normalización de las pruebas audiológicas (I): La audiometría tonal liminar. Auditio 2002, 1, 15–18. [Google Scholar]
- Salvador Castell, G.; Serra-Majem, L.; Ribas-Barba, L. What and how much do we eat? 24-hour dietary recall method. Nutr. Hosp. 2015, 31 (Suppl. 3), 46–48. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Guidance of the EU Menu methodology. EFSA J. 2014, 12, 3944. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority (EFSA). Dietary Reference Valuesfor nutrients. Summ. Rep. FSA Support. Publ. 2017, 14, e15121. [Google Scholar] [CrossRef] [Green Version]
- Aranceta Bartrina, J.; Arija Val, V.V.; Maíz Aldalur, E.; Martínez de Victoria Muñoz, E.; Ortega Anta, R.M.; Pérez-Rodrigo, C.; Quiles Izquierdo, J.; Rodríguez Martín, A.; Román Viñas, B.; Salvador Castell, G.; et al. Dietary Guidelines for the Spanish population (SENC, diciembre 2016); the new graphic icon of healthy food. Nutr. Hosp. 2016, 33, 1–48. [Google Scholar] [CrossRef]
- Real Decreto 1856/2009, de 4 de diciembre, de procedimiento para el reconocimiento, declaración y calificación del grado de discapacidad, y por el que se modifica el Real Decreto 1971/1999, de 23 de diciembre. B.O.E. 2009, 311, 110413-15.
- Nair, S.; Kashyap, R.C. Prevalence of Noise Induced Hearing Loss in Indian Air Force Personnel. Med. J. Armed Forces India 2009, 65, 247–251. [Google Scholar] [CrossRef]
- Al-Omari, A.S.; Al-Khalaf, H.M.; Hussien, N.F.M. Association of Flying Time with Hearing Loss in Military Pilots. Saudi J. Med. Med. Sci. 2018, 6, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Partearroyo, T.; Murillo-Cuesta, S.; Vallecillo, N.; Bermúdez-Muñoz, J.M.; Rodríguez-de la Rosa, L.; Mandruzzato, G.; Celaya, A.M.; Zeisel, S.H.; Pajares, M.A.; Varela-Moreiras, G.; et al. Betaine-homocysteine S-methyltransferase deficiency causes increased susceptibility to noise-induced hearing loss associated with plasma hyperhomocysteinemia. FASEB J. 2019, 33, 5942–5956. [Google Scholar] [CrossRef] [PubMed]
- Copp, E.K.; Green, N.R. Dietary intake and blood lipid profile survey of fighter pilots at Tyndall Air Force Base. Aviat. Space Environ. Med. 1991, 62, 837–841. [Google Scholar] [PubMed]
- 4Stark, A.H.; Weis, N.; Chapnik, L.; Barenboim, E.; Reifen, R. Dietary intake of pilots in the Israeli Air Force. Mil. Med. 2008, 173, 780–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daskalopoulos, C.; Palermos, J.; Zoga, T.; Stavropoulos, A.; KYRIAKOS, K. Correlation of life-style and dietary concomitants of Greek pilots with serum analytes. AGARD Nutr. Metab. Disord. Lifestyle Aircrew 4 p(SEE N 93-32240 12-54) 1993. [Google Scholar]
- Ruiz, E.; Ávila, J.M.; Valero, T.; del Pozo, S.; Rodriguez, P.; Aranceta-Bartrina, J.; Gil, Á.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; et al. Energy Intake, Profile, and Dietary Sources in the Spanish Population: Findings of the ANIBES Study. Nutrients 2015, 7, 4739–4762. [Google Scholar] [CrossRef] [PubMed]
- Taleghani, E.A.; Sotoudeh, G.; Amini, K.; Araghi, M.H.; Mohammadi, B.; Yeganeh, H.S. Comparison of Antioxidant Status between Pilots and Non-flight Staff of the Army Force: Pilots May Need More Vitamin C. Biomed. Environ. Sci. 2014, 27, 371–377. [Google Scholar] [CrossRef]
- Tang, D.; Tran, Y.; Shekhawat, G.S.; Burlutsky, G.; Mitchell, P.; Gopinath, B. Dietary Fibre Intake and the 10-Year Incidence of Tinnitus in Older Adults. Nutrients 2021, 13, 4126. [Google Scholar] [CrossRef]
- Gratton, M.A.; Schulte, B.A. Alterations in microvasculature are associated with atrophy of the stria vascularis in quiet-aged gerbils. Hear. Res. 1995, 82, 44–52. [Google Scholar] [CrossRef]
- Partearroyo, T.; Samaniego-Vaesken Mª, L.; Ruiz, E.; Varela-Moreiras, G. Assessment of micronutrients intakes in the Spanish population: A review of the findings from the ANIBES study. Nutr. Hosp. 2018, 35, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Celik, M.; Koyuncu, İ. A Comprehensive Study of Oxidative Stress in Tinnitus Patients. Indian J. Otolaryngol. Head Neck Surg. 2018, 70, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Petridou, A.I.; Zagora, E.T.; Petridis, P.; Korres, G.S.; Gazouli, M.; Xenelis, I.; Kyrodimos, E.; Kontothanasi, G.; Kaliora, A.C. The Effect of Antioxidant Supplementation in Patients with Tinnitus and Normal Hearing or Hearing Loss: A Randomized, Double-Blind, Placebo Controlled Trial. Nutrients 2019, 11, 3037. [Google Scholar] [CrossRef] [Green Version]
- Prasad, K.N.; Bondy, S.C. Increased oxidative stress, inflammation, and glutamate: Potential preventive and therapeutic targets for hearing disorders. Mech. Ageing Dev. 2020, 185, 111191. [Google Scholar] [CrossRef]
- Le Prell, C.G.; Yamashita, D.; Minami, S.B.; Yamasoba, T.; Miller, J.M. Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear. Res. 2007, 226, 22–43. [Google Scholar] [CrossRef]
Total Sample (n = 235) | <40 Years Old (n = 96) | ≥40 Years Old (n = 139) | |
---|---|---|---|
Age (years) | 41.4 ± 11.1 | 30.0 ± 5.2 *** | 49.2 ± 6.3 |
Flight hours (h) | 4848.9 ± 5390.0 | 1324.8 ± 1270.5 *** | 7282.8 ± 5791.9 |
Flying experience (years) | 17.5 ± 10.8 | 7.8 ± 4.2 *** | 24.3 ± 8.6 |
Total Sample (n = 235) | <40 Years Old (n = 96) | ≥40 Years Old (n = 139) | |
---|---|---|---|
Water intake (mL) | 1779.4 ± 490.7 | 1834.9 ± 432.9 | 1741.0 ± 524.9 |
Energy (kcal) | 2042.8 ± 449.7 | 2184.8 ± 454.3 *** | 1944.8 ± 420.8 |
Proteins (g) | 88.8 ± 23.1 | 95.2 ± 23.7 *** | 84.4 ± 21.7 |
Carbohydrates (g) | 186.6 ± 53.3 | 204.5 ± 51.9 *** | 174.3 ± 50.8 |
Fats (g) | 95.9 ± 25.9 | 100.7 ± 27.3 * | 92.5 ± 24.6 |
SFA (g) | 28.4 ± 9.3 | 30.6 ± 10.3 ** | 26.9 ± 8.2 |
MUFA (g) | 44.2 ± 12.8 | 46.5 ± 13.0 | 43.7 ± 12.5 |
PUFA (g) | 13.9 ± 5.7 | 14.2 ± 5.5 | 13.9 ± 5.8 |
ω-3 FA (g) | 2.2 ± 1.2 | 2.2 ± 1.2 | 2.2 ± 1.2 |
Alcohol (g) | 4.7 ± 7.0 | 4.7 ± 7.5 | 4.7 ± 6.7 |
Fiber (g) | 22.8 ± 8.0 | 23.7 ± 8.3 | 22.2 ± 7.8 |
Total Sample (n = 235) | <40 Years Old (n = 96) | ≥40 Years Old (n = 139) | |
---|---|---|---|
Proteins (%) | 17.5 ± 3.3 | 17.5 ± 3.2 | 17.5 ± 3.5 |
Carbohydrates (%) | 36.5 ± 6.7 | 37.6 ± 6.2 * | 35.7 ± 6.9 |
Fats (%) | 42.2 ± 6.1 | 41.3 ± 5.5 * | 42.9 ± 6.5 |
Alcohol (%) | 1.6 ± 2.4 | 1.5 ± 2.5 | 1.6 ± 2.3 |
SFA (%) | 12.4 ± 2.3 | 12.4 ± 2.5 | 12.4 ± 2.4 |
MUFA (%) | 19.8 ± 3.9 | 19.2 ± 3.6 * | 20.3 ± 4.1 |
PUFA (%) | 6.2 ± 2.2 | 5.8 ± 1.8 * | 6.4 ± 2.4 |
PUFA/SFA | 0.5 ± 0.3 | 0.5 ± 0.2 | 0.6 ± 0.3 |
(PUFA + MUFA)/SFA | 2.2 ± 0.6 | 2.1 ± 0.6 | 2.2 ± 0.7 |
Total Sample (n = 235) | <40 Years Old (n = 96) | ≥40 Years Old (n = 139) | |
---|---|---|---|
Vitamin B1 (mg) | 1.4 ± 0.5 | 1.5 ± 0.6 * | 1.3 ± 0.4 |
Vitamin B2 (mg) | 1.7 ± 0.6 | 1.8 ± 0.6 ** | 1.6 ± 0.5 |
Vitamin B3 (mg) | 37.5 ± 9.9 | 39.8 ± 10.3 ** | 35.9 ± 9.5 |
Vitamin B5 (mg) | 5.3 ± 1.5 | 5.8 ± 1.6 *** | 5.0 ± 1.4 |
Vitamin B6 (µg) | 2.2 ± 0.7 | 2.4 ± 0.7 *** | 2.1 ± 0.6 |
Vitamin B8 (µg) | 29.7 ± 13.5 | 31.9 ± 13.6 * | 28.2 ± 13.2 |
Folates (vitamin B9) (µg) | 280.3 ± 103.6 | 302.6 ± 105.3 * | 264.9 ± 99.9 |
Vitamin B12 (µg) | 5.8 ± 4.2 | 5.4 ± 2.2 | 6.1 ± 5.1 |
Vitamin C (mg) | 120.8 ± 55.5 | 120.1 ± 53.3 | 121.3 ± 57.1 |
Vitamin A (µg) | 1180.8 ± 2510.8 | 980.8 ± 400.5 | 1318.9 ± 3245.3 |
Vitamin D (µg) | 3.3 ± 3.2 | 3.7 ± 3.5 | 3.1 ± 3.1 |
Vitamin E (mg) | 8.9 ± 4.1 | 9.1 ± 3.7 | 8.9 ± 4.4 |
Vitamin K (µg) | 156.5 ± 95.9 | 172.8 ± 100.9 * | 145.2 ± 90.9 |
Total Sample (n = 235) | <40 Years Old (n = 96) | ≥40 Years Old (n = 139) | |
---|---|---|---|
Calcium (mg) | 800.1 ± 296.9 | 902.3 ± 352.2 *** | 729.5 ± 227.7 |
Iron (mg) | 14.7 ± 4.5 | 15.6 ± 5.0 * | 14.0 ± 3.9 |
Iodine (µg) | 98.9 ± 49.7 | 104.9 ± 54.9 *** | 94.9 ± 45.6 |
Magnesium (mg) | 300.6 ± 92.3 | 320.6 ± 86.8 * | 286.9 ± 93.7 |
Zinc (mg) | 9.7 ± 2.7 | 10.6 ± 2.7 | 9.1 ± 2.5 |
Selenium (µg) | 109.8 ± 40.2 | 114.8 ± 39.9 | 106.3 ± 40.3 |
Potassium (mg) | 3007.3 ± 829.2 | 3094.9 ± 749.2 | 2946.8 ± 877.8 |
Phosphorus (mg) | 1437.9 ± 383.9 | 1558.6 ± 410.6 *** | 1354.5 ± 341.6 |
Total Sample (n = 235) | <40 Years Old (n = 96) | ≥40 Years Old (n = 139) | Reference Values | |
---|---|---|---|---|
Hcy (µmol/L) | 11.9 ± 3.1 | 10.9 ± 2.7 *** | 12.6 ± 3.2 | 4.4–10.8 |
Vitamin B12 (pg/mL) | 470.7 ± 176.9 | 505.3 ± 182.9 * | 446.7 ± 169.3 | 279.0–996.0 |
Folates (ng/mL) | 6.9 ± 3.3 | 6.7 ± 3.2 | 7.0 ± 3.4 | 6.0–20.0 |
25-Hydroxyvitamin D (ng/mL) | 28.9 ± 8.2 | 28.4 ± 6.7 | 29.4 ± 9.1 | 30.0–100.0 |
Variables | β | SEM | 95% CI | p-Value |
---|---|---|---|---|
Age (years) | 0.588 | 0.006 | 0.056 to 0.080 | ≤0.001 |
Constant | 0.262 | −2.074 to −1.042 | ≤0.001 |
Variables | β | SEM | 95% CI | p-Value |
---|---|---|---|---|
Flight hours (h) | 0.283 | 0.000 | 0.000 to 0.000 | ≤0.001 |
Constant | 0.108 | 0.711 to 1.138 | ≤0.001 |
Variables | β | SEM | 95%CI | p-Value |
---|---|---|---|---|
Flight hours (h) | 0.246 | 0.000 | 0.000 to 0.000 | ≤0.001 |
Serum Folate (ng/mL) | −0.143 | 0.026 | −0.107 to −0.005 | 0.032 |
Serum Hcy (µmol/L) | 0.227 | 0.028 | 0.039 to 0.150 | ≤0.001 |
Constant | 0.432 | −0.622 to 1.081 | 0.596 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais-Moreno, C.; Montero-Bravo, A.M.; Puga, A.M.; de Lourdes Samaniego-Vaesken, M.; Ruperto, M.; Marco Mendez, R.; Vicente-Arche, Á.; Varela-Moreiras, G.; Partearroyo, T. Hearing Function and Nutritional Status in Aviation Pilots from Spain Exposed to High Acoustic Damage. Nutrients 2022, 14, 4321. https://doi.org/10.3390/nu14204321
Morais-Moreno C, Montero-Bravo AM, Puga AM, de Lourdes Samaniego-Vaesken M, Ruperto M, Marco Mendez R, Vicente-Arche Á, Varela-Moreiras G, Partearroyo T. Hearing Function and Nutritional Status in Aviation Pilots from Spain Exposed to High Acoustic Damage. Nutrients. 2022; 14(20):4321. https://doi.org/10.3390/nu14204321
Chicago/Turabian StyleMorais-Moreno, Carmen, Ana M. Montero-Bravo, Ana M. Puga, Mª de Lourdes Samaniego-Vaesken, Mar Ruperto, Rocío Marco Mendez, Álvaro Vicente-Arche, Gregorio Varela-Moreiras, and Teresa Partearroyo. 2022. "Hearing Function and Nutritional Status in Aviation Pilots from Spain Exposed to High Acoustic Damage" Nutrients 14, no. 20: 4321. https://doi.org/10.3390/nu14204321
APA StyleMorais-Moreno, C., Montero-Bravo, A. M., Puga, A. M., de Lourdes Samaniego-Vaesken, M., Ruperto, M., Marco Mendez, R., Vicente-Arche, Á., Varela-Moreiras, G., & Partearroyo, T. (2022). Hearing Function and Nutritional Status in Aviation Pilots from Spain Exposed to High Acoustic Damage. Nutrients, 14(20), 4321. https://doi.org/10.3390/nu14204321