Effect of Whey Protein Supplementation in Postmenopausal Women: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Eligibility Criteria and Study Selection
2.3. Data Extraction and Quality Assessment
2.4. Data Synthesis and Statistical Analysis
2.5. Quality of Evidence
3. Results
3.1. Search Results and Trial Characteristics
3.2. Risk of Bias Assessment
3.3. Participants’ Characteristics
3.4. RT Characteristics
3.5. WP Characteristics
3.6. Results of Meta-Analysis
3.7. Effect of WP Supplementation on Muscle Strength and Functional Capacity
3.8. Effect of WP Supplementation on Muscle Mass Gains
3.9. Effect of WP Supplementation on Fat Mass (FM) and Body Weight Loss (BW)
3.10. Effect of WP Supplementation on Daily Dietary Nutrients Intake
3.11. Quality of Evidence Assessment by GRADE
4. Discussion
4.1. Effect of WP Supplementation on Muscle Strength and Functional Capacity
4.2. Effect of WP Supplementation on Muscle Mass
4.3. Effect of WP Supplementation on FM and BW Loss
4.4. Effect of WP Supplementation on Daily Dietary Nutrients Intake
4.5. Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
BC | Biceps curl strength |
BW | Body weight |
CHI | Carbohydrate intake |
CIs | Confidence intervals |
CP | Chest press |
FI | Fat intake |
FM | Fat mass |
GS | Grip strength |
GST | Gait speed test |
KE | Knee extension strength |
KF | Knee flexion strength |
LLLM | Lower limb lean mass |
PI | Protein intake |
PLA | Placebo |
RCTs | Randomized controlled trials |
reps | Repetitions |
RT | Resistance training |
RFSP | Rising from sitting position |
SMM | Skeletal muscle mass |
SMDs | Standardized mean differences |
TEI | Total energy intake |
GRADE | The Grading of Recommendations, Assessment, Development, and Evaluations |
ULLM | Upper limb lean mass |
WP | Whey protein |
References
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, M. Clinical definition of sarcopenia. Clin. Cases Miner. Bone Metab. 2014, 11, 177–180. [Google Scholar] [CrossRef]
- Kim, T.N.; Choi, K.M. The Implications of Sarcopenia and Sarcopenic Obesity on Cardiometabolic Disease. J. Cell. Biochem. 2015, 116, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Candales, A.; Hernández Burgos, P.M.; Hernandez-Suarez, D.F.; Harris, D. Linking Chronic Inflammation with Cardiovascular Disease: From Normal Aging to the Metabolic Syndrome. J. Nat. Sci. 2017, 3, e341. [Google Scholar] [PubMed]
- Follis, S.; Cook, A.; Bea, J.W.; Going, S.B.; Laddu, D.; Cauley, J.A.; Shadyab, A.H.; Stefanick, M.L.; Chen, Z. Association Between Sarcopenic Obesity and Falls in a Multiethnic Cohort of Postmenopausal Women. J. Am. Geriatr. Soc. 2018, 66, 2314–2320. [Google Scholar] [CrossRef] [Green Version]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Leblanc, V.; Bégin, C.; Corneau, L.; Dodin, S.; Lemieux, S. Gender differences in dietary intakes: What is the contribution of motivational variables? J. Hum. Nutr. Diet. 2014, 28, 37–46. [Google Scholar] [CrossRef]
- Fernandez, M.L.; Murillo, A.G. Postmenopausal Women Have Higher HDL and Decreased Incidence of Low HDL than Premenopausal Women with Metabolic Syndrome. Healthcare 2016, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Devries, M.C.; Phillips, S. Supplemental Protein in Support of Muscle Mass and Health: Advantage Whey. J. Food Sci. 2015, 80, A8–A15. [Google Scholar] [CrossRef]
- Tipton, K.D.; Elliott, T.A.; Cree-Green, M.; Aarsland, A.A.; Sanford, A.P.; Wolfe, R.R. Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am. J. Physiol. Metab. 2007, 292, E71–E76. [Google Scholar] [CrossRef]
- Lee, J.-H.; Cho, A.-R.; Kwon, Y.-J. Association between dairy protein and body composition in middle-aged and older women: A community-based, 12-year, prospective cohort study. Clin. Nutr. 2021, 41, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-C.; Shih, M.-H.; Chen, C.-D.; Yeh, S.-L. Effects of adequate dietary protein with whey protein, leucine, and vitamin D supplementation on sarcopenia in older adults: An open-label, parallel-group study. Clin. Nutr. 2020, 40, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-D.; Tsauo, J.-Y.; Wu, Y.-T.; Cheng, C.-P.; Chen, H.-C.; Huang, Y.-C.; Chen, H.-C.; Liou, T.-H. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2017, 106, 1078–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ihalainen, J.K.; Inglis, A.; Mäkinen, T.; Newton, R.U.; Kainulainen, H.; Kyröläinen, H.; Walker, S. Strength Training Improves Metabolic Health Markers in Older Individual Regardless of Training Frequency. Front. Physiol. 2019, 10, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.-J.; Shiroy, D.M.; Jones, L.Y.; Clark, D.O. Systematic review of functional training on muscle strength, physical functioning, and activities of daily living in older adults. Eur. Rev. Aging Phys. Act. 2014, 11, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.N.; O’Sullivan, A.J. Sex Differences in Energy Metabolism Need to Be Considered with Lifestyle Modifications in Humans. J. Nutr. Metab. 2011, 2011, 391809. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.I.; Atherton, P.; Villareal, D.T.; Frimel, T.N.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Differences in Muscle Protein Synthesis and Anabolic Signaling in the Postabsorptive State and in Response to Food in 65–80 Year Old Men and Women. PLoS ONE 2008, 3, e1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, D.K.; Quinn, M.A.; Saunders, D.H.; Greig, C.A. Protein Supplementation Does Not Significantly Augment the Effects of Resistance Exercise Training in Older Adults: A Systematic Review. J. Am. Med. Dir. Assoc. 2016, 17, 959.e1–959.e9. [Google Scholar] [CrossRef] [Green Version]
- Finger, D.; Goltz, F.R.; Umpierre, D.; Meyer, E.; Rosa, L.H.T.; Schneider, C.D. Effects of Protein Supplementation in Older Adults Undergoing Resistance Training: A Systematic Review and Meta-Analysis. Sports Med. 2014, 45, 245–255. [Google Scholar] [CrossRef]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384, Erratum in Br. J. Sports Med. 2020, 54, e7. [Google Scholar] [CrossRef]
- Kirwan, R.P.; Mazidi, M.; García, C.R.; E Lane, K.; Jafari, A.; Butler, T.; de Heredia, F.P.; Davies, I.G. Protein interventions augment the effect of resistance exercise on appendicular lean mass and handgrip strength in older adults: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2021, 115, 897–913. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirk, B.; Mooney, K.; Cousins, R.; Angell, P.; Jackson, M.; Pugh, J.N.; Coyles, G.; Amirabdollahian, F.; Khaiyat, O. Effects of exercise and whey protein on muscle mass, fat mass, myoelectrical muscle fatigue and health-related quality of life in older adults: A secondary analysis of the Liverpool Hope University—Sarcopenia Ageing Trial (LHU-SAT). Eur. J. Appl. Physiol. 2020, 120, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Tokuda, Y. Effect of whey protein supplementation after resistance exercise on the muscle mass and physical function of healthy older women: A randomized controlled trial. Geriatr. Gerontol. Int. 2018, 18, 1398–1404. [Google Scholar] [CrossRef] [Green Version]
- Herda, A.A.; McKay, B.D.; Herda, T.J.; Costa, P.B.; Stout, J.R.; Cramer, J.T. Changes in Strength, Mobility, and Body Composition Following Self-Selected Exercise in Older Adults. J. Aging Phys. Act. 2021, 29, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Nabuco, H.C.; Tomeleri, C.M.; Sugihara, P.; Fernandes, R.R.; Cavalcante, E.F.; dos Santos, L.; Silva, A.M.; Sardinha, L.B.; Cyrino, E.S. Effect of whey protein supplementation combined with resistance training on cellular health in pre-conditioned older women: A randomized, double-blind, placebo-controlled trial. Arch. Gerontol. Geriatr. 2019, 82, 232–237. [Google Scholar] [CrossRef]
- Nabuco, H.; Tomeleri, C.; Junior, P.S.; Fernandes, R.; Cavalcante, E.; Venturini, D.; Barbosa, D.; Silva, A.; Sardinha, L.; Cyrino, E. Effects of pre- or post-exercise whey protein supplementation on body fat and metabolic and inflammatory profile in pre-conditioned older women: A randomized, double-blind, placebo-controlled trial. Nutr. Metab. Cardiovasc. Dis. 2018, 29, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Nabuco, H.C.; Tomeleri, C.M.; Fernandes, R.R.; Junior, P.S.; Cavalcante, E.F.; Venturini, D.; Barbosa, D.S.; Silva, A.M.; Sardinha, L.B.; Cyrino, E.S. Effects of Protein Intake Beyond Habitual Intakes Associated with Resistance Training on Metabolic Syndrome-Related Parameters, Isokinetic Strength, and Body Composition in Older Women. J. Aging Phys. Act. 2019, 27, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Nabuco, H.C.G.; Tomeleri, C.M.; Fernandes, R.R.; Sugihara, P., Jr.; Cavalcante, E.F.; Cunha, P.M.; Antunes, M.; Nunes, J.P.; Venturini, D.; Barbosa, D.S.; et al. Effect of whey protein supplementation combined with resistance training on body composition, muscular strength, functional capacity, and plasma-metabolism biomarkers in older women with sarcopenic obesity: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. ESPEN 2019, 32, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Sugihara Junior, P.; Ribeiro, A.S.; Nabuco, H.C.G.; Fernandes, R.R.; Tomeleri, C.M.; Cunha, P.M.; Venturini, D.; Barbosa, D.S.; Schoenfeld, B.J.; Cyrino, E.S. Effects of Whey Protein Supplementation Associated with Resistance Training on Muscular Strength, Hypertrophy, and Muscle Quality in Preconditioned Older Women. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Nabuco, H.C.G.; Tomeleri, C.M.; Sugihara Junior, P.; Fernandes, R.R.; Cavalcante, E.F.; Antunes, M.; Ribeiro, A.S.; Teixeira, D.C.; Silva, A.M.; Sardinha, L.B.; et al. Effects of Whey Protein Supplementation Pre- or Post-Resistance Training on Muscle Mass, Muscular Strength, and Functional Capacity in Pre-Conditioned Older Women: A Randomized Clinical Trial. Nutrients 2018, 10, 563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, R.R.; Nabuco, H.C.; Junior, P.S.; Cavalcante, E.F.; Fabro, P.M.; Tomeleri, C.M.; Ribeiro, A.S.; Barbosa, D.S.; Venturini, D.; Schoenfeld, B.J.; et al. Effect of protein intake beyond habitual intakes following resistance training on cardiometabolic risk disease parameters in pre-conditioned older women. Exp. Gerontol. 2018, 110, 9–14. [Google Scholar] [CrossRef]
- Stojkovic, V.; Simpson, C.A.; Sullivan, R.R.; Cusano, A.M.; Kerstetter, J.E.; Kenny, A.M.; Insogna, K.L.; Bihuniak, J.D. The Effect of Dietary Glycemic Properties on Markers of Inflammation, Insulin Resistance, and Body Composition in Postmenopausal American Women: An Ancillary Study from a Multicenter Protein Supplementation Trial. Nutrients 2017, 9, 484. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; A Kerr, D.; Meng, X.; Devine, A.; Solah, V.; Binns, C.W.; Prince, R.L. Two-Year Whey Protein Supplementation Did Not Enhance Muscle Mass and Physical Function in Well-Nourished Healthy Older Postmenopausal Women. J. Nutr. 2015, 145, 2520–2526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisgarber, K.D.; Candow, D.G.; Farthing, J.P. Whey protein and high-volume resistance training in postmenopausal women. J. Nutr. Health Aging 2015, 19, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, J.M.; Zhu, K.; Lewis, J.R.; Kerr, D.; Meng, X.; Solah, V.; Devine, A.; Binns, C.; Woodman, R.; Prince, R.L. Long-term effects of a protein-enriched diet on blood pressure in older women. Br. J. Nutr. 2011, 107, 1664–1672. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.-D.; Lee, P.-H.; Hsiao, D.-J.; Huang, S.-W.; Tsauo, J.-Y.; Chen, H.-C.; Liou, T.-H. Effects of Protein Supplementation Combined with Exercise Intervention on Frailty Indices, Body Composition, and Physical Function in Frail Older Adults. Nutrients 2018, 10, 1916. [Google Scholar] [CrossRef] [Green Version]
- West, D.W.D.; Sawan, S.A.; Mazzulla, M.; Williamson, E.; Moore, D.R. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study. Nutrients 2017, 9, 735. [Google Scholar] [CrossRef]
- Haraldstad, K.; Rohde, G.; Stea, T.H.; Lohne-Seiler, H.; Hetlelid, K.; Paulsen, G.; Berntsen, S. Changes in health-related quality of life in elderly men after 12 weeks of strength training. Eur. Rev. Aging Phys. Act. 2017, 14, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Cholewa, J.M.; Newmire, D.E.; Zanchi, N. Carbohydrate restriction: Friend or foe of resistance-based exercise performance? Nutrition 2019, 60, 136–146. [Google Scholar] [CrossRef]
- Morton, R.W.; McGlory, C.; Phillips, S.M. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front. Physiol. 2015, 6, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elahi, D.; Muller, D.C.; Egan, J.M.; Andres, R.; Veldhuist, J.; Meneilly, G.S. Glucose tolerance, glucose utilization and insulin secretion in ageing. Novartis Found Symp. 2002, 242, 222–242; discussion 242–246. [Google Scholar]
- Hayashida, I.; Tanimoto, Y.; Takahashi, Y.; Kusabiraki, T.; Tamaki, J. Correlation between Muscle Strength and Muscle Mass, and Their Association with Walking Speed, in Community-Dwelling Elderly Japanese Individuals. PLoS ONE 2014, 9, e111810. [Google Scholar] [CrossRef]
- Snyder, A.C. Exercise, Nutrition, and Health; NAP Limited: Tokyo, Japan, 1998; 152p. [Google Scholar]
- Colonetti, T.; Grande, A.J.; Milton, K.; Foster, C.; Alexandre, M.C.M.; Uggioni, M.L.R.; Rosa, M. Effects of whey protein supplement in the elderly submitted to resistance training: Systematic review and meta-analysis. Int. J. Food Sci. Nutr. 2016, 68, 257–264. [Google Scholar] [CrossRef]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin. Nutr. 2018, 38, 10–47. [Google Scholar] [CrossRef]
Study, Year Country | Intervention Duration | Number of Female Participants | Female Participant Health Status | Resistance Training | Whey Protein Supplementation | Placebo Supplementation | Outcome Measured and Used |
---|---|---|---|---|---|---|---|
Ashley et al., 2021 [25] USA | 12 weeks | With RT: 67 | Well-fed healthy | 3 days/week 3 sets × 8–12 reps 2 upper limb exercises 1 lower limb exercise 1 aerobic exercise | 20 g × 2/day post RT or before meal | maltodextrin non-isocaloric non-nitrogenous | CP GST GS BW FM |
Kirk et al., 2020 [23] UK | 16 weeks | With RT: 25 Without RT: 27 | Non-frail healthy RT naïve | 2 days/week 2 sets to fatigue 4 upper limb exercises 3 lower limb exercises moderate weight | 1.5 g/kg BM−1 day−1 | - | SMM KF GS KE FM |
Nabuco et al., 2019, 1st [26] Brazil | 12 weeks | With RT: 44 | Healthy or sarcopenic RT naïve | 3 days/week 3 sets × 8–12 reps 4 upper limb exercises 4 lower limb exercises | 27.1 g post RT | maltodextrin isocaloric nitrogenous | - |
Nabuco et al., 2019, 2nd [27] Brazil | 12 weeks | With RT: 44 | Healthy or sarcopenic RT naïve | 3 days/week 3 sets × 8–12 reps 4 upper limb exercises 4 lower limb exercises | 27.1 g post RT | maltodextrin isocaloric nitrogenous | FM |
Nabuco et al., 2019, 3rd [28] Brazil | 12 weeks | With RT: 30 | Healthy or sarcopenic RT naïve | 3 days/week 3 sets × 8–12 reps 4 upper limb exercises 4 lower limb exercises | 27.1 g post RT | maltodextrin isocaloric nitrogenous | - |
Nabuco et al., 2019, 4th [29] Brazil | 12 weeks | With RT: 26 | Sarcopenic RT naïve | 3 days/week 3 sets × 8–12 reps 4 upper limb exercises 4 lower limb exercises | 27.1 g post RT | maltodextrin isocaloric nitrogenous | - |
Sugihara et al., 2018 [30] Brazil | 12 weeks | With RT: 31 | Healthy or sarcopenic RT naïve | 3 days/week 3 sets × 8–12 reps 4 upper limb exercises 4 lower limb exercises | 27.1 g post RT | maltodextrin isocaloric nitrogenous | TEI CHI PI FI |
Nabuco et al., 2018 [31] Brazil | 12 weeks | With RT: 44 | Healthy or sarcopenic RT naïve | 3 days/week 3 sets × 8–12 reps 4 upper limb exercises 4 lower limb exercises | 27.1 g post RT | maltodextrin isocaloric nitrogenous | ULLM SMM BC CP GST LLLM KE RFSP |
Mori et al., 2018 [24] Japan | 24 weeks | With RT: 50 | Healthy RT naïve | 2 days/week >40 min 2 upper limb exercises 5 lower limb exercises 50–70% 1RM | 22.3 g post RT | - | ULLM GST LLLM GS KE BW |
Fernandes et al., 2018 [32] Brazil | 12 weeks | With RT: 32 | Healthy or sarcopenic RT naïve | 3 days/week 3 sets × 8–12 reps 4 upper limb exercises 4 lower limb exercises | 27.1 g post RT | maltodextrin isocaloric nitrogenous | - |
Stojkovic et al., 2017 [33] USA | 72 weeks | Without RT: 84 | - | - | 20 g | maltodextrin isocaloric | FM TEI CHI PI FI |
Zhu et al., 2015 [34] Australia | 52 weeks | Without RT: 196 | - | - | 30 g (milk and whey protein) | carbohydrate isocaloric nitrogenous | ULLM SMM KF LLLM GS KE BW RFSP |
Weisgarber et al., 2014 [35] Canada | 10 weeks | With RT: 12 | Healthy RT naïve | 2 days/week 0–6 sets to fatigue 2 upper limb exercises 2 lower limb exercises 30% 1 RM | 40 g | maltodextrin isocaloric non-nitrogenous | BC KF KE |
Hodgson et al., 2012 [36] Australia | 52 weeks | Without RT: 196 | - | - | 30 g (milk and whey protein) | carbohydrate isocaloric nitrogenous | TEI CHI PI FI |
Study, Year | Age | BMI (kg·m−2) | FM (kg) | KE (kg) | GS (kg) | Relative Protein Intake (g/kg BM−1 Day−1) |
---|---|---|---|---|---|---|
Ashley et al., 2021 [25] | 61.93 ± 1.23 (WP) 60.64 ± 0.93 (PLA) | - | 23.639 ± 1.37 (WP) 24.25 ± 0.89 (PLA) | - | 26.851 ± 0.80 (WP) 27.88 ± 0.75 (PLA) | 1.1 ± 0.09 (WP) 1.20 ± 0.09 (PLA) |
Nabuco et al., 2018, 2019 1st, 2nd [26,27,31] | 66.2 ± 9.4 (WP) 66.5 ± 7.1 (PLA) | 25.3 ± 5.4 (WP) 23.8 ± 3.7 (PLA) | 23.2 ± 8.4 (WP) 22.9 ± 7.5 (PLA) | 55.0 ± 11.0 (WP) 52.0 ± 13.0 (PLA) | - | 0.94 ± 0.34 (WP) 0.95 ± 0.27 (PLA) |
Nabuco et al., 2019, 4th [29] | 68.0 ± 4.2 (WP) 70.1 ± 3.9 (PLA) | 26.4 ± 3.0 (WP) 27.4 ± 3.0 (PLA) | 23.8 ± 5.4 (WP) 23.8 ± 5.9 (PLA) | 48.7 ± 10.8 (WP) 50.9 ± 9.9 (PLA) | - | 0.93 ± 0.36 (WP) 0.97 ± 0.28 (PLA) |
Mori et al., 2018 [24] | 70.6 ± 4.2 (WP) 70.6 ± 4.2 (control) | 22.1 ± 2.1 (WP) 22.9 ± 2.9 (control) | - | 23.8 ± 6.3 (WP) 26.7 ± 3.8 (control) | 22.4 ± 3.4 (WP) 23.1 ± 5.3 (control) | 1.3 ± 0.0 (WP) 1.3 ± 0.0 (control) |
Stojkovic et al., 2017 [33] | 68.9 ± 0.9 (WP) 69.3 ± 0.9 (PLA) | 26.0 ± 0.6 (WP) 25.8 ± 0.6 (PLA) | 25.9 ± 1.3 (WP) 25.5 ± 1.1 (PLA) | - | - | - |
Weisgarber et al., 2014 [35] | 57 ± 4.7 | 28.3 ± 7.0 | - | 59.7 ± 15.3 (WP) 61.0 ± 16.1 (PLA) | - | - |
Kirk et al., 2020 (RT) [23] | 69 ± 6 (WP) 66 ± 4 (control) | 27.4 ± 4.9 (WP) 28.1 ± 7.4 (control) | 22.8 ± 10.5 (WP) 28.2 ± 17.6 (control) | 173 ± 46 (MVC) (WP) 233 ± 126 (MVC) (control) | 23.2 ± 5.5 (MVC) (WP) 21.7 ± 4.8 (MVC) (control) | 1.16 ± 0.4 (WP) 1.10 ± 0.4 (control) |
Kirk et al., 2020 (non-RT) [23] | 72 ± 6 (WP) 68 ± 6 (control) | 27.1 ± 4.1 (WP) 26.2 ± 4.5 (control) | 27.6 ± 8.5 (WP) 25.5 ± 11.9 (control) | 190 ± 105 (MVC) (WP) 180 ± 49 (MVC) (control) | 22.4 ± 4.4 (MVC) (WP) 23.9 ± 4.1 (MVC) (control) | 0.99 ± 0.2 (WP) 0.98 ± 0.3 (control) |
Nabuco et al., 2019, 3rd [28] | 69.2 ± 4.1 (WP) 68.4 ± 4.5 (PLA) | 27.4 ± 5.1 (WP) 26.6 ± 3.4 (PLA) | - | - | - | 0.94 ± 0.30 (WP) 0.96 ± 0.22 (PLA) |
Sugihara et al., 2018 [30] | 67.4 ± 4.1 (WP) 67.8 ± 4.1 (PLA) | 25.6 ± 2.4 (WP) 25.4 ± 2.6 (PLA) | 25.7 ± 4.6 (WP) 26.2 ± 5.8 (PLA) | 52.7 ± 10.3 (WP) 52.8 ± 13.3 (PLA) | - | 0.85 ± 0.1 (WP) 0.81 ± 0.1 (PLA) |
Fernandes et al., 2018 [32] | 67.3 ± 4.1 (WP) 67.8 ± 4.0 (PLA) | 25.9 ± 2.7 (WP) 25.4 ± 2.6 (PLA) | 25.7 ± 4.6 (WP) 26.2 ± 5.8 (PLA) | 52.7 ± 10.3 (WP) 52.8 ± 13.3 (PLA) | - | 0.85 ± 0.1 (WP) 0.81 ± 0.1 (PLA) |
Zhu et al., 2015 [34] | 74.2 ± 2.8 (WP) 74.3 ± 2.6 (PLA) | 26.1 ± 3.8 (WP) 27.2 ± 4.0 (PLA) | - | 15.4 ± 5.3 (WP) 16.1 ± 7.2 (PLA) | 21.7 ± 5.2 (WP) 21.7 ± 5.5 (PLA) | 1.2 ± 0.3 (WP) 1.1 ± 0.3 (PLA) |
Hodgson et al., 2012 [36] | 74.2 ± 2.8 (WP) 74.3 ± 2.6 (PLA) | 26.1 ± 3.8 (WP) 27.2 ± 4.0 (PLA) | - | - | - | 1.1 ± 0.3 (WP) 1.1 ± 0.3 (PLA) |
Combined WP with RT and without RT | ||||||||
---|---|---|---|---|---|---|---|---|
Outcome (PLA vs. WP) | Number of Articles | Mean Difference, with 95% Confidence Interval | I2 | Risk of Bias | Inconsistency | Indirectness | Imprecision | Quality of Evidence |
Upper limb lean mass | 3 | −0.2415 (−0.473, −0.01) | 1.5% | −1 | −0 | −0 | −0 | Moderate |
Lower limb lean mass | 3 | 0.028 (−0.214, 0.27) | 93.6% | −1 | −1 | −0 | −0 | Low |
Skeletal muscle mass | 3 | 0.08 (−0.533, 0.693) | 67% | −1 | −1 | −0 | −0 | Low |
Grip strength | 5 | 0.1005 (−0.107, 0.308) | 0% | −1 | −0 | −0 | −0 | Moderate |
Biceps curl strength | 2 | 0.6805 (0.176, 1.185) | 0% | −2 | −0 | −0 | −0 | Low |
Knee extension strength | 6 | 0.027 (−0.194, 0.248) | 44% | −2 | −0 | −0 | −0 | Low |
Knee flexion strength | 4 | 0.044 (−0.214, 0.302) | 22% | −2 | −0 | −0 | −0 | Low |
Gait speed test | 3 | 0.1625 (−0.261, 0.586) | 44% | −1 | −0 | −0 | −1 | Low |
Rising from sitting position | 2 | −0.036 (−0.291, 0.219) | 0% | −1 | −0 | −0 | −0 | Moderate |
Chest press | 2 | 0.108 (−0.268, 0.484) | 0% | −1 | −0 | −0 | −1 | Low |
Fat mass | 5 | −0.107 (−0.443, 0.229) | 93% | −1 | −1 | −0 | −1 | Very low |
Body weight | 4 | −0.115 (−0.291, 0.061) | 0% | −1 | −0 | −0 | −0 | Moderate |
Protein intake | 3 | −0.0685 (−0.396, 0.259) | 94% | −0 | −1 | −0 | −1 | Low |
Fat intake | 3 | −0.085 (−0.311, 0.141) | 0% | −0 | −0 | −0 | −0 | High |
Carbohydrate intake | 3 | −0.0205 (−0.365, 0.324) | 32% | −0 | −0 | −0 | −1 | Moderate |
Total energy intake | 3 | −0.067 (−0.293, 0.159) | 2.84% | −0 | −0 | −0 | −0 | High |
WP with RT | ||||||||
Upper limb lean mass | 2 | 0 (−0.405, 0.405) | 0% | −1 | −0 | −0 | −1 | Low |
Lower limb lean mass | 2 | 1.103 (0.632, 1.574) | 14% | −1 | −0 | −0 | −0 | Moderate |
Skeletal muscle mass | 2 | 0.4775 (−0.473, 1.428) | 72% | −1 | −0 | −0 | −1 | Low |
Grip strength | 3 | 0.1765 (−0.156, 0.509) | 0% | −1 | −0 | −0 | −0 | Moderate |
Biceps curl strength | 2 | 0.6805 (0.176, 1.185) | 0% | −2 | −0 | −0 | −0 | Low |
Knee extension strength | 4 | 0.364 (−0.031, 0.759) | 24% | −2 | −0 | −0 | −1 | Very low |
Knee flexion strength | 2 | 0.2905 (−0.756, 1.337) | 67% | −2 | −1 | −0 | −1 | Very low |
Gait speed test | 3 | 0.1625 (−0.261, 0.586) | 44% | −1 | −0 | −0 | −1 | Low |
Chest press | 2 | 0.108 (−0.268, 0.484) | 0% | −1 | −0 | −0 | −1 | Low |
Fat mass | 3 | −0.0885 (−0.427, 0.25) | 0% | −1 | −0 | −0 | −1 | Low |
Body weight | 2 | −0.0205 (−0.386, 0.345) | 0% | −1 | −0 | −0 | −1 | Low |
WP without RT | ||||||||
Grip strength | 2 | 0.0515 (−0.215, 0.318) | 0% | −1 | −0 | −0 | −0 | Moderate |
Knee extension strength | 2 | −0.1255 (−0.392, 0.141) | 0% | −1 | −0 | −0 | −0 | Moderate |
Knee flexion strength | 2 | 0.0285 (−0.238, 0.295) | 0% | −1 | −0 | −0 | −0 | Moderate |
Fat mass | 2 | −1.2825 (−3.975, 1.410) | 96% | −1 | −1 | −0 | −1 | Very low |
Body weight | 2 | −0.1435 (−0.344, 0.057) | 0% | −1 | −0 | −0 | −0 | Moderate |
Protein intake | 2 | −0.4225 (−0.774, −0.071) | 47% | −0 | −1 | −0 | −0 | Moderate |
Fat intake | 2 | −0.1135 (−0.352, 0.125) | 0% | −0 | −0 | −0 | −0 | High |
Carbohydrate intake | 2 | 0.038 (−0.356, 0.432) | 58% | −0 | −0 | −0 | −1 | Moderate |
Total energy intake | 2 | −0.1225 (−0.361, 0.116) | 0% | −0 | −0 | −0 | −0 | High |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, Y.-Y.; Chang, H.-Y.; Huang, Y.-C.; Liu, C.-W. Effect of Whey Protein Supplementation in Postmenopausal Women: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 4210. https://doi.org/10.3390/nu14194210
Kuo Y-Y, Chang H-Y, Huang Y-C, Liu C-W. Effect of Whey Protein Supplementation in Postmenopausal Women: A Systematic Review and Meta-Analysis. Nutrients. 2022; 14(19):4210. https://doi.org/10.3390/nu14194210
Chicago/Turabian StyleKuo, Yao-Yi, Hao-Yun Chang, Yu-Chen Huang, and Che-Wei Liu. 2022. "Effect of Whey Protein Supplementation in Postmenopausal Women: A Systematic Review and Meta-Analysis" Nutrients 14, no. 19: 4210. https://doi.org/10.3390/nu14194210
APA StyleKuo, Y. -Y., Chang, H. -Y., Huang, Y. -C., & Liu, C. -W. (2022). Effect of Whey Protein Supplementation in Postmenopausal Women: A Systematic Review and Meta-Analysis. Nutrients, 14(19), 4210. https://doi.org/10.3390/nu14194210