Evaluating a Model of Added Sugar Intake Based on Amino Acid Carbon Isotope Ratios in a Controlled Feeding Study of U.S. Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design
2.3. Biomarker Measures: Amino Acid Carbon Isotope Ratios
2.4. Statistical Analyses
3. Results
3.1. Study Participants and Diets
3.2. Biomarker Correlations with Diet
3.3. Model Selection for Added Sugar Intake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Alternative Model Selection Approaches and Comparison
Run Number | AS Variance | Forward Selection | LASSO | Random Forest |
---|---|---|---|---|
1 | 1348.08 | 1119.92 | 1107.32 | 1196.25 |
2 | 1355.08 | 992.72 | 1242.55 | 1241.18 |
3 | 675.59 | 996.41 | 808.36 | 819.78 |
4 | 914.26 | 1387.35 | 914.88 | 802.74 |
5 | 817.77 | 695.8 | 798.21 | 756.23 |
6 | 1015.65 | 1499.37 | 1141.52 | 1221.88 |
7 | 1453.29 | 1344.77 | 1331.30 | 1365.71 |
8 | 1333.65 | 1093.81 | 1246.11 | 1186.58 |
9 | 1797.72 | 1575.05 | 1676.61 | 1602.48 |
10 | 1366.57 | 1433.14 | 1417.67 | 1539.98 |
Average | 1207.766 | 1213.834 | 1168.454 | 1173.282 |
References
- Rippe, J.M.; Angelopoulos, T.J. Added sugars and risk factors for obesity, diabetes and heart disease. Int. J. Obes. 2016, 40, S22–S27. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, L.; Imamura, F.; Brage, S.; Griffin, S.J.; Wareham, N.J.; Forouhi, N.G. Intakes and sources of dietary sugars and their association with metabolic and inflammatory markers. Clin. Nutr. 2018, 37, 1313–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Zhang, Z.; Gregg, E.W.; Flanders, W.D.; Merritt, R.; Hu, F.B. Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern. Med. 2014, 174, 516–524. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, M.; Ballon, A.; Weber, K.S.; Norat, T.; Aune, D.; Schwingshackl, L.; Schlesinger, S. Role of diet in type 2 diabetes incidence: Umbrella review of meta-analyses of prospective observational studies. BMJ 2019, 366, l2368. [Google Scholar] [CrossRef] [Green Version]
- Tasevska, N.; Midthune, D.; Tinker, L.F.; Potischman, N.; Lampe, J.W.; Neuhouser, M.L.; Beasley, J.M.; van Horn, L.; Prentice, R.L.; Kipnis, V. Use of a urinary sugars biomarker to assess measurement error in self-reported sugars intake in the nutrition and physical activity assessment study (NPAAS). Cancer Epidemiol. Biomark. Prev. 2014, 23, 2874–2883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebert, J.R.; Clemow, L.; Pbert, L.; Ockene, I.S.; Ockene, J.K. Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Int. J. Epidemiol. 1995, 24, 389–398. [Google Scholar] [CrossRef]
- Freedman, L.S.; Midthune, D.; Carroll, R.J.; Tasevska, N.; Schatzkin, A.; Mares, J.; Tinker, L.; Potischman, N.; Kipnis, V. Using regression calibration equations that combine self-reported intake and biomarker measures to obtain unbiased estimates and more powerful tests of dietary associations. Am. J. Epidemiol. 2011, 174, 1238–1245. [Google Scholar] [CrossRef]
- Gormley, I.C.; Bai, Y.; Brennan, L. Combining biomarker and self-reported dietary intake data: A review of the state of the art and an exposition of concepts. Stat. Methods Med. Res. 2020, 29, 617–635. [Google Scholar] [CrossRef]
- Tasevska, N.; Midthune, D.; Potischman, N.; Subar, A.F.; Cross, A.J.; Bingham, S.A.; Schatzkin, A.; Kipnis, V. Use of the predictive sugars biomarker to evaluate self-reported total sugars intake in the Observing Protein and Energy Nutrition (OPEN) study. Cancer Epidemiol. Biomark. Prev. 2011, 20, 490–500. [Google Scholar] [CrossRef] [Green Version]
- Beasley, J.M.; Jung, M.; Tasevska, N.; Wong, W.W.; Siega-Riz, A.M.; Sotres-Alvarez, D.; Gellman, M.D.; Kizer, J.R.; Shaw, P.A.; Stamler, J.; et al. Biomarker-predicted sugars intake compared with self-reported measures in US Hispanics/Latinos: Results from the HCHS/SOL SOLNAS study. Public Health Nutr. 2016, 19, 3256–3264. [Google Scholar] [CrossRef]
- Tasevska, N.; Pettinger, M.; Kipnis, V.; Midthune, D.; Tinker, L.F.; Potischman, N.; Neuhouser, M.L.; Beasley, J.M.; van Horn, L.; Howard, B.V.; et al. Associations of biomarker-calibrated intake of total sugars with the risk of type 2 diabetes and cardiovascular disease in the Women’s Health Initiative Observational Study. Am. J. Epidemiol. 2018, 187, 2126–2135. [Google Scholar] [CrossRef]
- O’Brien, D.M. Stable isotope ratios as biomarkers of diet for health research. Annu. Rev. Nutr. 2015, 35, 565–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahren, A.H.; Saudek, C.; Yeung, E.H.; Kao, W.H.; Kraft, R.A.; Caballero, B. An isotopic method for quantifying sweeteners derived from corn and sugar cane. Am. J. Clin. Nutr. 2006, 84, 1380–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterhouse, C.; Keilson, J. The contribution of glucose to alanine metabolism in man. J. Lab. Clin. Med. 1978, 92, 803–812. [Google Scholar] [PubMed]
- Perriello, G.; Jorde, R.; Nurjhan, N.; Stumvoll, M.; Dailey, G.; Jenssen, T.; Bier, D.M.; Gerich, J.E. Estimation of glucose-alanine-lactate-glutamine cycles in postabsorptive humans: Role of skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 1995, 269, E443–E450. [Google Scholar] [CrossRef]
- Choy, K.; Nash, S.H.; Kristal, A.R.; Hopkins, S.; Boyer, B.B.; O’Brien, D.M. The carbon isotope ratio of alanine in red blood cells is a new candidate biomarker of sugar-sweetened beverage intake. J. Nutr. 2013, 143, 878–884. [Google Scholar] [CrossRef] [Green Version]
- Yun, H.Y.; Tinker, L.F.; Neuhouser, M.L.; Schoeller, D.A.; Mossavar-Rahmani, Y.; Snetselaar, L.G.; van Horn, L.V.; Eaton, C.B.; Prentice, R.L.; Lampe, J.W.; et al. The carbon isotope ratios of serum amino acids in combination with participant characteristics can be used to estimate added sugar intake in a controlled feeding study of US postmenopausal women. J. Nutr. 2020, 150, 2764–2771. [Google Scholar] [CrossRef]
- Johnson, J.J.; Shaw, P.A.; Oh, E.J.; Wooller, M.J.; Merriman, S.; Yun, H.Y.; Larsen, T.; Krakoff, J.; Votruba, S.B.; O’Brien, D.M. The carbon isotope ratios of nonessential amino acids identify sugar-sweetened beverage (SSB) consumers in a 12-wk inpatient feeding study of 32 men with varying SSB and meat exposures. Am. J. Clin. Nutr. 2021, 113, 1256–1264. [Google Scholar] [CrossRef]
- Jahren, A.H.; Kraft, R.A. Carbon and nitrogen stable isotopes in fast food: Signatures of corn and confinement. Proc. Natl. Acad. Sci. USA 2008, 105, 17855–17860. [Google Scholar] [CrossRef] [Green Version]
- Nash, S.H.; Kristal, A.R.; Bersamin, A.; Hopkins, S.E.; Boyer, B.B.; O’Brien, D.M. Carbon and nitrogen stable isotope ratios predict intake of sweeteners in a Yup’ik study population. J. Nutr. 2013, 143, 161–165. [Google Scholar] [CrossRef]
- Tasevska, N.; Sagi-Kiss, V.; Palma-Duran, S.A.; Barrett, B.; Chaloux, M.; Commins, J.; O’Brien, D.M.; Johnston, C.S.; Midthune, D.; Kipinis, V.; et al. Investigating the performance of 24-h urinary sucrose and fructose as a biomarker of total sugars intake in US participants–a controlled feeding study. Am. J. Clin. Nutr. 2021, 114, 721–730. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, D.M.; Sagi-Kiss, V.; Palma-Duran, S.A.; Cunningham, C.; Barrett, B.; Johnston, C.S.; Midthune, D.; Kipnis, V.; Freedman, L.S.; Tasevska, N. An evaluation of the serum carbon isotope ratio as a candidate predictive biomarker for dietary animal protein ratio (animal protein/total protein) in a 15-d controlled feeding study of US adults. Am. J. Clin. Nutr. 2022, 115, 1134–1143. [Google Scholar] [CrossRef] [PubMed]
- Schakel, S.F.; Buzzard, M.; Gebhardt, S.E. Procedures for estimating nutrient values for food composition databases. J. Food Compos. Anal. 1997, 10, 102–114. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, D.M.; Boggs, C.L.; Fogel, M.L. The amino acids used in reproduction by butterflies: A comparative study of dietary sources using compound-specific stable isotope analysis. Physiol. Biochem. Zool. 2005, 78, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Venables, W.; Ripley, B. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Harrell, F.E., Jr.; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Yun, H.Y.; Lampe, J.W.; Tinker, L.F.; Neuhouser, M.L.; Beresford, S.A.A.; Niles, K.R.; Mossavar-Rahmani, Y.; Snetselaar, L.G.; van Horn, L.; Prentice, R.L.; et al. Serum nitrogen and carbon stable isotope ratios meet biomarker criteria for fish and animal protein intake in a controlled feeding study of a Women’s Health Initiative Cohort. J. Nutr. 2018, 148, 1931–1937. [Google Scholar] [CrossRef] [Green Version]
- Nash, S.H.; Bersamin, A.; Kristal, A.R.; Hopkins, S.E.; Church, R.S.; Pasker, R.L.; Luick, B.R.; Mohatt, G.V.; Boyer, B.B.; O’Brien, D.M. Stable nitrogen and carbon isotope ratios indicate traditional and market food intake in an indigenous circumpolar population. J. Nutr. 2012, 142, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Malik, V.S.; Hu, F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat. Rev. Endocrinol. 2022, 18, 205–218. [Google Scholar] [CrossRef]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Harrell, F.E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, 2nd ed.; Springer International Publishing: New York, NY, USA, 2015. [Google Scholar]
- Muli, S.; Goerdten, J.; Oluwagbemigun, K.; Floegel, A.; Schmid, M.; Nöthlings, U. A systematic review of metabolomic biomarkers for the intake of sugar-sweetened and low-calorie sweetened beverages. Metabolites 2021, 11, 546. [Google Scholar] [CrossRef] [PubMed]
- Votruba, S.B.; Shaw, P.A.; Oh, E.J.; Venti, C.A.; Bonfiglio, S.; Krakoff, J.; O’Brien, D.M. Associations of plasma, RBCs, and hair carbon and nitrogen isotope ratios with fish, meat, and sugar-sweetened beverage intake in a 12-wk inpatient feeding study. Am. J. Clin. Nutr. 2019, 110, 1306–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davy, B.M.; Jahren, A.H.; Hedrick, V.E.; Comber, D.L. Association of δ13C in fingerstick blood with added-sugar and sugar-sweetened beverage intake. J. Am. Diet. Assoc. 2011, 111, 874–878. [Google Scholar] [CrossRef] [Green Version]
- Davy, B.M.; Jahren, A.H.; Hedrick, V.E.; You, W.; Zoellner, J.M. Influence of an intervention targeting a reduction in sugary beverage intake on the delta13C sugar intake biomarker in a predominantly obese, health-disparate sample. Public Health Nutr. 2016, 20, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedrick, V.E.; Zoellner, J.M.; Jahren, A.H.; Woodford, N.A.; Bostic, J.N.; Davy, B.M. A dual-carbon-and-nitrogen stable isotope ratio model is not superior to a single-carbon stable isotope ratio model for predicting added sugar intake in Southwest Virginian adults. J. Nutr. 2015, 145, 1362–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedrick, V.E.; Halliday, T.M.; Davy, B.M.; Zoellner, J.M.; Jahren, A.H. A single-carbon stable isotope ratio model prediction equation can estimate self-reported added sugars intake in an adult population living in Southwest Virginia. Nutrients 2021, 13, 3842. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, H.; McNulty, B.A.; Nugent, A.P.; Walton, J.; Flynn, A.; Gibney, M.J.; Brennan, L. A metabolomics approach to the identification of biomarkers of sugar-sweetened beverage intake. Am. J. Clin. Nutr. 2015, 101, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Morenga, L.T.; Kruimer, D.; Mclean, R.; Sabadel, A.J.M.; van Hale, R.; Tatin, X.; Hindmarsh, J.H.; Mann, J.; Merriman, T. Associations between sugars intakes and urinary sugars excretion and carbon stable isotope ratios in red blood cells as biomarkers of sugars intake in a predominantly Māori population. Front. Nutr. 2021, 8, 637267. [Google Scholar] [CrossRef]
- Dragsted, L.O.; Gao, Q.; Scalbert, A.; Vergères, G.; Kolehmainen, M.; Manach, C.; Brennan, L.; Afman, L.A.; Wishart, D.S.; Andres Lacueva, C.; et al. Validation of biomarkers of food intake—Critical assessment of candidate biomarkers. Genes Nutr. 2018, 13, 14. [Google Scholar] [CrossRef]
Characteristic | Values 1 |
---|---|
Sex, female, n | 54 |
Age, years | 38.0 (29.5, 52.5) |
Race/ethnicity 2, non-Hispanic White, n | 77 |
BMI, kg/m2 | 26.9 (23.8, 30.2) |
Body weight, kg | 76.9 (67.7, 87.4) |
Physical activity, active MET-h/d 3 | 12.4 (8.1, 15.8) |
Nutrient intakes | |
Energy, kcal/day | 2516 (2279, 3020) |
Carbohydrate, g/day | 282.1 (238.8, 327.7) |
Total sugar, g/day | 110.0 (92.9, 135.7) |
Added sugar, g/day | 65.2 (44.7, 81.4) |
Added sugar, % energy | 9.5 (7.2, 12.4) |
Added sugar to total sugars ratio (ASR) | 0.59 (0.48, 0.68) |
Protein, g/day | 103.7 (91.3, 128.6) |
Animal protein, g/day | 66.9 (55.2, 87.9) |
Animal protein to total protein ratio (APR) | 0.66 (0.59, 0.70) |
Food intakes | |
Sugar-sweetened beverage (SSB), servings/day 4 | 0.42 (0.11, 0.97) |
0 servings/day, n | 15 |
<0.5 servings/day, n | 42 |
≥0.5 servings/day, n | 42 |
Corn, g/day 5 | 25.3 (13.5, 36.8) |
Red meat, g/day 6 | 60.2 (27.3, 110.9) |
Poultry, g/day 6 | 88.0 (44.6, 124.5) |
Eggs, g/day | 38.6 (21.9, 74.2) |
Dairy, servings/day 7 | 1.6 (1.2, 2.3) |
Fish/seafood, g/day | 10.4 (0.0, 25.0) |
0 g/day, n | 37 |
<32 g/day, n | 42 |
≥32 g/day, n | 20 |
Amino acid CIR, δ13C, ‰ 8 | |
Alanine (Ala) | −20.1 (−21.0, −19.4) |
Aspartic acid/asparagine (Asx) | −18.4 (−19.1, −17.4) |
Glutamic acid/glutamine (Glx) | −16.5 (−17.2, −15.8) |
Glycine (Gly) | −9.9 (−11.3, −7.7) |
Histidine (His) | −13.7 (−14.7, −12.6) |
Isoleucine (Ile) | −19.7 (−20.7, −18.6) |
Leucine (Leu) | −27.4 (−27.9, −26.9) |
Lysine (Lys) | −18.2 (−18.9, −17.4) |
Methionine (Met) | −26.1 (−26.9, −25.3) |
Phenylalanine (Phe) | −25.4 (−25.7, −24.9) |
Proline (Pro) | −16.3 (−16.9, −15.6) |
Serine (Ser) | −10.0 (−10.9, −8.9) |
Threonine (Thr) | −3.4 (−4.3, −2.7) |
Tyrosine (Tyr) | −24.8 (−25.4, −24.2) |
Valine (Val) | −24.3 (−25.0, −23.7) |
CIRAla | CIRAsx | CIRGlx | CIRGly | CIRPro | CIRSer | |
---|---|---|---|---|---|---|
Nutrient intakes 2 | ||||||
Carbohydrate, g/day | −0.05 | −0.14 | −0.17 | −0.11 | −0.38 *4 | −0.09 |
Total sugar, g/day | 0.10 | −0.01 | −0.05 | −0.07 | −0.15 | −0.02 |
Total carbohydrate minus total sugar, g/day | −0.16 | −0.21 | −0.22 | −0.11 | −0.47 ** | −0.12 |
Added sugar, g/day | 0.32 * | 0.22 | 0.15 | 0.07 | 0.04 | 0.16 |
Total sugar minus added sugar, g/day | −0.34 * | −0.39 * | −0.38 * | −0.27 | −0.37 * | −0.31 * |
ASR | 0.40 ** | 0.33 * | 0.30 * | 0.19 | 0.23 | 0.25 |
Protein, g/day | −0.02 | 0.20 | 0.19 | −0.01 | −0.09 | 0.21 |
Animal protein, g/day | 0.25 | 0.54 ** | 0.58 ** | 0.13 | 0.40 ** | 0.47 ** |
Plant protein, g/day | −0.46 ** | −0.48 ** | −0.52 ** | −0.28 | −0.61 ** | −0.39 * |
APR | 0.48 ** | 0.70 ** | 0.75 ** | 0.30 * | 0.61 ** | 0.62 ** |
Food intakes 3 | ||||||
Corn, g/day | 0.27 | 0.26 | 0.29 | −0.01 | 0.08 | 0.16 |
Red meat, g/day 4 | 0.37 * | 0.68 ** | 0.63 ** | 0.15 | 0.34 * | 0.45 ** |
Poultry, g/day 4 | 0.12 | 0.29 | 0.32 * | 0.10 | 0.21 | 0.32 * |
Eggs, g/day | −0.02 | 0.22 | 0.25 | 0.00 | 0.04 | 0.20 |
Dairy, servings/day 5 | 0.20 | 0.18 | 0.25 | 0.11 | 0.11 | 0.28 |
CIRHis | CIRIle | CIRLeu | CIRLys | CIRMet | CIRPhe | CIRThr | CIRTyr | CIRVal | |
---|---|---|---|---|---|---|---|---|---|
Nutrient intakes 2 | |||||||||
Carbohydrate, g/day | −0.11 | −0.10 | −0.31 *4 | −0.16 | −0.09 | −0.30 * | −0.16 | −0.21 | −0.28 |
Total sugar, g/day | −0.13 | −0.02 | −0.18 | −0.03 | 0.06 | −0.14 | −0.02 | −0.12 | −0.14 |
Total carbohydrate minus total sugar, g/day | −0.07 | −0.15 | −0.33 * | −0.23 | −0.19 | −0.35 * | −0.23 | −0.22 | −0.31 * |
Added sugar, g/day | 0.01 | 0.10 | 0.01 | 0.18 | 0.19 | 0.08 | 0.15 | 0.07 | 0.07 |
Total sugar minus added sugar, g/day | −0.29 * | −0.20 | −0.40 ** | −0.37 * | −0.20 | −0.43 ** | −0.29 * | −0.38 * | −0.42 ** |
ASR | 0.17 | 0.20 | 0.21 | 0.37 * | 0.25 | 0.29 | 0.29 | 0.26 | 0.29 |
Protein, g/day | 0.24 | −0.02 | 0.23 | 0.09 | 0.10 | 0.11 | 0.03 | 0.21 | 0.15 |
Animal protein, g/day | 0.51 ** | 0.14 | 0.71 ** | 0.57 ** | 0.50 ** | 0.64 ** | 0.42 ** | 0.65 ** | 0.64 ** |
Plant protein, g/day | −0.24 | −0.25 | −0.54 ** | −0.52 ** | −0.44 ** | −0.65 ** | −0.49 ** | −0.51 ** | −0.58 ** |
APR | 0.51 ** | 0.28 * | 0.84 ** | 0.70 ** | 0.62 ** | 0.85 ** | 0.59 ** | 0.79 ** | 0.81 ** |
Food intakes 3 | |||||||||
Corn, g/day | 0.19 | −0.07 | 0.22 | 0.26 | 0.30* | 0.25 | 0.13 | 0.19 | 0.17 |
Red meat, g/day 4 | 0.51 ** | 0.18 | 0.65 ** | 0.63 ** | 0.52 ** | 0.60 ** | 0.41 ** | 0.64 ** | 0.58 ** |
Poultry, g/day 4 | 0.26 | 0.19 | 0.43 ** | 0.18 | 0.15 | 0.36 * | 0.20 | 0.36 * | 0.38 * |
Eggs, g/day | 0.31 * | −0.06 | 0.27 | 0.08 | 0.00 | 0.20 | 0.01 | 0.27 | 0.21 |
Dairy, servings/day 5 | 0.02 | −0.06 | 0.12 | 0.28 * | 0.38 * | 0.22 | 0.26 | 0.17 | 0.19 |
Model Term | β | SE | p-Value | R2 | Adjusted R2 |
---|---|---|---|---|---|
Intercept | 60.43 | 83.48 | 0.471 | 0.38 | 0.32 |
Body weight | 0.47 | 0.24 | 0.054 | ||
Sex | −11.77 | 6.49 | 0.073 | ||
CIRAla | 22.94 | 3.94 | <0.001 | ||
CIRVal | −18.03 | 5.16 | 0.001 | ||
CIRLys | 12.55 | 4.44 | 0.006 | ||
CIRGlx | −15.88 | 5.99 | 0.009 | ||
CIRSer | 6.89 | 2.77 | 0.015 | ||
CIRGly | −5.00 | 2.04 | 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, J.J.; Sági-Kiss, V.; Palma-Duran, S.A.; Commins, J.; Chaloux, M.; Barrett, B.; Midthune, D.; Kipnis, V.; Freedman, L.S.; Tasevska, N.; et al. Evaluating a Model of Added Sugar Intake Based on Amino Acid Carbon Isotope Ratios in a Controlled Feeding Study of U.S. Adults. Nutrients 2022, 14, 4308. https://doi.org/10.3390/nu14204308
Johnson JJ, Sági-Kiss V, Palma-Duran SA, Commins J, Chaloux M, Barrett B, Midthune D, Kipnis V, Freedman LS, Tasevska N, et al. Evaluating a Model of Added Sugar Intake Based on Amino Acid Carbon Isotope Ratios in a Controlled Feeding Study of U.S. Adults. Nutrients. 2022; 14(20):4308. https://doi.org/10.3390/nu14204308
Chicago/Turabian StyleJohnson, Jessica J., Virág Sági-Kiss, Susana A. Palma-Duran, John Commins, Matthew Chaloux, Brian Barrett, Douglas Midthune, Victor Kipnis, Laurence S. Freedman, Natasha Tasevska, and et al. 2022. "Evaluating a Model of Added Sugar Intake Based on Amino Acid Carbon Isotope Ratios in a Controlled Feeding Study of U.S. Adults" Nutrients 14, no. 20: 4308. https://doi.org/10.3390/nu14204308
APA StyleJohnson, J. J., Sági-Kiss, V., Palma-Duran, S. A., Commins, J., Chaloux, M., Barrett, B., Midthune, D., Kipnis, V., Freedman, L. S., Tasevska, N., & O’Brien, D. M. (2022). Evaluating a Model of Added Sugar Intake Based on Amino Acid Carbon Isotope Ratios in a Controlled Feeding Study of U.S. Adults. Nutrients, 14(20), 4308. https://doi.org/10.3390/nu14204308