Alterations in Fecal Short-Chain Fatty Acids after Bariatric Surgery: Relationship with Dietary Intake and Weight Loss
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort
2.2. Clinical Standard of Care
2.3. Fecal Sampling
2.4. Short-Chain Fatty Acid Analysis
2.5. Dietary Recall
2.6. Demographics
2.7. Statistics
3. Results
3.1. Cohort Details
3.2. Short-Chain Fatty Acid Differences, Pre- and Post-Surgery
3.3. Age, Weight, and Diet Correlation with SCFA Levels
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. The National Health and Nutrition Examination Survery. 2017–2018. Available online: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/overview.aspx?BeginYear=2017 (accessed on 8 September 2022).
- Yerevanian, A.; Soukas, A.A. Metformin: Mechanisms in Human Obesity and Weight Loss. Curr. Obes. Rep. 2019, 8, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Astrup, A.; Rossner, S.; Van Gaal, L.; Rissanen, A.; Niskanen, L.; Al Hakim, M.; Madsen, J.; Rasmussen, M.F.; Lean, M.E.; Group, N.N.S. Effects of liraglutide in the treatment of obesity: A randomised, double-blind, placebo-controlled study. Lancet 2009, 374, 1606–1616. [Google Scholar] [CrossRef]
- O’Neil, P.M.; Birkenfeld, A.L.; McGowan, B.; Mosenzon, O.; Pedersen, S.D.; Wharton, S.; Carson, C.G.; Jepsen, C.H.; Kabisch, M.; Wilding, J.P.H. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: A randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet 2018, 392, 637–649. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, R.; Smith, J.; Avgenackis, E.; Jones, D.; Nau, P. A Comparison of the Effects of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy on Body Mass Composition as Measured by Air Displacement Plethysmography. Obes. Surg. 2020, 30, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, T.; Guidozzi, N.; Welbourn, R.; Ahmed, A.R.; Markar, S.R. Association of bariatric surgery with all-cause mortality and incidence of obesity-related disease at a population level: A systematic review and meta-analysis. PLoS Med. 2020, 17, e1003206. [Google Scholar] [CrossRef]
- Buchwald, H.; Buchwald, J.N. Metabolic (Bariatric and Nonbariatric) Surgery for Type 2 Diabetes: A Personal Perspective Review. Diabetes Care 2019, 42, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Samson, R.; Ayinapudi, K.; Le Jemtel, T.H.; Oparil, S. Obesity, Hypertension, and Bariatric Surgery. Curr. Hypertens. Rep. 2020, 22, 46. [Google Scholar] [CrossRef]
- Ming, X.; Yang, M.; Chen, X. Metabolic bariatric surgery as a treatment for obstructive sleep apnea hypopnea syndrome: Review of the literature and potential mechanisms. Surg. Obes. Relat. Dis. 2021, 17, 215–220. [Google Scholar] [CrossRef]
- Leonetti, F.; Campanile, F.C.; Coccia, F.; Capoccia, D.; Alessandroni, L.; Puzziello, A.; Coluzzi, I.; Silecchia, G. Very low-carbohydrate ketogenic diet before bariatric surgery: Prospective evaluation of a sequential diet. Obes. Surg. 2015, 25, 64–71. [Google Scholar] [CrossRef]
- Mulla, C.M.; Middelbeek, R.J.W.; Patti, M.E. Mechanisms of weight loss and improved metabolism following bariatric surgery. Ann. N. Y. Acad. Sci. 2018, 1411, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Nannipieri, M.; Baldi, S.; Mari, A.; Colligiani, D.; Guarino, D.; Camastra, S.; Barsotti, E.; Berta, R.; Moriconi, D.; Bellini, R.; et al. Roux-en-Y gastric bypass and sleeve gastrectomy: Mechanisms of diabetes remission and role of gut hormones. J. Clin. Endocrinol. Metab. 2013, 98, 4391–4399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derogar, M.; Hull, M.A.; Kant, P.; Ostlund, M.; Lu, Y.; Lagergren, J. Increased risk of colorectal cancer after obesity surgery. Ann. Surg. 2013, 258, 983–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, W.; Konings, P.; Hull, M.A.; Adami, H.O.; Mattsson, F.; Lagergren, J. Colorectal Cancer Prognosis Following Obesity Surgery in a Population-Based Cohort Study. Obes. Surg. 2017, 27, 1233–1239. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, H.; Markar, S.R.; Askari, A.; Faiz, O.; Hull, M.; Purkayastha, S.; Moller, H.; Lagergren, J. Obesity surgery and risk of cancer. Br. J. Surg. 2018, 105, 1650–1657. [Google Scholar] [CrossRef]
- Aravani, A.; Downing, A.; Thomas, J.D.; Lagergren, J.; Morris, E.J.A.; Hull, M.A. Obesity surgery and risk of colorectal and other obesity-related cancers: An English population-based cohort study. Cancer Epidemiol. 2018, 53, 99–104. [Google Scholar] [CrossRef]
- Almazeedi, S.; El-Abd, R.; Al-Khamis, A.; Albatineh, A.N.; Al-Sabah, S. Role of bariatric surgery in reducing the risk of colorectal cancer: A meta-analysis. Br. J. Surg. 2020, 107, 348–354. [Google Scholar] [CrossRef]
- Gomes, S.D.; Oliveira, C.S.; Azevedo-Silva, J.; Casanova, M.R.; Barreto, J.; Pereira, H.; Chaves, S.R.; Rodrigues, L.R.; Casal, M.; Corte-Real, M.; et al. The Role of Diet Related Short-Chain Fatty Acids in Colorectal Cancer Metabolism and Survival: Prevention and Therapeutic Implications. Curr. Med. Chem. 2020, 27, 4087–4108. [Google Scholar] [CrossRef] [PubMed]
- Scharlau, D.; Borowicki, A.; Habermann, N.; Hofmann, T.; Klenow, S.; Miene, C.; Munjal, U.; Stein, K.; Glei, M. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat. Res. 2009, 682, 39–53. [Google Scholar] [CrossRef]
- Farup, P.G.; Valeur, J. Changes in Faecal Short-Chain Fatty Acids after Weight-Loss Interventions in Subjects with Morbid Obesity. Nutrients 2020, 12, 802. [Google Scholar] [CrossRef]
- Doukhanine, E.V.; Bouevitch, A.; Brown, A.; LaVecchia, J.G.; Merino, C.; Pozza, L.M. GUT Stabilizes the Microbiome Profile at Ambient Temperature for 60 Days and during Transport; DNA Genotek: Ottawa, ON, Canada, 2016. [Google Scholar]
- The Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program. Available online: https://www.facs.org/quality-programs/mbsaqip (accessed on 18 August 2022).
- American Society for Metabolic and Bariatric Surgery. Available online: https://asmbs.org/ (accessed on 18 August 2022).
- Belenguer, A.; Duncan, S.H.; Calder, A.G.; Holtrop, G.; Louis, P.; Lobley, G.E.; Flint, H.J. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl. Environ. Microbiol. 2006, 72, 3593–3599. [Google Scholar] [CrossRef] [Green Version]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Blaak, E.E.; Canfora, E.E.; Theis, S.; Frost, G.; Groen, A.K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; van Harsselaar, J.; et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 2020, 11, 411–455. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int. J. Biol. Macromol. 2013, 61, 1–6. [Google Scholar] [CrossRef]
- Deehan, E.C.; Yang, C.; Perez-Munoz, M.E.; Nguyen, N.K.; Cheng, C.C.; Triador, L.; Zhang, Z.; Bakal, J.A.; Walter, J. Precision Microbiome Modulation with Discrete Dietary Fiber Structures Directs Short-Chain Fatty Acid Production. Cell Host Microbe 2020, 27, 389–404.e386. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.A.; Bendsen, N.T.; Tremblay, A.; Astrup, A. Effect of proteins from different sources on body composition. Nutr. Metab. Cardiovasc Dis 2011, 21 (Suppl. 2), B16–B31. [Google Scholar] [CrossRef]
- Liu, X.; Blouin, J.M.; Santacruz, A.; Lan, A.; Andriamihaja, M.; Wilkanowicz, S.; Benetti, P.H.; Tome, D.; Sanz, Y.; Blachier, F.; et al. High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: The increased luminal bulk connection. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 307, G459–G470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, K.R.; Blue, M.N.M.; Trexler, E.T.; Ahuja, S.; Smith-Ryan, A.E. Provision of ready-to-drink protein following bariatric surgery: An evaluation of tolerability, body composition, and metabolic rate. Clin. Nutr. 2021, 40, 2319–2327. [Google Scholar] [CrossRef]
- Partula, V.; Deschasaux, M.; Druesne-Pecollo, N.; Latino-Martel, P.; Desmetz, E.; Chazelas, E.; Kesse-Guyot, E.; Julia, C.; Fezeu, L.K.; Galan, P.; et al. Associations between consumption of dietary fibers and the risk of cardiovascular diseases, cancers, type 2 diabetes, and mortality in the prospective NutriNet-Sante cohort. Am. J. Clin. Nutr. 2020, 112, 195–207. [Google Scholar] [CrossRef]
- Jansen, M.C.; Bueno-de-Mesquita, H.B.; Buzina, R.; Fidanza, F.; Menotti, A.; Blackburn, H.; Nissinen, A.M.; Kok, F.J.; Kromhout, D. Dietary fiber and plant foods in relation to colorectal cancer mortality: The Seven Countries Study. Int. J. Cancer 1999, 81, 174–179. [Google Scholar] [CrossRef]
- Peters, U.; Sinha, R.; Chatterjee, N.; Subar, A.F.; Ziegler, R.G.; Kulldorff, M.; Bresalier, R.; Weissfeld, J.L.; Flood, A.; Schatzkin, A.; et al. Dietary fibre and colorectal adenoma in a colorectal cancer early detection programme. Lancet 2003, 361, 1491–1495. [Google Scholar] [CrossRef]
- Lee, C.F.; Ho, J.W.C.; Fong, D.Y.T.; Macfarlane, D.J.; Cerin, E.; Lee, A.M.; Leung, S.; Chan, W.Y.Y.; Leung, I.P.F.; Lam, S.H.S.; et al. Dietary and Physical Activity Interventions for Colorectal Cancer Survivors: A Randomized Controlled Trial. Sci. Rep. 2018, 8, 5731. [Google Scholar] [CrossRef] [Green Version]
- Moller, G.; Andersen, J.R.; Jalo, E.; Ritz, C.; Brand-Miller, J.; Larsen, T.M.; Silvestre, M.P.; Fogelholm, M.; Poppitt, S.D.; Raben, A.; et al. The association of dietary animal and plant protein with putative risk markers of colorectal cancer in overweight pre-diabetic individuals during a weight-reducing programme: A PREVIEW sub-study. Eur. J. Nutr. 2020, 59, 1517–1527. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, F.; Ling, Z.; Tong, X.; Xiang, C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS ONE 2012, 7, e39743. [Google Scholar] [CrossRef]
- Weir, T.L.; Manter, D.K.; Sheflin, A.M.; Barnett, B.A.; Heuberger, A.L.; Ryan, E.P. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS ONE 2013, 8, e70803. [Google Scholar] [CrossRef] [Green Version]
- Kvaerner, A.S.; Birkeland, E.; Bucher-Johannessen, C.; Vinberg, E.; Nordby, J.I.; Kangas, H.; Bemanian, V.; Ellonen, P.; Botteri, E.; Natvig, E.; et al. The CRCbiome study: A large prospective cohort study examining the role of lifestyle and the gut microbiome in colorectal cancer screening participants. BMC Cancer 2021, 21, 930. [Google Scholar] [CrossRef]
- Wang, T.; Cai, G.; Qiu, Y.; Fei, N.; Zhang, M.; Pang, X.; Jia, W.; Cai, S.; Zhao, L. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012, 6, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J.; et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018, 359, 1151–1156. [Google Scholar] [CrossRef] [Green Version]
- Everard, A.; Cani, P.D. Gut microbiota and GLP-1. Rev. Endocr. Metab. Disord. 2014, 15, 189–196. [Google Scholar] [CrossRef]
- Baxter, N.T.; Schmidt, A.W.; Venkataraman, A.; Kim, K.S.; Waldron, C.; Schmidt, T.M. Dynamics of Human Gut Microbiota and Short-Chain Fatty Acids in Response to Dietary Interventions with Three Fermentable Fibers. mBio 2019, 10, 1. [Google Scholar] [CrossRef]
- Holmes, Z.C.; Villa, M.M.; Durand, H.K.; Jiang, S.; Dallow, E.P.; Petrone, B.L.; Silverman, J.D.; Lin, P.H.; David, L.A. Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome 2022, 10, 114. [Google Scholar] [CrossRef]
Categorical Variables | RYGB | LSG | p-Value 1 |
---|---|---|---|
n (%) | n (%) | ||
n | 14 | 8 | |
Sex | |||
male | 0 (0%) | 1 (13%) | 0.3636 |
female | 14 (100%) | 7 (87%) | |
Race | |||
Asian/Pacific Islander | 0 (0%) | 0 (0%) | 1.000 |
African American/Black | 0 (0%) | 0 (0%) | |
White | 13 (93%) | 8 (100%) | |
More than one race | 0 (0%) | 0 (0%) | |
Did not wish to report | 1 (7%) | 0 (0%) | |
Ethnicity | |||
Hispanic | 13 (93%) | 8 (100%) | 1.000 |
Non-Hispanic | 0 (0%) | 0 (0%) | |
Did not wish to report | 1 (7%) | 0 (0%) | |
Continuous Variables | RYGB | LSG | p-Value 2 |
Mean ± SD (n) | Mean ± SD (n) | ||
Age (years) | 47.4 ± 10.6 years (14) | 58.6 ± 9.10 years (8) | 0.018 |
Pre-Surgery Body Mass Index (BMI) | 48.1 ± 8.4 m2/kg (14) | 42.5 ± 8.6 m2/kg (8) | 0.162 |
Weight | |||
Pre-Surgery Weight | 130 ± 20 kg (14) | 126 ± 28 kg (7) | 0.738 |
Bariatric Surgery Weight | 127 ± 20 kg (14) | 120 ± 27 kg (8) | 0.540 |
Post-Surgery Weight (0 days–1 month) | 120 ± 23 kg (9) | 117 ± 29 kg (6) | 0.859 |
Post-Surgery Weight (1 month–4 months) | 106 ± 15 kg (9) | 104 ± 31 kg (6) | 0.865 |
Post-Surgery Weight (4 months–1 year) | 97 ± 16 kg (11) | 99 ± 31 kg (7) | 0.886 |
Percent Change of Weight | −25 ± 6% (14) | −20 ± 9% (8) | 0.193 |
Timing of Weight Collection (days from surgery) | |||
Pre-Surgery Weight | −52 ± 32 days (14) | −72 ± 44 days (7) | 0.319 |
Post-Surgery Weight (0 days–1 month) | 22 ± 5 days (9) | 22 ± 7 days (6) | 0.942 |
Post-Surgery Weight (1 month–4 months) | 108 ± 25 days (9) | 116 ± 13 days (6) | 0.505 |
Post-Surgery Weight (4 months–1 year) | 256 ± 71 days (11) | 224 ± 71 days (7) | 0.360 |
Percent Change of Weight | 250 ± 97 days (14) | 211 ± 76 days (8) | 0.310 |
Timing of Stool Collection (days from surgery) | |||
Pre-Stool Collection | −47 ± 35 days (14) | −67 ± 38 days (8) | 0.230 |
Post-Stool Collection | 210 ± 51 days (14) | 148 ± 83 days (8) | 0.090 |
Pre-Surgery | Post-Surgery | Pre- vs. Post-Surgery | |
---|---|---|---|
Mean ± SD | Mean ± SD | p-Value | |
Raw values (mmol/kg fecal weight) | |||
Total SCFA | 23.1 ± 12.1 | 17.2 ± 6.6 | 0.026 |
Acetate | 14.1 ± 7.9 | 10.9 ± 4.9 | 0.037 |
Propionate | 3.5 ± 1.9 | 2.3 ± 1.3 | 0.018 |
Butyrate | 3.1 ± 1.7 | 2.1 ± 1.1 | 0.023 |
Valerate | 0.8 ± 0.5 | 0.5 ± 0.2 | 0.032 |
Isobutyrate | 0.8 ± 0.5 | 0.7 ± 0.3 | 0.567 |
Isovalerate | 0.6 ± 0.4 | 0.5 ± 0.2 | 0.127 |
Straight SCFA | 21.5 ± 11.4 | 15.8 ± 6.2 | 0.019 |
Branched SCFA | 1.5 ± 0.9 | 1.4 ± 0.6 | 0.567 |
Proportions (%) | |||
Acetate | 61.0 ± 6.0 | 63.0 ± 9.0 | 0.403 |
Propionate | 15.0 ± 3.0 | 13.0 ± 4.0 | 0.072 |
Butyrate | 13.0 ± 3.0 | 12.0 ± 5.0 | 0.233 |
Valerate | 4.0 ± 3.0 | 3.0 ± 1.0 | 0.446 |
Isobutyrate | 3.0 ± 1.0 | 4.0 ± 1.0 | 0.026 |
Isovalerate | 3.0 ± 1.0 | 3.0 ± 1.0 | 0.616 |
Straight SCFA | 93.0 ± 2.0 | 92.0 ± 1.0 | 0.026 |
Branched SCFA | 7.0 ± 2.0 | 8.0 ± 3.0 | 0.026 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meijer, J.L.; Roderka, M.N.; Chinburg, E.L.; Renier, T.J.; McClure, A.C.; Rothstein, R.I.; Barry, E.L.; Billmeier, S.; Gilbert-Diamond, D. Alterations in Fecal Short-Chain Fatty Acids after Bariatric Surgery: Relationship with Dietary Intake and Weight Loss. Nutrients 2022, 14, 4243. https://doi.org/10.3390/nu14204243
Meijer JL, Roderka MN, Chinburg EL, Renier TJ, McClure AC, Rothstein RI, Barry EL, Billmeier S, Gilbert-Diamond D. Alterations in Fecal Short-Chain Fatty Acids after Bariatric Surgery: Relationship with Dietary Intake and Weight Loss. Nutrients. 2022; 14(20):4243. https://doi.org/10.3390/nu14204243
Chicago/Turabian StyleMeijer, Jennifer L., Meredith N. Roderka, Elsa L. Chinburg, Timothy J. Renier, Auden C. McClure, Richard I. Rothstein, Elizabeth L. Barry, Sarah Billmeier, and Diane Gilbert-Diamond. 2022. "Alterations in Fecal Short-Chain Fatty Acids after Bariatric Surgery: Relationship with Dietary Intake and Weight Loss" Nutrients 14, no. 20: 4243. https://doi.org/10.3390/nu14204243
APA StyleMeijer, J. L., Roderka, M. N., Chinburg, E. L., Renier, T. J., McClure, A. C., Rothstein, R. I., Barry, E. L., Billmeier, S., & Gilbert-Diamond, D. (2022). Alterations in Fecal Short-Chain Fatty Acids after Bariatric Surgery: Relationship with Dietary Intake and Weight Loss. Nutrients, 14(20), 4243. https://doi.org/10.3390/nu14204243