Precision Nutrition Model Predicts Glucose Control of Overweight Females Following the Consumption of Potatoes High in Resistant Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. RS Quantification
2.2. Glucose Response
2.3. Clinical Trial and Baseline Characteristics
2.4. Statistical Analysis
2.5. Penalized Regression
3. Results
3.1. Participants and Study Design
3.2. Postprandial Biomarker Response
3.3. Dietary Patterns
3.4. Microbiome Profile
3.5. Correlative Relationships with Baseline Characteristics and Glucose iAUC
3.6. Predictve Model for PPGR following Potatoes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maziarz, M.P.; Preisendanz, S.; Juma, S.; Imrhan, V.; Prasad, C.; Vijayagopal, P. Resistant starch lowers postprandial glucose and leptin in overweight adults consuming a moderate-to-high-fat diet: A randomized-controlled trial. Nutr. J. 2017, 16, 14. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, A.; Johansson, E.; Ekström, L.; Björck, I. Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast: A randomized cross-over study. PLoS ONE 2013, 8, e59985. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, A.C.; Johansson-Boll, E.V.; Bjorck, I.M. Increased gut hormones and insulin sensitivity index following a 3-d intervention with a barley kernel-based product: A randomised cross-over study in healthy middle-aged subjects. Br. J. Nutr. 2015, 114, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Bodinham, C.L.; Smith, L.; Thomas, E.L.; Bell, J.D.; Swann, J.R.; Costabile, A.; Russell-Jones, D.; Umpleby, A.M.; Robertson, M.D. Efficacy of increased resistant starch consumption in human type 2 diabetes. Endocr. Connect. 2014, 3, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Bodinham, C.L.; Al-Mana, N.M.; Smith, L.; Robertson, M.D. Endogenous plasma glucagon-like peptide-1 following acute dietary fibre consumption. Br. J. Nutr. 2013, 110, 1429–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, M.L.; Zimmer, J.P. Postprandial glucose and insulin response to a high-fiber muffin top containing resistant starch type 4 in healthy adults: A double-blind, randomized, controlled trial. Nutrition 2018, 53, 59–63. [Google Scholar] [CrossRef]
- Hughes, R.L.; Horn, W.H.; Finnegan, P.; Newman, J.W.; Marco, M.L.; Keim, N.L.; Kable, M.E. Resistant Starch Type 2 from Wheat Reduces Postprandial Glycemic Response with Concurrent Alterations in Gut Microbiota Composition. Nutrients 2021, 13, 645. [Google Scholar] [CrossRef]
- Robertson, T.M.; Alzaabi, A.Z.; Robertson, M.D.; Fielding, B.A. Starchy Carbohydrates in a Healthy Diet: The Role of the Humble Potato. Nutrients 2018, 10, 1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maki, K.C.; Pelkman, C.L.; Finocchiaro, E.T.; Kelley, K.M.; Lawless, A.L.; Schild, A.L.; Rains, T.M. Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J. Nutr. 2012, 142, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Raatz, S.K.; Idso, L.; Johnson, L.K.; Jackson, M.I.; Combs, G.F., Jr. Resistant starch analysis of commonly consumed potatoes: Content varies by cooking method and service temperature but not by variety. Food Chem. 2016, 208, 297–300. [Google Scholar] [CrossRef] [Green Version]
- Patel, H.; Royall, P.G.; Gaisford, S.; Williams, G.R.; Edwards, C.H.; Warren, F.J.; Flanagan, B.M.; Ellis, P.R.; Butterworth, P.J. Structural and enzyme kinetic studies of retrograded starch: Inhibition of α-amylase and consequences for intestinal digestion of starch. Carbohydr. Polym. 2017, 164, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Miketinas, D.C.; Shankar, K.; Maiya, M.; Patterson, M.A. Usual dietary intake of resistant starch in US adults from NHANES 2015–2016. J. Nutr. 2020, 150, 2738–2747. [Google Scholar] [CrossRef]
- Patterson, M.A.; Fong, J.N.; Maiya, M.; Kung, S.; Sarkissian, A.; Nashef, N.; Wang, W. Chilled Potatoes Decrease Postprandial Glucose, Insulin, and Glucose-dependent Insulinotropic Peptide Compared to Boiled Potatoes in Females with Elevated Fasting Glucose and Insulin. Nutrients 2019, 11, 2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaesser, G.A.; Rodriguez, J.; Patrie, J.T.; Whisner, C.M.; Angadi, S.S. Effects of Glycemic Index and Cereal Fiber on Postprandial Endothelial Function, Glycemia, and Insulinemia in Healthy Adults. Nutrients 2019, 11, 2387. [Google Scholar] [CrossRef] [Green Version]
- Parada, J.; Aguilera, J.M. In vitro Digestibility and Glycemic Response of Potato Starch is Related to Granule Size and Degree of Gelatinization. J. Food Sci. 2009, 74, E34–E38. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, S.; Mazloom, Z.; Zamani, A.; Tabatabaee, H.R. Effect of Low Glycemic Index Diet Versus Metformin on Metabolic Syndrome. Int. J. Endocrinol. Metab. 2015, 13, e23091. [Google Scholar] [CrossRef] [Green Version]
- Askari, M.; Dehghani, A.; Abshirini, M.; Raeisi, T.; Alizadeh, S. Glycemic index, but not glycemic load, is associated with an increased risk of metabolic syndrome: Meta-analysis of observational studies. Int. J. Clin. Pract. 2021, 75, e14295. [Google Scholar] [CrossRef] [PubMed]
- Livesey, G.; Taylor, R.; Livesey, H.F.; Buyken, A.E.; Jenkins, D.J.A.; Augustin, L.S.A.; Sievenpiper, J.L.; Barclay, A.W.; Liu, S.; Wolever, T.M.S.; et al. Dietary Glycemic Index and Load and the Risk of Type 2 Diabetes: Assessment of Causal Relations. Nutrients 2019, 11, 1436. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, D.J.; Kendall, C.W.; Augustin, L.S.; Mitchell, S.; Sahye-Pudaruth, S.; Blanco Mejia, S.; Chiavaroli, L.; Mirrahimi, A.; Ireland, C.; Bashyam, B.; et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: A randomized controlled trial. Arch. Intern. Med. 2012, 172, 1653–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.Y.; Liu, J.P.; Song, Z.Y. Glycemic load, glycemic index and risk of cardiovascular diseases: Meta-analyses of prospective studies. Atherosclerosis 2012, 223, 491–496. [Google Scholar] [CrossRef]
- Sacks, F.M.; Carey, V.J.; Anderson, C.A.; Miller, E.R., 3rd; Copeland, T.; Charleston, J.; Harshfield, B.J.; Laranjo, N.; McCarron, P.; Swain, J.; et al. Effects of high vs low glycemic index of dietary carbohydrate on cardiovascular disease risk factors and insulin sensitivity: The OmniCarb randomized clinical trial. JAMA 2014, 312, 2531–2541. [Google Scholar] [CrossRef] [PubMed]
- Ze, X.; Duncan, S.H.; Louis, P.; Flint, H.J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012, 6, 1535–1543. [Google Scholar] [CrossRef]
- Schwiertz, A.; Lehmann, U.; Jacobasch, G.; Blaut, M. Influence of resistant starch on the SCFA production and cell counts of butyrate-producing Eubacterium spp. in the human intestine. J. Appl. Microbiol. 2002, 93, 157–162. [Google Scholar] [CrossRef]
- Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012, 61, 364–371. [Google Scholar] [CrossRef] [Green Version]
- MacNeil, S.; Rebry, R.M.; Tetlow, I.J.; Emes, M.J.; McKeown, B.; Graham, T.E. Resistant starch intake at breakfast affects postprandial responses in type 2 diabetics and enhances the glucose-dependent insulinotropic polypeptide—Insulin relationship following a second meal. Appl. Physiol. Nutr. Metab. 2013, 38, 1187–1195. [Google Scholar] [CrossRef]
- Psichas, A.; Sleeth, M.L.; Murphy, K.G.; Brooks, L.; Bewick, G.A.; Hanyaloglu, A.C.; Ghatei, M.A.; Bloom, S.R.; Frost, G. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. 2015, 39, 424–429. [Google Scholar] [CrossRef] [Green Version]
- Korem, T.; Zeevi, D.; Zmora, N.; Weissbrod, O.; Bar, N.; Lotan-Pompan, M.; Avnit-Sagi, T.; Kosower, N.; Malka, G.; Rein, M.; et al. Bread Affects Clinical Parameters and Induces Gut Microbiome-Associated Personal Glycemic Responses. Cell Metab. 2017, 25, 1243–1253.e5. [Google Scholar] [CrossRef] [Green Version]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized nutrition by prediction of glycemic responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef] [Green Version]
- Resistant Starch Assay Procedure; Megazyme: Bray, Ireland, 2019.
- Wolever, T.M.; Jenkins, D.J.; Jenkins, A.L.; Josse, R.G. The glycemic index: Methodology and clinical implications. Am. J. Clin. Nutr. 1991, 54, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Brouns, F.; Bjorck, I.; Frayn, K.N.; Gibbs, A.L.; Lang, V.; Slama, G.; Wolever, T.M. Glycaemic index methodology. Nutr. Res. Rev. 2005, 18, 145–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banna, J.C.; McCrory, M.A.; Fialkowski, M.K.; Boushey, C. Examining plausibility of self-reported energy intake data: Considerations for method selection. Front. Nutr. 2017, 4, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thijs, S.; Op De Beeck, M.; Beckers, B.; Truyens, S.; Stevens, V.; Van Hamme, J.D.; Weyens, N.; Vangronsveld, J. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front. Microbiol. 2017, 8, 494. [Google Scholar] [CrossRef] [PubMed]
- Dziura, J.D.; Post, L.A.; Zhao, Q.; Fu, Z.; Peduzzi, P. Strategies for dealing with missing data in clinical trials: From design to analysis. Yale J. Biol. Med. 2013, 86, 343–358. [Google Scholar]
- Sirimongkolkasem, T.; Drikvandi, R. On regularisation methods for analysis of high dimensional data. Ann. Data Sci. 2019, 6, 737–763. [Google Scholar] [CrossRef] [Green Version]
- Schreiber-Gregory, D.; Jackson, H.M. Regulation Techniques for Multicollinearity: Lasso, Ridge, and Elastic Net. In Proceedings of the SAS Conference Proceedings: Western Users of SAS Software, Denver, CO, USA, 8–11 April 2018. [Google Scholar]
- Organization, FaA. Available online: http://www.fao.org/3/W8079E/w8079e0a.htm (accessed on 1 March 2021).
- Sharma, M.; Li, Y.; Stoll, M.L.; Tollefsbol, T.O. The Epigenetic Connection Between the Gut Microbiome in Obesity and Diabetes. Front. Genet. 2020, 10, 1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietary Guidelines for Americans, 2020–2025, 9th ed.; U.S. Department of Agriculture and U.S. Department of Health and Human Services: Washington, DC, USA, 2020; p. 20250.
- Available online: https://www.arb-silva.de/ (accessed on 3 February 2021).
- Mendes-Soares, H.; Raveh-Sadka, T.; Azulay, S.; Ben-Shlomo, Y.; Cohen, Y.; Ofek, T.; Stevens, J.; Bachrach, D.; Kashyap, P.; Segal, L.; et al. Model of personalized postprandial glycemic response to food developed for an Israeli cohort predicts responses in Midwestern American individuals. Am. J. Clin. Nutr. 2019, 110, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Søndertoft, N.B.; Vogt, J.K.; Arumugam, M.; Kristensen, M.; Gøbel, R.J.; Fan, Y.; Lyu, L.; Bahl, M.I.; Eriksen, C.; Ängquist, L.; et al. The intestinal microbiome is a co-determinant of the postprandial plasma glucose response. PLoS ONE 2020, 15, e0238648. [Google Scholar] [CrossRef]
- Stewart, M.L.; Wilcox, M.L.; Bell, M.; Buggia, M.A.; Maki, K.C. Type-4 resistant starch in substitution for available carbohydrate reduces postprandial glycemic response and hunger in acute, randomized, double-blind, controlled study. Nutrients 2018, 10, 129. [Google Scholar] [CrossRef] [Green Version]
- Rosas-Pérez, A.M.; Honma, K.; Goda, T. Sustained effects of resistant starch on the expression of genes related to carbohydrate digestion/absorption in the small intestine. Int. J. Food Sci. Nutr. 2020, 71, 572–580. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, D.; Fang, Z.; Jie, Z.; Qiu, X.; Zhang, C.; Chen, Y.; Ji, L. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 2013, 8, e71108. [Google Scholar] [CrossRef]
- Xu, J.; Lian, F.; Zhao, L.; Zhao, Y.; Chen, X.; Zhang, X.; Guo, Y.; Zhang, C.; Zhou, Q.; Xue, Z.; et al. Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J. 2015, 9, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Postprandial Glucose | Low-RS Potato | High-RS Potato | Delta (Low − High) | p-Value |
---|---|---|---|---|
iAUC, mg·h/mL | 1180 (500, 1910) | 709 (316, 1038) | 471 | 0.021 |
Concentration maximum, mg/dL | 153.2 (129.6, 174.7) | 140.93 (124.6, 160.8) | 12.3 | 0.047 |
Concentration minimum, mg/dL | 95.93 (85.2, 120.9) | 100.70 (89, 109) | −4.8 | 0.417 |
Time to peak concentration, minutes | 30 (15, 30) | 30 (15, 30) | 0 | 0.767 |
Time to minimum concentration, minutes | 120 (22, 120) | 90 (30, 120) | 30 | 0.99 |
Dietary Variable | Mean (SD) |
---|---|
Energy, kcal | 1828 (643) |
Total fat, g | 78.7 (36.1) |
Kcals from fat, % | 36.0 (5.1) |
MUFA, g | 27.9 (12.4) |
PUFA, g | 18.8 (9.1) |
Trans FA, g | 2.3 (1.17) |
SFA, g | 25.4 (12.7) |
Protein, g | 75.0 (28.0) |
Kcals from protein, % | 16.6 (3.5) |
Total CHO, g | 206.4 (69.2) |
Kcals from CHO, % | 45.5 (8.1) |
Total sugar, g | 75.4 (36.9) |
Added sugar, g | 48.1 (27.8) |
Available CHO, g | 191.1 (66.7) |
Total Fiber, g | 15.2 (5.7) |
Soluble fiber, g | 4.5 (1.5) |
Insoluble fiber, g | 10.7 (4.4) |
Glycemic Index | 60.3 (4.6) |
Glucose–Low-RS Potato | Glucose–High-RS Potato | |||
---|---|---|---|---|
Rho | p-Value | Rho | p-Value | |
ANTHROPOMETRICS | ||||
Height, cm | −0.38 | 0.04 | −0.23 | 0.23 |
METABOLIC | ||||
Fasting glucose at high-RS intervention, mg/dL | 0.38 | 0.04 | 0.21 | 0.26 |
DIET | ||||
Insoluble fiber, g | −0.20 | 0.28 | −0.37 | 0.04 |
Kcals from fat, % | −0.13 | 0.49 | 0.39 | 0.03 |
Kcals from protein, % | −0.20 | 0.30 | 0.50 | 0.005 |
MICROBIOME † (relative abundance) | ||||
Actinobacteria (phyla) | −0.16 | 0.67 | −0.40 | 0.04 |
Faecalibacterium | −0.44 | 0.02 | 0.03 | 0.87 |
Univariate | Multivariate | |||
---|---|---|---|---|
β Coef. (95% CI) | p-Value | β Coef. (95% CI) | p-Value | |
Low-RS (vs. high-RS) potato | 547.65 (153.72, 941.58) | 0.01 | 547.65 (131.61, 963.68) | 0.01 |
Faecalibacterium | −69.37 (−124.15, −14.58) | 0.02 | −73.49 (−128.51, −18.47) | 0.01 |
Bacteroides | 11.26 (−11.78, 34.31) | 0.33 | 8.69 (−14.33, 31.72) | 0.45 |
Body mass index (kg/m2) | 49.05 (−77.58, 175.68) | 0.39 | 40.66 (−54.21, 135.54) | 0.39 |
Alpha Diversity, Simpson | −5599.38 (−15,827.10, 4628.34) | 0.27 | 110.87 (−10,209.57, 10,431.30) | 0.98 |
Insoluble fiber, g | −50.10 (−101.24, 1.05) | 0.06 | −49.35 (−116.56, 17.86) | 0.14 |
Parabacteroides | −70.90 (−173.86, 32.06) | 0.17 | −42.08 (−136.35, 52.18) | 0.37 |
Intercept | -- | -- | 292.52 (−9705.98, 10,291.01) | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nolte Fong, J.V.; Miketinas, D.; Moore, L.W.; Nguyen, D.T.; Graviss, E.A.; Ajami, N.; Patterson, M.A. Precision Nutrition Model Predicts Glucose Control of Overweight Females Following the Consumption of Potatoes High in Resistant Starch. Nutrients 2022, 14, 268. https://doi.org/10.3390/nu14020268
Nolte Fong JV, Miketinas D, Moore LW, Nguyen DT, Graviss EA, Ajami N, Patterson MA. Precision Nutrition Model Predicts Glucose Control of Overweight Females Following the Consumption of Potatoes High in Resistant Starch. Nutrients. 2022; 14(2):268. https://doi.org/10.3390/nu14020268
Chicago/Turabian StyleNolte Fong, Joy V., Derek Miketinas, Linda W. Moore, Duc T. Nguyen, Edward A. Graviss, Nadim Ajami, and Mindy A. Patterson. 2022. "Precision Nutrition Model Predicts Glucose Control of Overweight Females Following the Consumption of Potatoes High in Resistant Starch" Nutrients 14, no. 2: 268. https://doi.org/10.3390/nu14020268
APA StyleNolte Fong, J. V., Miketinas, D., Moore, L. W., Nguyen, D. T., Graviss, E. A., Ajami, N., & Patterson, M. A. (2022). Precision Nutrition Model Predicts Glucose Control of Overweight Females Following the Consumption of Potatoes High in Resistant Starch. Nutrients, 14(2), 268. https://doi.org/10.3390/nu14020268