Characterizing Individual Differences in Sweet Taste Hedonics: Test Methods, Locations, and Stimuli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Participants
2.3. Design
2.4. Stimulus Materials
2.5. Procedures
2.5.1. Training
2.5.2. Preference Tracking
2.5.3. Ratings of Sweetness and Liking
2.6. Data Analysis
2.6.1. Sensory Endpoints
2.6.2. Statistics
3. Results
3.1. Participant Characteristics
3.2. Hedonic Measures
3.2.1. Test-Retest Reliability
3.2.2. Mean Values of Optimal Concentration
3.2.3. Correlations between Conditions across Individuals
3.3. Rated Sweetness Intensity
3.3.1. Test-Retest Reliability
3.3.2. Correlations between Sweetness Intensity and Optimal Concentration
4. Discussion
4.1. Summary of Major Findings
4.2. Preference Tracking vs. the Rating Method
4.3. In-Laboratory vs. At-Home Tests
4.4. Aqueous Solutions vs. Vanilla Milk
4.5. Rated Sweetness Intensity
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Drewnowski, A. Taste preferences and food intake. Annu. Rev. Nutr. 1997, 17, 237–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheon, E.; Reister, E.J.; Hunter, S.R.; Mattes, R.D. Finding the Sweet Spot: Measurement, Modification, and Application of Sweet Hedonics in Humans. Adv. Nutr. 2021, 12, 2358–2371. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, I.A. A review of recent evidence relating to sugars, insulin resistance and diabetes. Eur. J. Nutr. 2016, 55 (Suppl. 2), 17–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Zhang, Z.; Gregg, E.W.; Flanders, W.D.; Merritt, R.; Hu, F.B. Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Int. Med. 2014, 174, 516–524. [Google Scholar] [CrossRef] [Green Version]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef] [PubMed]
- WHO. Information Note about Intake of Sugars Recommended in the WHO Guideline for Adults and Children; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- White, J.R., Jr. Sugar. Clin. Diabetes 2018, 36, 74–76. [Google Scholar] [CrossRef] [Green Version]
- Appleton, K.M.; Tuorila, H.; Bertenshaw, E.J.; de Graaf, C.; Mela, D.J. Sweet taste exposure and the subsequent acceptance and preference for sweet taste in the diet: Systematic review of the published literature. Am. J. Clin. Nutr. 2018, 107, 405–419. [Google Scholar] [CrossRef]
- Mattes, R.D. Gustation as a determinant of ingestion: Methodological issues. Am. J. Clin. Nutr. 1985, 41, 672–683. [Google Scholar] [CrossRef] [Green Version]
- Mattes, R.D.; Mela, D.J. Relationships between and among selected measures of sweet-taste preference and dietary intake. Chem. Senses 1986, 11, 523–539. [Google Scholar] [CrossRef]
- Tan, S.Y.; Tucker, R.M. Sweet Taste as a Predictor of Dietary Intake: A Systematic Review. Nutrients 2019, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Drewnowski, A.; Henderson, S.A.; Levine, A.; Hann, C. Taste and food preferences as predictors of dietary practices in young women. Public Health Nutr. 1999, 2, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Pangborn, R.M.; Giovanni, M.E. Dietary intake of sweet foods and of dairy fats and resultant gustatory responses to sugar in lemonade and to fat in milk. Appetite 1984, 5, 317–327. [Google Scholar] [CrossRef]
- Weizenbaum, F.; Benson, B.; Solomon, L.; Brehony, K. Relationship among reproductive variables, sucrose taste reactivity and feeding behavior in humans. Physiol. Behav. 1980, 24, 1053–1056. [Google Scholar] [CrossRef]
- Iatridi, V.; Armitage, R.M.; Yeomans, M.R.; Hayes, J.E. Effects of Sweet-Liking on Body Composition Depend on Age and Lifestyle: A Challenge to the Simple Sweet-Liking-Obesity Hypothesis. Nutrients 2020, 12, 2702. [Google Scholar] [CrossRef]
- Garneau, N.L.; Nuessle, T.M.; Mendelsberg, B.J.; Shepard, S.; Tucker, R.M. Sweet liker status in children and adults: Consequences for beverage intake in adults. Food Qual. Prefer. 2018, 65, 175–180. [Google Scholar] [CrossRef]
- Smith, S.L.; Ludy, M.J.; Tucker, R.M. Changes in taste preference and steps taken after sleep curtailment. Physiol. Behav. 2016, 163, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, R.J.; Boakes, R.A.; Oaten, M.J.; Yeomans, M.R.; Mahmut, M.; Francis, H.M. Chemosensory Abilities in Consumers of a Western-Style Diet. Chem. Senses 2016, 41, 505–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holt, S.H.A.; Cobiac, L.; Beaumont-Smith, N.E.; Easton, K.; Best, D.J. Dietary habits and the perception and liking of sweetness among Australian and Malaysian students: A cross-cultural study. Food Qual. Prefer. 2000, 11, 299–312. [Google Scholar] [CrossRef]
- Jayasinghe, S.N.; Kruger, R.; Walsh, D.C.I.; Cao, G.; Rivers, S.; Richter, M.; Breier, B.H. Is Sweet Taste Perception Associated with Sweet Food Liking and Intake? Nutrients 2017, 9, 750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner-McGrievy, G.; Tate, D.F.; Moore, D.; Popkin, B. Taking the bitter with the sweet: Relationship of supertasting and sweet preference with metabolic syndrome and dietary intake. J. Food Sci. 2013, 78, S336–S342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leong, C.S.; Forde, C.G.; Tey, S.L.; Henry, C.J. Taste perception and diet in people of Chinese ancestry. Asia Pac. J. Clin. Nutr. 2018, 27, 478–486. [Google Scholar]
- Pangborn, R.M.; Simone, M. Body size and sweetness preference. J. Am. Diet. Assoc. 1958, 34, 924–928. [Google Scholar] [CrossRef]
- Iatridi, V.; Hayes, J.E.; Yeomans, M.R. Quantifying Sweet Taste Liker Phenotypes: Time for Some Consistency in the Classification Criteria. Nutrients 2019, 11, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armitage, R.M.; Iatridi, V.; Yeomans, M.R. Understanding sweet-liking phenotypes and their implications for obesity: Narrative review and future directions. Physiol. Behav. 2021, 235, 113398. [Google Scholar] [CrossRef] [PubMed]
- Trumbo, P.R.; Appleton, K.M.; de Graaf, K.; Hayes, J.E.; Baer, D.J.; Beauchamp, G.K.; Dwyer, J.T.; Fernstorm, J.D.; Klurfeld, D.M.; Mattes, R.D.; et al. Perspective: Measuring Sweetness in Foods, Beverages, and Diets: Toward Understanding the Role of Sweetness in Health. Adv. Nutr. 2021, 12, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Mennella, J.A.; Lukasewycz, L.D.; Griffith, J.W.; Beauchamp, G.K. Evaluation of the Monell forced-choice, paired-comparison tracking procedure for determining sweet taste preferences across the lifespan. Chem. Senses 2011, 36, 345–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-Y.; Prescott, J.; Kim, K.-O. Patterns of sweet liking in sucrose solutions and beverages. Food Qual. Prefer. 2014, 36, 96–103. [Google Scholar] [CrossRef]
- Desor, J.A.; Beauchamp, G.K. Longitudinal changes in sweet preferences in humans. Physiol. Behav. 1987, 39, 639–641. [Google Scholar] [CrossRef]
- Bobowski, N.; Mennella, J.A. Personal Variation in Preference for Sweetness: Effects of Age and Obesity. Child Obes. 2017, 13, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Coldwell, S.E.; Mennella, J.A.; Duffy, V.B.; Pelchat, M.L.; Griffith, J.W.; Smutzer, G.; Cowart, B.J.; Breslin, P.A.S.; Bartoshuk, L.M.; Hastings, L.; et al. Gustation assessment using the NIH Toolbox. Neurology 2013, 80 (Suppl. 3), S20–S24. [Google Scholar] [CrossRef] [Green Version]
- Hayes, J.E.; Allen, A.L.; Bennett, S.M. Direct comparison of the generalized visual analog scale (gVAS) and general labeled magnitude scale (gLMS). Food Qual. Prefer. 2013, 28, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Venditti, C.; Musa-Veloso, K.; Lee, H.Y.; Poon, T.; Mak, A.; Darch, M.; Juana, J.; Fronda, D.; Noori, D.; Pateman, E.; et al. Determinants of Sweetness Preference: A Scoping Review of Human Studies. Nutrients 2020, 12, 718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Hayes, J.E.; Ziegler, G.R.; Roberts, R.F.; Hopfer, H. Dose-Response Relationships for Vanilla Flavor and Sucrose in Skim Milk: Evidence of Synergy. Beverages 2018, 4, 73. [Google Scholar] [CrossRef] [Green Version]
- De Graaf, C.; Zandstra, E.H. Sweetness intensity and pleasantness in children, adolescents, and adults. Physiol. Behav. 1999, 67, 513–520. [Google Scholar] [CrossRef]
- Bertino, M.; Beauchamp, G.K.; Jen, K.-L.C. Rated taste perception in two cultural groups. Chem. Senses 1983, 8, 3–15. [Google Scholar] [CrossRef]
- Dinnella, C.; Pierguidi, L.; Spinelli, S.; Borgogno, M.; Toschi, T.G.; Predieri, S.; Lavezzi, G.; Trapani, F.; Tura, M.; Magli, M.; et al. Remote testing: Sensory test during Covid-19 pandemic and beyond. Food Qual. Prefer. 2021, 96, 104437. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.-S.; Buffin, K.; Singh, A.; Beekman, T.L.; Jarma Arroyo, S.E. Stay safe in your vehicle: Drive-in booths can be an alternative to indoor booths for laboratory sensory testing. Food Qual. Prefer. 2021, 94, 104332. [Google Scholar] [CrossRef]
- Vaira, L.A.; Salzano, G.; Petrocelli, M.; Deiana, G.; Salzano, F.A.; De Riu, G. Validation of a self-administered olfactory and gustatory test for the remotely evaluation of COVID-19 patients in home quarantine. Head Neck. 2020, 42, 1570–1576. [Google Scholar] [CrossRef]
- Hannum, M.E.; Simons, C.T. Development of the engagement questionnaire (EQ): A tool to measure panelist engagement during sensory and consumer evaluations. Food Qual. Prefer. 2020, 81, 103840. [Google Scholar] [CrossRef]
- Bangcuyo, R.G.; Smith, K.J.; Zumach, J.L.; Pierce, A.M.; Guttman, G.A.; Simons, C.T. The use of immersive technologies to improve consumer testing: The role of ecological validity, context and engagement in evaluating coffee. Food Qual. Prefer. 2015, 41, 84–95. [Google Scholar] [CrossRef]
- Samant, S.S.; Seo, H.-S. Influences of sensory attribute intensity, emotional responses, and non-sensory factors on purchase intent toward mixed-vegetable juice products under informed tasting condition. Food Res. Int. 2020, 132, 109095. [Google Scholar] [CrossRef]
- Kong, Y.; Sharma, C.; Kanala, M.; Thakur, M.; Li, L.; Xu, D.; Harrison, R.; Torrico, D.D. Virtual Reality and Immersive Environments on Sensory Perception of Chocolate Products: A Preliminary Study. Foods 2020, 9, 515. [Google Scholar] [CrossRef] [Green Version]
- Boutrolle, I.; Delarue, J.; Arranz, D.; Rogeaux, M.; Köster, E.P. Central location test vs. home use test: Contrasting results depending on product type. Food Qual. Prefer. 2007, 18, 490–499. [Google Scholar] [CrossRef]
- Bartoshuk, L.M.; Duffy, V.B.; Green, B.G.; Hoffman, H.J.; Ko, C.-W.; Lucchina, L.A.; Marks, L.E.; Snyder, D.J.; Weiffenbach, J.M. Valid across-group comparisons with labeled scales: The gLMS versus magnitude matching. Physiol. Behav. 2004, 82, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Asao, K.; Miller, J.; Arcori, L.; Lumeng, J.C.; Han-Markey, T.; Herman, W.H. Patterns of Sweet Taste Liking: A Pilot Study. Nutrients 2015, 7, 7298–7311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Methven, L.; Xiao, C.; Cai, M.; Prescott, J. Rejection thresholds (RjT) of sweet likers and dislikers. Food Qual. Prefer. 2016, 52, 74–80. [Google Scholar] [CrossRef]
- Coulon, S.M.; Miller, A.C.; Reed, J.M.; Martin, C.K. Reliability of a common solution-based taste perception test: Implications for validity and a briefer test. Eat Behav. 2012, 13, 42–45. [Google Scholar] [CrossRef] [Green Version]
- Iatridi, V.; Hayes, J.E.; Yeomans, M.R. Reconsidering the classification of sweet taste liker phenotypes: A methodological review. Food Qual. Prefer. 2019, 72, 56–76. [Google Scholar] [CrossRef]
- Petrocelli, M.; Ruggiero, F.; Baietti, A.M.; Pandolfi, P.; Salzano, G.; Salzano, F.A.; Lechien, J.R.; Saussez, S.; De Riu, G.; Vaira, L.A. Remote psychophysical evaluation of olfactory and gustatory functions in early-stage coronavirus disease 2019 patients: The Bologna experience of 300 cases. J. Laryngol. Otol. 2020, 134, 571–576. [Google Scholar] [CrossRef]
- Lee, N.; Lee, J. Comparison of Home Use Tests with Differing Time and Order Controls. Foods 2021, 10, 1275. [Google Scholar] [CrossRef]
- Zhang, M.T.; Jo, Y.; Lopetcharat, K.; Drake, M.A. Comparison of a central location test versus a home usage test for consumer perception of ready-to-mix protein beverages. J. Dairy Sci. 2020, 103, 3107–3124. [Google Scholar] [CrossRef] [PubMed]
- Schouteten, J.J.; Gellynck, X.; Slabbinck, H. Influence of organic labels on consumer’s flavor perception and emotional profiling: Comparison between a central location test and home-use-test. Food Res. Int. 2019, 116, 1000–1009. [Google Scholar] [CrossRef]
- Ervina, E.; Almli, V.L.; Berget, I.; Spinelli, S.; Sick, J.; Dinnella, C. Does Responsiveness to Basic Tastes Influence Preadolescents’ Food Liking? Investigating Taste Responsiveness Segment on Bitter-Sour-Sweet and Salty-Umami Model Food Samples. Nutrients 2021, 13, 2721. [Google Scholar] [CrossRef] [PubMed]
- Szczygiel, E.J.; Cho, S.; Tucker, R.M. The Effect of Sleep Curtailment on Hedonic Responses to Liquid and Solid Food. Foods 2019, 8, 465. [Google Scholar] [CrossRef] [Green Version]
- Mennella, J.A.; Bobowski, N.K. Psychophysical Tracking Method to Measure Taste Preferences in Children and Adults. J. Vis. Exp. 2016, 113. [Google Scholar] [CrossRef]
- Spinelli, S.; Prescott, J.; Pierguidi, L.; Dinnella, C.; Arena, E.; Braghieri, A.; Di Monaco, R.; Toschi, T.G.; Endrizzi, I.; Prosperio, C.; et al. Phenol-Rich Food Acceptability: The Influence of Variations in Sweetness Optima and Sensory-Liking Patterns. Nutrients 2021, 13, 866. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Shrager, E.E.; Lipsky, C.; Stellar, E.; Greenwood, M.R. Sugar and fat: Sensory and hedonic evaluation of liquid and solid foods. Physiol. Behav. 1989, 45, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Lavin, J.G.; Lawless, H.T. Effects of color and odor on judgments of sweetness among children and adults. Food Qual. Prefer. 1998, 9, 283–289. [Google Scholar] [CrossRef]
- Hayes, J.E.; Duffy, V.B. Oral sensory phenotype identifies level of sugar and fat required for maximal liking. Physiol. Behav. 2008, 95, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Isogai, T.; Wise, P.M. The Effects of Odor Quality and Temporal Asynchrony on Modulation of Taste Intensity by Retronasal Odor. Chem. Senses 2016, 41, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, A.S.; Mielby, L.A.; Alexi, N.; Byrne, D.V.; Kidmose, U. Individual Differences in Sweetness Ratings and Cross-Modal Aroma-Taste Interactions. Foods 2020, 9, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponzo, V.; Pellegrini, M.; Costelli, P.; Vázquez-Araújo, L.; Gayoso, L.; D’Eusebio, C.; Ghigo, E.; Bo, S. Strategies for Reducing Salt and Sugar Intakes in Individuals at Increased Cardiometabolic Risk. Nutrients 2021, 13, 279. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.A.; Moskowitz, H.R.; Campbell, R.G. Effects of body weight and food intake on pleasantness ratings for a sweet stimulus. J. Appl. Physiol. 1976, 41, 77–83. [Google Scholar] [CrossRef]
- Kampov-Polevoy, A.; Lange, L.; Bobashev, G.; Eggleston, B.; Root, T.; Garbutt, J.C. Sweet-liking is associated with transformation of heavy drinking into alcohol-related problems in young adults with high novelty seeking. Alcohol. Clin. Exp. Res. 2014, 38, 2119–2126. [Google Scholar] [CrossRef]
Aqueous Solution | Lab | Home |
0.09 M | 0.82 | 0.79 |
0.18 M | 0.76 | 0.57 |
0.35 M | 0.52 | 0.58 |
0.70 M | 0.54 | 0.54 |
1.05 M | 0.64 | 0.71 |
Pref a | 0.71 | 0.73 |
Liked b | 0.60 | 0.42 |
Vanilla Milk | Lab | Home |
0.03 M | 0.88 | 0.75 |
0.12 M | 0.47 | 0.54 |
0.23 M | 0.64 | 0.70 |
0.47 M | 0.79 | 0.79 |
0.70 M | 0.65 | 0.81 |
Pref a | 0.79 | 0.86 |
Liked b | 0.72 | 0.79 |
Source | Percent of Variance |
---|---|
Location | 0.00 |
Method | 1.24 |
Stimulus | 11.11 |
Session | 0.00 |
Participant | 51.00 |
Location X Method | 0.00 |
Location X Stimulus | 0.00 |
Location X Session | 0.21 |
Location X Participant | 0.42 |
Method X Stimulus | 0.00 |
Method X Session | 0.46 |
Method X Participant | 2.82 |
Stimulus X Session | 0.91 |
Stimulus X Participant | 6.10 |
Session X Participant | 3.73 |
Residual | 22.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheung, M.M.; Kramer, M.; Beauchamp, G.K.; Puputti, S.; Wise, P.M. Characterizing Individual Differences in Sweet Taste Hedonics: Test Methods, Locations, and Stimuli. Nutrients 2022, 14, 370. https://doi.org/10.3390/nu14020370
Cheung MM, Kramer M, Beauchamp GK, Puputti S, Wise PM. Characterizing Individual Differences in Sweet Taste Hedonics: Test Methods, Locations, and Stimuli. Nutrients. 2022; 14(2):370. https://doi.org/10.3390/nu14020370
Chicago/Turabian StyleCheung, May M., Matthew Kramer, Gary K. Beauchamp, Sari Puputti, and Paul M. Wise. 2022. "Characterizing Individual Differences in Sweet Taste Hedonics: Test Methods, Locations, and Stimuli" Nutrients 14, no. 2: 370. https://doi.org/10.3390/nu14020370
APA StyleCheung, M. M., Kramer, M., Beauchamp, G. K., Puputti, S., & Wise, P. M. (2022). Characterizing Individual Differences in Sweet Taste Hedonics: Test Methods, Locations, and Stimuli. Nutrients, 14(2), 370. https://doi.org/10.3390/nu14020370