Proposition of a New POLA Index to Assess the Immunomodulatory Properties of the Diet and Its Relationship with the Gut Microbiota, Using the Example of the Incidence of COVID-19 in a Group of People without Comorbidities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Dietary Intake
2.3. DII and the POLA Index
2.3.1. Dietary Inflammatory Index
2.3.2. POLA Index
Theoretical Assumptions
Calculation Method
2.4. Statistical Analysis
2.5. Ethics
3. Results
3.1. Characteristics of Participants
3.2. Association of the POLA Index and DII with the Risk of COVID-19
3.3. Correlations between DII and POLA Index
3.4. Gut Microbiota
4. Discussion
4.1. Diet and the Immune System
4.2. Vitamins, Minerals, and Unsaturated Fatty Acids
4.3. Vegetables and Fruits
4.4. Nuts and Pulses
4.5. Gut Microbiota
4.6. Nucleotides: A Potential Role in the Development of Immunity
4.7. Strengths and Limitations
4.8. Summary
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jagielski, P.; Łuszczki, E.; Wnęk, D.; Micek, A.; Bolesławska, I.; Piórecka, B.; Kawalec, P. Associations of Nutritional Behavior and Gut Microbiota with the Risk of COVID-19 in Healthy Young Adults in Poland. Nutrients 2022, 14, 350. [Google Scholar] [CrossRef]
- Calder, P.C. Nutrition and immunity: Lessons for COVID-19. Nutr. Diabetes 2021, 23, 19. [Google Scholar] [CrossRef]
- Hachimura, S.; Totsuka, M.; Hosono, A. Immunomodulation by food: Impact on gut immunity and immune cell function. Biosci. Biotechnol. Biochem. 2018, 82, 584–599. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Ramos-Campo, D.J.; Mielgo-Ayuso, J.; Dalamitros, A.A.; Nikolaidis, P.A.; Hormeño-Holgado, A.; Tornero-Aguilera, J.F. Nutrition in the Actual COVID-19 Pandemic. A Narrative Review. Nutrients 2021, 13, 1924. [Google Scholar] [CrossRef]
- Butler, M.J.; Barrientos, R.M. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav. Immun. 2020, 87, 53–54. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Maśliński, W.; Kontny, E. Podstawy Immunologii dla Reumatologów; Narodowy Instytut Geriatrii, Reumatologii i Rehabilitacji im: Warszawa, Poland, 2015. [Google Scholar]
- Gasmi, A.; Tippairote, T.; Mujawdiya, P.K.; Peana, M.; Menzel, A.; Dadar, M.; Benahmed, A.G.; Bjørklund, G. Micronutrients as immunomodulatory tools for COVID-19 management. Clin. Immunol. 2020, 220, 108545. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Svahn, S.L.; Johansson, M.E. Effects of Omega-3 Fatty Acids on Immune Cells. Int. J. Mol. Sci. 2019, 20, 5028. [Google Scholar] [CrossRef] [Green Version]
- Moreb, N.A.; Albandary, A.; Jaiswal, S.; Jaiswal, A.K. Fruits and Vegetables in the Management of Underlying Conditions for COVID-19 High-Risk Groups. Foods 2021, 10, 389. [Google Scholar] [CrossRef]
- Gasmi, A.; Tippairote, T.; Mujawdiya, P.K.; Peana, M.; Menzel, A.; Dadar, M.; Benahmed, A.G.; Bjørklund, G. The microbiota-mediated dietary and nutritional interventions for COVID-19. Clin. Immunol. 2021, 226, 108725. [Google Scholar] [CrossRef]
- Kim, H.; Rebholz, C.M.; Hegde, S.; Lafiura, C.; Raghavan, M.; Lloyd, J.F.; Cheng, S.; Seidelmann, S.B. Plant-based diets, pescatarian diets and COVID-19 severity: A population-based case-control study in six countries. BMJ Nutr. Prev. Health 2021, 4, 257–266. [Google Scholar] [CrossRef]
- Gallo, C.G.; Fiorino, S.; Posabella, G.; Antonacci, D.; Tropeano, A.; Pausini, E.; Pausini, C.; Guarniero, T.; Hong, W.; Giampieri, E.; et al. The function of specialized pro-resolving endogenous lipid mediators, vitamins, and other micronutrients in the control of the inflammatory processes: Possible role in patients with SARS-CoV-2 related infection. Prostaglandins Other Lipid Mediat. 2022, 159, 106619. [Google Scholar] [CrossRef]
- Calder, P.C. Nutrition, immunity and COVID-19. BMJ Nutr. Prev. Health 2020, 3, 74–92. [Google Scholar] [CrossRef]
- Renata, R.N.; Arely, G.A.; Gabriela, L.A.; Esther, M.M. Immunomodulatory Role of Microelements in COVID-19 Outcome: A Relationship with Nutritional Status. Biol. Trace Elem. Res. 2022. online ahead of print. [Google Scholar] [CrossRef]
- Gozzi-Silva, S.C.; Teixeira, F.M.E.; Duarte, A.J.D.S.; Sato, M.N.; Oliveira, L.M. Immunomodulatory Role of Nutrients: How Can Pulmonary Dysfunctions Improve? Front. Nutr. 2021, 8, 674258. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Frias-Toral, E.; Laudisio, D.; Pugliese, G.; Castellucci, B.; Garcia-Velasquez, E.; Savastano, S.; Colao, A. Nutrition and immune system: From the Mediterranean diet to dietary supplementary through the microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 3066–3090. [Google Scholar] [CrossRef]
- El Khoury, C.N.; Julien, S.G. Inverse Association Between the Mediterranean Diet and COVID-19 Risk in Lebanon: A Case-Control Study. Front. Nutr. 2021, 8, 707359. [Google Scholar] [CrossRef]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.Y.; Tey, S.L.; Brown, R. Nuts and Older Adults’ Health: A Narrative Review. Int. J. Environ. Res. Public Health 2021, 18, 1848. [Google Scholar] [CrossRef]
- Greene, M.W.; Roberts, A.P.; Frugé, A.D. Negative Association Between Mediterranean Diet Adherence and COVID-19 Cases and Related Deaths in Spain and 23 OECD Countries: An Ecological Study. Front. Nutr. 2021, 8, 591964. [Google Scholar] [CrossRef]
- Ponzo, V.; Pellegrini, M.; D’Eusebio, C.; Bioletto, F.; Goitre, I.; Buscemi, S.; Frea, S.; Ghigo, E.; Bo, S. Mediterranean Diet and SARS-COV-2 Infection: Is There Any Association? A Proof-of-Concept Study. Nutrients 2021, 13, 1721. [Google Scholar] [CrossRef]
- Leal-Martínez, F.; Abarca-Bernal, L.; García-Pérez, A.; González-Tolosa, D.; Cruz-Cázares, G.; Montell-García, M.; Ibarra, A. Effect of a Nutritional Support System to Increase Survival and Reduce Mortality in Patients with COVID-19 in Stage III and Comorbidities: A Blinded Randomized Controlled Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 1172. [Google Scholar] [CrossRef]
- Elmadfa, I.; Meyer, A.L. The Role of the Status of Selected Micronutrients in Shaping the Immune Function. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 1100–1115. [Google Scholar] [CrossRef]
- Shakoor, H.; Feehan, J.; Al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Apostolopoulos, V.; Stojanovska, L. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas 2021, 143, 1–9. [Google Scholar] [CrossRef]
- Gorman, S.; Buckley, A.G.; Ling, K.-M.; Berry, L.J.; Fear, V.; Stick, S.; Larcombe, A.; Kicic, A.; Hart, P.H. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity. Physiol. Rep. 2017, 5, e13371. [Google Scholar] [CrossRef]
- Siracusa, F.; Schaltenberg, N.; Villablanca, E.J.; Huber, S.; Gagliani, N. Dietary Habits and Intestinal Immunity: From Food Intake to CD4+ T H Cells. Front. Immunol. 2019, 9, 3177. [Google Scholar] [CrossRef] [Green Version]
- Burr, A.H.P.; Bhattacharjee, A.; Hand, T.W. Nutritional Modulation of the Microbiome and Immune Response. J. Immunol. 2020, 205, 1479–1487. [Google Scholar] [CrossRef]
- Gonçalve, S.P.; Araújo, J.R.; Di Santo, J.P. A Cross-Talk Between Microbiota-Derived Short-Chain Fatty Acids and the Host Mucosal Immune System Regulates Intestinal Homeostasis and Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2018, 24, 558–572. [Google Scholar] [CrossRef]
- Park, Y.J.; Yoo, S.A.; Kim, M.; Kim, W.U. The Role of Calcium-Calcineurin-NFAT Signaling Pathway in Health and Autoimmune Diseases. Front. Immunol. 2020, 11, 195. [Google Scholar] [CrossRef]
- Froghi, S.; Grant, C.R.; Tandon, R.; Quaglia, A.; Davidson, B.; Fuller, B. New Insights on the Role of TRP Channels in Calcium Signalling and Immunomodulation: Review of Pathways and Implications for Clinical Practice. Clin. Rev. Allergy Immunol. 2021, 60, 271–292. [Google Scholar] [CrossRef]
- Kaźmierczak-Barańska, J.; Boguszewska, K.; Adamus-Grabicka, A.; Karwowski, B.T. Two Faces of Vitamin C—Antioxidative and Pro-Oxidative Agent. Nutrients 2020, 12, 1501. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, T.; Burdeos, G.C.; Itaya, M.; Nakagawa, K.; Miyazawa, T. Vitamin E: Regulatory Redox Interactions. IUBMB Life 2019, 71, 430–441. [Google Scholar] [CrossRef] [PubMed]
- von Lintig, J.; Moon, J.; Lee, J.; Ramkumar, S. Carotenoid metabolism at the intestinal barrier. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158580. [Google Scholar] [CrossRef]
- Skrajnowska, D.; Bobrowska-Korczak, B. Role of Zinc in Immune System and Anti-Cancer Defense Mechanisms. Nutrients 2019, 11, 2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajarabille, N.; Latunde-Dada, G.O. Programmed Cell-Death by Ferroptosis: Antioxidants as Mitigators. Int. J. Mol. Sci. 2019, 20, 4968. [Google Scholar] [CrossRef] [Green Version]
- Hariharan, S.; Dharmaraj, S. Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology 2020, 28, 667–695. [Google Scholar] [CrossRef]
- Jiang, W.G.; Eynard, A.R.; Mansel, R.E. The pathology of essential fatty acid deficiency: Is it cell adhesion mediated? Med. Hypotheses 2000, 55, 257–262. [Google Scholar] [CrossRef]
- Hidalgo, M.A.; Carretta, M.D.; Burgos, R.A. Long Chain Fatty Acids as Modulators of Immune Cells Function: Contribution of FFA1 and FFA4 Receptors. Front. Physiol. 2021, 12, 668330. [Google Scholar] [CrossRef]
- Hanna, V.S.; Hafez, E.A.A. Synopsis of arachidonic acid metabolism: A review. J. Adv. Res. 2018, 11, 23–32. [Google Scholar] [CrossRef]
- Cagnina, R.E.; Duvall, M.G.; Nijmeh, J.; Levy, B.D. Specialized pro-resolving mediators in respiratory diseases. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 67–74. [Google Scholar] [CrossRef]
- Hansen, T.V.; Vik, A.; Serhan, C.N. The Protectin Family of Specialized Pro-resolving Mediators: Potent Immunoresolvents Enabling Innovative Approaches to Target Obesity and Diabetes. Front. Pharmacol. 2019, 9, 1582. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Werler, M.M. Fruit and vegetable intake and risk of upper respiratory tract infection in pregnant women. Public Health Nutr. 2010, 13, 276–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yedjou, C.G.; Alo, R.A.; Liu, J.; Enow, J.; Ngnepiepa, P.; Long, R.; Latinwo, L.; Tchounwou, P.B. Chemo-Preventive Effect of Vegetables and Fruits Consumption on the COVID-19 Pandemic. J. Nutr. Food Sci. 2021, 4, 029. [Google Scholar] [PubMed]
- Bousquet, J.; Anto, J.M.; Czarlewski, W.; Haahtela, T.; Fonseca, S.C.; Iaccarino, G.; Blain, H.; Vidal, A.; Sheikh, A.; Akdis, C.A.; et al. Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy 2021, 76, 735–750. [Google Scholar] [CrossRef]
- Mrityunjaya, M.; Pavithra, V.; Neelam, R.; Janhavi, P.; Halami, P.M.; Ravindra, P.V. Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front. Immunol. 2020, 11, 570122. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-X.; Lin, F.-J.; Li, H.; Li, H.-B.; Wu, D.-T.; Geng, F.; Ma, W.; Wang, Y.; Miao, B.-H.; Gan, R.-Y. Recent Advances in Bioactive Compounds, Health Functions, and Safety Concerns of Onion (Allium cepa L.). Front. Nutr. 2021, 8, 669805. [Google Scholar] [CrossRef]
- Lisi, F.; Zelikin, A.N.; Chandrawati, R. Nitric Oxide to Fight Viral Infections. Adv. Sci. 2021, 8, 2003895. [Google Scholar] [CrossRef]
- Akaike, T.; Maeda, H. Nitric oxide and virus infection. Immunology 2000, 101, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Amraei, R.; Rahimi, N. COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells 2020, 9, 1652. [Google Scholar] [CrossRef]
- Banu, N.; Panikar, S.S.; Leal, L.R.; Leal, A.R. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications. Life Sci. 2020, 256, 117905. [Google Scholar] [CrossRef]
- Swathi Krishna, S.; Thennavan, A.; Kanthlal, S.K. Dietary foods containing nitric oxide donors can be early curators of SARS-CoV-2 infection: A possible role in the immune system. J. Food Biochem. 2022, 46, e13884. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.C.; Webster, A.; Garrison, B. Terminology Matters: Advancing Science to Define an Optimal Pulse Intake. Nutrients 2022, 1, 655. [Google Scholar] [CrossRef] [PubMed]
- Bamberger, C.; Rossmeier, A.; Lechner, K.; Wu, L.; Waldmann, E.; Fischer, S.; Stark, R.G.; Altenhofer, J.; Henze, K.; Parhofer, K.G. A Walnut-Enriched Diet Affects Gut Microbiome in Healthy Caucasian Subjects: A Randomized, Controlled Trial. Nutrients 2018, 10, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ukhanova, M.; Wang, X.; Baer, D.J.; Novotny, J.A.; Fredborg, M.; Mai, V. Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study. Br. J. Nutr. 2014, 111, 2146–2152. [Google Scholar] [CrossRef]
- Lukus, P.K.; Doma, K.M.; Duncan, A.M. The Role of Pulses in Cardiovascular Disease Risk for Adults With Diabetes. Am. J. Lifestyle Med. 2020, 14, 571–584. [Google Scholar] [CrossRef]
- Mirsepasi-Lauridsen, H.C.; Vallance, B.A.; Krogfelt, K.A.; Petersen, A.M. Escherichia coli Pathobionts Associated with Inflammatory Bowel Disease. Clin. Microbiol. Rev. 2019, 32, e00060-18. [Google Scholar] [CrossRef] [Green Version]
- Gatsios, A.; Kim, C.S.; Crawford, J.M. Escherichia coli small molecule metabolism at the host-microorganism interface. Nat. Chem. Biol. 2021, 17, 1016–1026. [Google Scholar] [CrossRef]
- He, X.; Mishchuk, D.O.; Shah, J.; Weimer, B.C.; Slupsky, C.M. Cross-talk between E. coli strains and a human colorectal adenocarcinoma-derived cell line. Sci. Rep. 2013, 3, 3416. [Google Scholar] [CrossRef] [Green Version]
- Ghazalpour, A.; Cespedes, I.; Bennett, B.J.; Allayee, H. Expanding role of gut microbiota in lipid metabolism. Curr. Opin. Lipidol. 2016, 27, 141–147. [Google Scholar] [CrossRef]
- Mushtaq, H.; Bakht, J.; Khan, I.; Ahmad, B. Antimicrobial efficacy and prevalence of colicinogenic E. coli in faecal matter of human, cow and sheep. Int. J. Antimicrob. Agents 2021, 57, 106221. [Google Scholar] [CrossRef]
- Steimle, A.; Menz, S.; Bender, A.; Ball, B.; Weber, A.N.R.; Hagemann, T.; Lange, A.; Maerz, J.K.; Parusel, R.; Michaelis, L.; et al. Flagellin hypervariable region determines symbiotic properties of commensal Escherichia coli strains. PLoS Biol. 2019, 17, e3000334. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.R.; Tazi, A.; Burlen-Defranoux, O.; Vichier-Guerre, S.; Nigro, G.; Licandro, H.; Demignot, S.; Sansonetti, P.J. Fermentation Products of Commensal Bacteria Alter Enterocyte Lipid Metabolism. Cell Host Microbe 2020, 27, 358–375.e7. [Google Scholar] [CrossRef] [PubMed]
- Bennek, E.; Mandić, A.D.; Verdier, J.; Roubrocks, S.; Pabst, O.; van Best, N.; Benz, I.; Kufer, T.; Trautwein, C.; Sellge, G. Subcellular antigen localization in commensal E. coli is critical for T cell activation and induction of specific tolerance. Mucosal Immunol. 2019, 12, 97–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krawczyk, B.; Wityk, P.; Gałęcka, M.; Michalik, M. The Many Faces of Enterococcus spp.-Commensal, Probiotic and Opportunistic Pathogen. Microorganisms 2021, 9, 1900. [Google Scholar] [CrossRef]
- Gil, A. Modulation of the immune response mediated by dietary nucleotides. Eur. J. Clin. Nutr. 2002, 56 (Suppl. S3), S1–S4. [Google Scholar] [CrossRef]
- Ibrahim, K.S.; El-Sayed, E.M. Potential role of nutrients on immunity. Int. Food Res. J. 2016, 23, 464–474. [Google Scholar]
- Manzano, M.; Clara Abadía-Molina, A.; Olivares, E.G.; Gil, A.; Rueda, R. Dietary nucleotides accelerate changes in intestinal lymphocyte maturation in weanling mice. J. Pediatr. Gastroenterol. Nutr. 2003, 37, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Buck, R.H.; Thomas, D.L.; Winship, T.R.; Cordle, C.T.; Kuchan, M.J.; E Baggs, G.; Schaller, J.P.; Wheeler, J.G. Effect of dietary ribonucleotides on infant immune status. Part 2: Immune cell development. Pediatr. Res. 2004, 56, 891–900. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.; Maldonado, J.; Narbona, E.; Ruiz-Bravo, A.; Salmerón, J.L.G.; Molina, J.A.; Gil, A. Influence of dietary nucleotides on plasma immunoglobulin levels and lymphocyte subsets of preterm infants. Biofactors 1999, 19, 67–76. [Google Scholar] [CrossRef]
- Riera, J.; Pons, V.; Martinez-Puig, D.; Chetrit, C.; A Tur, J.; Pons, A.; Drobnic, F. Dietary nucleotide improves markers of immune response to strenuous exercise under a cold environment. J. Int. Soc. Sports Nutr. 2013, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, J.; Navarro, J.; Narbona, E.; Gil, A. The influence of dietary nucleotides on humoral and cell immunity in the neonate and lactating infant. Early Hum. Dev. 2001, 65, S69–S74. [Google Scholar] [CrossRef]
- Sacks, G.S.; Genton, L.; Kudsk, K.A. Controversy of immunonutrition for surgical critical-illness patients. Curr. Opin. Crit. Care 2003, 9, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Adjei, A.A.; Shigeru, Y.; Kulkarni, A. Nucleic acids and/or their components: A possible role in immune function. J. Nutr. Sci. Vitaminol. 1995, 1, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Moludi, J.; Qaisar, S.; Alizadeh, M.; Jafari Vayghan, H.; Naemi, M.; Rahimi, A.; Mousavi, R. The relationship between Dietary. Inflammatory Index and disease severity and inflammatory status: A case-control study of COVID-19 patients. Br. J. Nutr. 2021, 23, 320. [Google Scholar]
Ingredient | Standard | Dietary Intake in % of Standards or g (the Average of the 5–7 Days) | Points | |
---|---|---|---|---|
1 | Potassium | AI | 10 | 1 |
2 | Magnesium | RDA | 30 | 1 |
3 | Iron | RDA | 78 | 1 |
4 | Zinc | RDA | 120 | 0 |
5 | Vitamin A | RDA | 121 | 0 |
6 | Vitamin E | AI | 15 | 1 |
7 | Thiamin | RDA | 44 | 1 |
8 | Vitamin B6 | RDA | 78 | 1 |
9 | Vitamin C | RDA | 123 | 0 |
10 | Linoleic acid LA | AI | 110 | 0 |
11 | α-Linolenic acid ALA | AI | 200 | 0 |
12 | Fiber | AI | 56 | 1 |
13 | Folates | RDA | 78 | 1 |
14 | Calcium | RDA | 34 | 1 |
15 | Vitamin D | RDA (2 points <50%, 1 point 50-100%, 0 points > 100%) | 10 | 2 |
16 | Vegetables and fruit | (2 points < 400 g, 1 point 400 g–600 g, 0 points > 600 g) | 240 | 2 |
17 | Nuts | 1 point < 10 g, 0 points >10 g | 5 | 1 |
Total score | 14 | |||
Qualitative interpretation | Diets that significantly weaken the immune function |
Variable | BIM N = 37 | UBIM N = 28 | HUBIM N = 30 | ANOVA | ||||
---|---|---|---|---|---|---|---|---|
X ± SD | X ± SD | X ± SD | p | |||||
Age [years] | 34.2 ± 6.2 | 34.1 ± 5.2 | 35.7 ± 5.8 | 0.4726 | ||||
Body weight [kg] | 76.1 ± 12.1 | 73.2 ± 11.0 | 70.3 ± 13.2 | 0.1563 | ||||
Height [cm] | 179.8 ± 8.3 | 177 ± 8.6 | 173.5 ± 9 | 0.0130 | ||||
BMI [kg/m2] | 23.5 ± 3.1 | 23.3 ± 2.5 | 23.2 ± 2.7 | 0.9136 | ||||
TEE [kcal] | 2668 ± 445 | 2601 ± 366 | 2347 ± 456 | 0.0089 | ||||
PAL | 1.52 ± 0.2 | 1.52 ± 0.17 | 1.45 ± 0.11 | 0.1470 | ||||
Sleep duration [h] | 7:34 ± 0.53 | 07:03 ± 00:44 | 07:24 ± 00:44 | 0.0428 | ||||
Steps | 12,103 ± 4979 | 12,300 ± 5087 | 11,846 ± 3382 | 0.9305 | ||||
DII | −2.26 ± 1.12 | −0.81 ± 1.18 | 1.69 ± 1.13 | <0.0001 | ||||
POLA | 3.57 ± 1.42 | 9.04 ± 1.84 | 14.47 ± 1.89 | <0.0001 | ||||
Variable | Category | N | % | N | % | N | % | Chi2 p |
Sex | Men | 31 | 83.8 | 24 | 85.7 | 18 | 60.0 | 0.0299 |
Women | 6 | 16.2 | 4 | 14.3 | 12 | 40.0 | ||
Diet | Traditional | 18 | 48.6 | 17 | 60.7 | 19 | 63.3 | 0.4276 |
Vegetarian | 19 | 51.4 | 11 | 39.3 | 11 | 36.7 | ||
BMI [kg/m2] | Normal body weight | 21 | 56.8 | 21 | 75.0 | 22 | 73.3 | 0.2099 |
Overweight | 16 | 43.2 | 7 | 25.0 | 8 | 26.7 | ||
Marital status | Single/divorced | 21 | 56.8 | 15 | 53.6 | 12 | 40.0 | 0.3664 |
Married/cohabiting | 16 | 43.2 | 13 | 46.4 | 18 | 60.0 | ||
BF [%] | Underfat | 5 | 13.5 | 3 | 11.1 | 1 | 3.3 | 0.6582 |
Normal | 27 | 73.0 | 19 | 70.4 | 23 | 76.7 | ||
Overfat | 5 | 13.5 | 5 | 18.5 | 6 | 20.0 | ||
Smoking | No | 34 | 91.9 | 25 | 89.3 | 24 | 80.0 | 0.3238 |
Yes | 3 | 8.1 | 3 | 10.7 | 6 | 20.0 | ||
Education | Secondary | 5 | 13.5 | 2 | 7.1 | 0 | 0.0 | 0.2364 |
Higher | 32 | 86.5 | 26 | 92.9 | 30 | 100.0 | ||
How do you rate your physical activity in your free time? | Low | 8 | 21.6 | 4 | 14.3 | 7 | 23.3 | 0.2606 |
Moderate | 16 | 43.2 | 17 | 60.7 | 19 | 63.3 | ||
High | 13 | 35.1 | 7 | 25.0 | 4 | 13.3 | ||
Vitamin supplementation | I do not use | 9 | 24.3 | 9 | 32.1 | 12 | 40.0 | 0.4853 |
Periodically | 9 | 24.3 | 8 | 28.6 | 4 | 13.3 | ||
Regular | 19 | 51.4 | 11 | 39.3 | 14 | 46.7 | ||
Minerals supplementation | I do not use | 19 | 54.3 | 15 | 57.7 | 17 | 56.7 | 0.9860 |
Periodically | 10 | 28.6 | 6 | 23.1 | 7 | 23.3 | ||
Regular | 6 | 17.1 | 5 | 19.2 | 6 | 20.0 |
Variable | BIM N = 37 | UBIM N = 28 | HUBIM N = 30 | Kruskal–Wallis Test p |
---|---|---|---|---|
Me (Q1–Q3) | Me (Q1–Q3) | Me (Q1–Q3) | ||
Water | 127 (100–154.8) | 109.7 (91.3–127.2) | 83.7 (73.6–95.1) | <0.0001 |
Total protein [g] | 134 (120.2–164.9) | 117.8 (100.2–154) | 105.1 (97.3–119.9) | <0.0001 |
Fat [g] | 84.6 (71.9–105.4) | 70.7 (63.5–84.8) | 60.8 (55.5–76.4) | 0.0001 |
Fats: total saturated | 153.8 (111.3–184.7) | 137.7 (101.7–171.1) | 133.6 (94.3–155.5) | 0.2594 |
Linoleic acid LA (C18:2) | 103.9 (86.5–146.5) | 73.5 (60.7–88.4) | 59.7 (47.8–72.3) | <0.0001 |
α-Linolenic acid ALA (C18:3) | 156.8 (116–218.4) | 103.9 (78.1–151.7) | 80.3 (70.6–91.9) | <0.0001 |
Assimilable carbohydrates | 228.2 (200.8–264.9) | 204.3 (173.5–225.9) | 177.4 (152.8–212.3) | <0.0001 |
Dietary fiber | 150.3 (123.2–184.1) | 95.3 (82.2–113.4) | 70.6 (63.4–83.8) | <0.0001 |
Potassium [mg] | 128.4 (120.8–146.4) | 100.6 (91.8–108.6) | 76.2 (67.9–89.2) | <0.0001 |
Calcium [mg] | 98.2 (81.7–111.3) | 80.3 (65–105.1) | 75.4 (62.6–86.3) | 0.0027 |
Magnesium [mg] | 142.1 (119.4–162.4) | 99.6 (89.7–113.7) | 83.1 (72.8–93.4) | <0.0001 |
Iron [mg] | 186 (146.7–226.3) | 154.9 (123.7–170.3) | 97.3 (62.9–125.2) | <0.0001 |
Zinc [mg] | 138.9 (124.1–163) | 109.8 (92.2–127.2) | 92.7 (85.7–98.8) | <0.0001 |
Copper [mg] | 263.3 (209.5–307.6) | 181.5 (153.1–207.1) | 134.6 (115.3–158.3) | <0.0001 |
Manganese [mg] | 405.8 (309.9–572.6) | 263.7 (207.8–370.1) | 200 (162.8–250.8) | <0.0001 |
Vitamin A [µg] | 168.2 (129.7–214.3) | 145.5 (90.8–172.2) | 103.4 (83.1–133) | 0.0001 |
Vitamin E (alpha-tocopherol equivalent) [mg] | 172 (145.3–202.4) | 111.3 (98.1–143.3) | 90.6 (70.6–115) | <0.0001 |
Thiamin [mg] | 142.2 (122.8–162.7) | 101.8 (90.4–111.3) | 76.5 (68.9–92.8) | <0.0001 |
Riboflavin [mg] | 163.2 (135.9–201.7) | 137.8 (107.2–161.1) | 120.4 (103–132.4) | <0.0001 |
Niacin [mg] | 139.2 (109.7–178.5) | 131.3 (102.4–162.9) | 101.2 (75.7–117.2) | 0.0003 |
Vitamin B6 [mg] | 196.8 (174.1–242) | 149.3 (130.8–188.5) | 110 (101.3–123.6) | <0.0001 |
Folates [mg] | 120.6 (101.8–139.4) | 93.5 (72.9–106) | 64.6 (48–78.2) | <0.0001 |
Vitamin B12 [µg] | 188.4 (125.6–375.1) | 150.3 (126.1–220.1) | 116.4 (106.2–147.9) | 0.0094 |
Vitamin C [mg] | 179.2 (129.3–243.4) | 133.6 (87.5–160.3) | 73.2 (59.5–117.6) | <0.0001 |
Vitamin D [µg] | 24.4 (18.5–125.9) | 25.6 (11.7–64.9) | 15.8 (10.5–36.1) | 0.0501 |
Variable | BIM N = 37 | UBIM N = 28 | HUBIM N = 30 | Kruskal–Wallis Test p | ||||
---|---|---|---|---|---|---|---|---|
Me (Q1–Q3) | Me (Q1–Q3) | Me (Q1–Q3) | ||||||
Groats and rice [g] | 20.7 (6.1–46.5) | 18 (9.3–32.8) | 12.1 (0–20.6) | 0.0433 | ||||
Seeds [g] | 4.6 (2–12.5) | 0.4 (0–3.2) | 1.2 (0–3.7) | 0.0002 | ||||
Nuts [g] | 25 (13.7–43.1) | 11.4 (2–20.9) | 3.1 (0.6–14.1) | <0.0001 | ||||
Seeds and nuts [g] | 37.3 (22.8–60.6) | 13.2 (3.3–26.5) | 6.7 (1.4–17.2) | <0.0001 | ||||
Fruits [g] | 334.7 (244.1–478.9) | 151.3 (63.8–257.2) | 148.3 (110.1–205.2) | <0.0001 | ||||
Vegetables [g] | 443.6 (361–555.5) | 341.3 (237.6–478.6) | 224 (148.4–281.1) | <0.0001 | ||||
Vegetables—other [g] | 152 (116.6–192.7) | 91.8 (80.6–159.3) | 70.7 (49–105.3) | <0.0001 | ||||
Vegetables rich in beta carotene [g] | 102 (70.2–136.8) | 90.8 (51.6–126.9) | 56 (40.5–80) | 0.0017 | ||||
Vegetables rich in vitamin C [g] | 164.5 (138.7–217.6) | 128.2 (81.9–188.5) | 64 (36.4–110.5) | <0.0001 | ||||
Total vegetables and fruits (in market products) [g] | 823 (638–1003) | 530 (444–644) | 378 (276–512) | <0.0001 | ||||
Legumes [g] | 32.2 (5–109.5) | 11 (0–46.6) | 2.4 (0–19.4) | 0.0039 | ||||
Variable | Category | N | % | N | % | N | % | Chi2 p |
Garlic | <1 g on average daily | 27 | 73.0 | 22 | 78.6 | 29 | 96.7 | 0.0357 |
≥1 g on average daily | 10 | 27.0 | 6 | 21.4 | 1 | 3.3 | ||
Onion | <10 g on average daily | 22 | 59.5 | 19 | 67.9 | 29 | 96.7 | 0.0019 |
≥10 g on average daily | 15 | 40.5 | 9 | 32.1 | 1 | 3.3 | ||
Fruits and vegatables | 500 g and more per day | 34 | 91.9 | 16 | 57.1 | 9 | 30.0 | <0.0001 |
Less than 500 g per day | 3 | 8.1 | 12 | 42.9 | 21 | 70.0 | ||
Nuts | 10 g and more per day | 31 | 83.8 | 15 | 53.6 | 10 | 33.3 | 0.0001 |
Up to 10 g per day | 6 | 16.2 | 13 | 46.4 | 20 | 66.7 |
Model | |||
---|---|---|---|
DII index | First tertile | Second tertile | Third tertile |
Model 1 a | 1 (ref.) | 0.60 (0.14–2.32) | 3.79 (1.26–12.63) |
Model 2 b | 1 (ref.) | 0.54 (0.11–2.30) | 3.39 (0.93–13.83) |
Model 3 c | 1 (ref.) | 0.56 (0.12–2.43) | 3.51 (0.93–15.18) |
POLA index | BIM | UBIM | HUBIM |
Model 1 a | 1 (ref.) | 1.75 (0.47–6.75) | 4.89 (1.57–17.45) |
Model 2 b | 1 (ref.) | 1.96 (0.51–7.93) | 4.90 (1.37–20.09) |
Model 3 c | 1 (ref.) | 2.04 (0.52–8.33) | 5.29 (1.43–22.55) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagielski, P.; Wnęk, D.; Łuszczki, E.; Bolesławska, I.; Micek, A.; Kozioł-Kozakowska, A.; Piórecka, B.; Koczur, K.; Jankowska, K.; Gaździńska, A.; et al. Proposition of a New POLA Index to Assess the Immunomodulatory Properties of the Diet and Its Relationship with the Gut Microbiota, Using the Example of the Incidence of COVID-19 in a Group of People without Comorbidities. Nutrients 2022, 14, 4227. https://doi.org/10.3390/nu14204227
Jagielski P, Wnęk D, Łuszczki E, Bolesławska I, Micek A, Kozioł-Kozakowska A, Piórecka B, Koczur K, Jankowska K, Gaździńska A, et al. Proposition of a New POLA Index to Assess the Immunomodulatory Properties of the Diet and Its Relationship with the Gut Microbiota, Using the Example of the Incidence of COVID-19 in a Group of People without Comorbidities. Nutrients. 2022; 14(20):4227. https://doi.org/10.3390/nu14204227
Chicago/Turabian StyleJagielski, Paweł, Dominika Wnęk, Edyta Łuszczki, Izabela Bolesławska, Agnieszka Micek, Agnieszka Kozioł-Kozakowska, Beata Piórecka, Karolina Koczur, Katarzyna Jankowska, Agata Gaździńska, and et al. 2022. "Proposition of a New POLA Index to Assess the Immunomodulatory Properties of the Diet and Its Relationship with the Gut Microbiota, Using the Example of the Incidence of COVID-19 in a Group of People without Comorbidities" Nutrients 14, no. 20: 4227. https://doi.org/10.3390/nu14204227
APA StyleJagielski, P., Wnęk, D., Łuszczki, E., Bolesławska, I., Micek, A., Kozioł-Kozakowska, A., Piórecka, B., Koczur, K., Jankowska, K., Gaździńska, A., Turczyńska, M., & Kawalec, P. (2022). Proposition of a New POLA Index to Assess the Immunomodulatory Properties of the Diet and Its Relationship with the Gut Microbiota, Using the Example of the Incidence of COVID-19 in a Group of People without Comorbidities. Nutrients, 14(20), 4227. https://doi.org/10.3390/nu14204227