Investigation on the Association of Copper and Copper-to-Zinc-Ratio in Hair with Acute Coronary Syndrome Occurrence and Its Risk Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection and Analysis
2.3. Laboratory and Clinical Data
2.4. Coronary Angiography
2.5. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Differences in Cu and Cu/Zn-Ratio Levels between Patients with ACS and Stable CAD
3.3. Association between Cu, Cu/Zn-Ratio, and Selected Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.A.; Hashim, M.J.; Mustafa, H.; Baniyas, M.Y.; Al Suwaidi, S.K.B.M.; AlKatheeri, R.; Alblooshi, F.M.K.; Almatrooshi, M.E.A.H.; Alzaabi, M.E.H.; Al Darmaki, R.S.; et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus 2020, 12, e9349. [Google Scholar] [CrossRef] [PubMed]
- Mohebi, R.; Chen, C.; Ibrahim, N.E.; McCarthy, C.P.; Gaggin, H.K.; Singer, D.E.; Hyle, E.P.; Wasfy, J.H.; Januzzi, J.L. Cardiovascular Disease Projections in the United States Based on the 2020 Census Estimates. J. Am. Coll. Cardiol. 2022, 80, 565–578. [Google Scholar] [CrossRef] [PubMed]
- Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: Recent developments. Cell 2022, 185, 1630–1645. [Google Scholar] [CrossRef] [PubMed]
- Nath, R. Copper deficiency and heart disease: Molecular basis, recent advances and current concepts. Int. J. Biochem. Cell Biol. 1997, 29, 1245–1254. [Google Scholar] [CrossRef]
- Al-Bayati, M.A.; Jamil, D.A.; Al-Aubaidy, H.A. Cardiovascular effects of copper deficiency on activity of superoxide dismutase in diabetic nephropathy. N. Am. J. Med. Sci. 2015, 7, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klevay, L.M. Ischemic heart disease. A major obstacle to becoming old. Clin. Geriatr. Med. 1987, 3, 361–372. [Google Scholar] [CrossRef]
- Alarcón-Corredor, O.M.; Guerrero, Y.; Ramírez de Fernández, M.; D’Jesús, I.; Burguera, M.; Burguera, J.L.; Di Bernardo, M.L.; García, M.Y.; Alarcón, A.O. Efecto de la suplementación oral con cobre en el perfil lipídico de pacientes Venezolanos hiperlipémicos. Arch. Latinoam. Nutr. 2004, 54, 413–418. [Google Scholar]
- Denko, C.W.; Petricevic, M.; Whitehouse, M.W. Inflammation in relation to dietary intake of zinc and copper. Int. J. Tissue React. 1981, 3, 73–76. [Google Scholar]
- Alarcón, O.M.; Guerrero, Y.; Ramírez de Fernández, M.; D’Jesús, I.; Burguera, M.; Burguera, J.L.; Di Bernardo, M.L. Efecto de la suplementación con cobre sobre los valores de presión arterial en pacientes con hipertensión moderada estable. Arch. Latinoam. Nutr. 2003, 53, 271–276. [Google Scholar]
- Ghayour-Mobarhan, M.; Shapouri-Moghaddam, A.; Azimi-Nezhad, M.; Esmaeili, H.; Parizadeh, S.M.R.; Safarian, M.; Kazemi-Bajestani, S.M.R.; Khodaei, G.H.; Hosseini, S.J.; Parizadeh, S.M.J.; et al. The relationship between established coronary risk factors and serum copper and zinc concentrations in a large Persian cohort. J. Trace Elem. Med. Biol. 2009, 23, 167–175. [Google Scholar] [CrossRef]
- Goldin, A.; Beckman, J.A.; Schmidt, A.M.; Creager, M.A. Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation 2006, 114, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Piacenza, F.; Giacconi, R.; Costarelli, L.; Basso, A.; Bürkle, A.; Moreno-Villanueva, M.; Dollé, M.E.T.; Jansen, E.; Grune, T.; Weber, D.; et al. Age, Sex, and BMI Influence on Copper, Zinc, and Their Major Serum Carrier Proteins in a Large European Population Including Nonagenarian Offspring From MARK-AGE Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2021, 76, 2097–2106. [Google Scholar] [CrossRef] [PubMed]
- Galhardi, C.M.; Diniz, Y.S.; Faine, L.A.; Rodrigues, H.G.; Burneiko, R.C.M.; Ribas, B.O.; Novelli, E.L.B. Toxicity of copper intake: Lipid profile, oxidative stress and susceptibility to renal dysfunction. Food Chem. Toxicol. 2004, 42, 2053–2060. [Google Scholar] [CrossRef] [PubMed]
- Barandier, C.; Tanguy, S.; Pucheu, S.; Boucher, F.; de Leiris, J. Effect of antioxidant trace elements on the response of cardiac tissue to oxidative stress. Ann. N. Y. Acad. Sci. 1999, 874, 138–155. [Google Scholar] [CrossRef]
- Burkitt, M.J. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: Roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Arch. Biochem. Biophys. 2001, 394, 117–135. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, M.A.; Ghiasvand, T. Kinetic study of low density lipoprotein oxidation by copper. Indian J. Clin. Biochem. 2010, 25, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shokrzadeh, M.; Ghaemian, A.; Salehifar, E.; Aliakbari, S.; Saravi, S.S.S.; Ebrahimi, P. Serum zinc and copper levels in ischemic cardiomyopathy. Biol. Trace Elem. Res. 2009, 127, 116–123. [Google Scholar] [CrossRef]
- Grammer, T.B.; Kleber, M.E.; Silbernagel, G.; Pilz, S.; Scharnagl, H.; Lerchbaum, E.; Tomaschitz, A.; Koenig, W.; März, W. Copper, ceruloplasmin, and long-term cardiovascular and total mortality (the Ludwigshafen Risk and Cardiovascular Health Study). Free Radic. Res. 2014, 48, 706–715. [Google Scholar] [CrossRef]
- Aliabadi, H. A deleterious interaction between copper deficiency and sugar ingestion may be the missing link in heart disease. Med. Hypotheses 2008, 70, 1163–1166. [Google Scholar] [CrossRef]
- Liu, Y.; Miao, J. An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients 2022, 14, 700. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Mangan, D.; O’Keefe, J.H. Copper deficiency may be a leading cause of ischaemic heart disease. Open Heart 2018, 5, e000784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.J. Copper and homocysteine in cardiovascular diseases. Pharmacol. Ther. 2011, 129, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Mezzetti, A.; Pierdomenico, S.D.; Costantini, F.; Romano, F.; de Cesare, D.; Cuccurullo, F.; Imbastaro, T.; Riario-Sforza, G.; Di Giacomo, F.; Zuliani, G.; et al. Copper/zinc ratio and systemic oxidant load: Effect of aging and aging-related degenerative diseases. Free Radic. Biol. Med. 1998, 25, 676–681. [Google Scholar] [CrossRef]
- Malavolta, M.; Giacconi, R.; Piacenza, F.; Santarelli, L.; Cipriano, C.; Costarelli, L.; Tesei, S.; Pierpaoli, S.; Basso, A.; Galeazzi, R.; et al. Plasma copper/zinc ratio: An inflammatory/nutritional biomarker as predictor of all-cause mortality in elderly population. Biogerontology 2010, 11, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Bellof, G.; Most, E.; Pallauf, J. Concentration of copper, iron, manganese and zinc in muscle, fat and bone tissue of lambs of the breed German Merino Landsheep in the course of the growing period and different feeding intensities. J. Anim. Physiol. Anim. Nutr. 2007, 91, 100–108. [Google Scholar] [CrossRef]
- Atari-Hajipirloo, S.; Valizadeh, N.; Khadem-Ansari, M.-H.; Rasmi, Y.; Kheradmand, F. Altered Concentrations of Copper, Zinc, and Iron are Associated With Increased Levels of Glycated Hemoglobin in Patients With Type 2 Diabetes Mellitus and Their First-Degree Relatives. Int. J. Endocrinol. Metab. 2016, 14, e33273. [Google Scholar] [CrossRef] [Green Version]
- Eshak, E.S.; Iso, H.; Maruyama, K.; Muraki, I.; Tamakoshi, A. Associations between dietary intakes of iron, copper and zinc with risk of type 2 diabetes mellitus: A large population-based prospective cohort study. Clin. Nutr. 2018, 37, 667–674. [Google Scholar] [CrossRef] [Green Version]
- Król, E.; Bogdański, P.; Suliburska, J.; Krejpcio, Z. The Relationship between Dietary, Serum and Hair Levels of Minerals (Fe, Zn, Cu) and Glucose Metabolism Indices in Obese Type 2 Diabetic Patients. Biol. Trace Elem. Res. 2019, 189, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Tsuboi, A.; Terazawa Watanabe, M.; Kazumi, T.; Fukuo, K. Serum copper, zinc and risk factors for cardiovascular disease in community-living Japanese elderly women. Asia Pac. J. Clin. Nutr. 2014, 23, 239–245. [Google Scholar] [CrossRef]
- Takao, T.; Yanagisawa, H.; Suka, M.; Yoshida, Y.; Onishi, Y.; Tahara, T.; Kikuchi, T.; Kushiyama, A.; Anai, M.; Takahashi, K.; et al. Synergistic association of the copper/zinc ratio under inflammatory conditions with diabetic kidney disease in patients with type 2 diabetes: The Asahi Diabetes Complications Study. J. Diabetes Investig. 2022, 13, 299–307. [Google Scholar] [CrossRef]
- Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.-F.; Margaritis, I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016, 35, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Nakaona, L.; Maseka, K.K.; Hamilton, E.M.; Watts, M.J. Using human hair and nails as biomarkers to assess exposure of potentially harmful elements to populations living near mine waste dumps. Environ. Geochem. Health 2020, 42, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Wołowiec, P.; Michalak, I.; Chojnacka, K.; Mikulewicz, M. Hair analysis in health assessment. Clin. Chim. Acta 2013, 419, 139–171. [Google Scholar] [CrossRef] [PubMed]
- Middleton, D.R.S.; Watts, M.J.; Hamilton, E.M.; Fletcher, T.; Leonardi, G.S.; Close, R.M.; Exley, K.S.; Crabbe, H.; Polya, D.A. Prolonged exposure to arsenic in UK private water supplies: Toenail, hair and drinking water concentrations. Environ. Sci. Process. Impacts 2016, 18, 562–574. [Google Scholar] [CrossRef] [Green Version]
- Middleton, D.R.S.; Watts, M.J.; Lark, R.M.; Milne, C.J.; Polya, D.A. Assessing urinary flow rate, creatinine, osmolality and other hydration adjustment methods for urinary biomonitoring using NHANES arsenic, iodine, lead and cadmium data. Environ. Health 2016, 15, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nouioui, M.A.; Araoud, M.; Milliand, M.-L.; Bessueille-Barbier, F.; Amira, D.; Ayouni-Derouiche, L.; Hedhili, A. Evaluation of the status and the relationship between essential and toxic elements in the hair of occupationally exposed workers. Environ. Monit. Assess. 2018, 190, 731. [Google Scholar] [CrossRef]
- Khan, S.R.; Sharma, B.; Chawla, P.A.; Bhatia, R. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES): A Powerful Analytical Technique for Elemental Analysis. Food Anal. Methods 2022, 15, 666–688. [Google Scholar] [CrossRef]
- Dziedzic, E.A.; Gąsior, J.S.; Tuzimek, A.; Paleczny, J.; Kwaśny, M.; Dąbrowski, M.; Jankowski, P. No Association of Hair Zinc Concentration with Coronary Artery Disease Severity and No Relation with Acute Coronary Syndromes. Biomolecules 2022, 12, 862. [Google Scholar] [CrossRef]
- Shizhong, C.; Dengbo, L.; Zhixiong, H.; Zhan, W. The use of electrothermal vaporization ICP-OES for the determination of trace elements in human hair using slurry sampling and PTFE as modifier. Int. J. Environ. Anal. Chem. 2005, 85, 493–501. [Google Scholar] [CrossRef]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. European Guidelines for Obesity Management in Adults. Obes. Facts 2015, 8, 402–424. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; de Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [Green Version]
- Araszkiewicz, A.; Bandurska-Stankiewicz, E.; Borys, S.; Budzyński, A.; Cyganek, K.; Cypryk, K.; Czech, A.; Czupryniak, L.; Drzewoski, J.; Dzida, G.; et al. 2021 Guidelines on the management of patients with diabetes. A position of Diabetes Poland. Clin. Diabetol. 2021, 10, 1–113. [Google Scholar] [CrossRef]
- Stergiou, G.S.; Palatini, P.; Parati, G.; O’Brien, E.; Januszewicz, A.; Lurbe, E.; Persu, A.; Mancia, G.; Kreutz, R. 2021 European Society of Hypertension practice guidelines for office and out-of-office blood pressure measurement. J. Hypertens. 2021, 39, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e21–e129. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef] [PubMed]
- Omar, S.; Abdennebi, M.; Ben Mami, F.; Ghanem, A.; Azzabi, S.; Hedhili, A.; Zouari, B.; Achour, A.; Guemira, F. Le cuivre serique chez l’obese: Une etude a propos de 32 cas. Tunis. Med. 2001, 79, 370–373. [Google Scholar]
- Wang, C.-T.; Chang, W.-T.; Zeng, W.-F.; Lin, C.-H. Concentrations of calcium, copper, iron, magnesium, potassium, sodium and zinc in adult female hair with different body mass indexes in Taiwan. Clin. Chem. Lab. Med. 2005, 43, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Fatani, S.H.; Saleh, S.A.K.; Adly, H.M.; Abdulkhaliq, A.A. Trace Element Alterations in the Hair of Diabetic and Obese Women. Biol. Trace Elem. Res. 2016, 174, 32–39. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Shim, H.Y.; Lee, Y.J.; Park, B. Association between Copper-Zinc Ratio in Hair and Neutrophil-Lymphocyte Ratio within the Context of a Normal White Blood Cell Count among Overweight or Obese Korean Individuals: A Pilot Study. Korean J. Fam. Med. 2021, 42, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, F.; Shafique, K.; Mirza, S.S.; Ayoob, Z.; Vart, P.; Rao, S. Neutrophil lymphocyte ratio as a measure of systemic inflammation in prevalent chronic diseases in Asian population. Int. Arch. Med. 2012, 5, 2. [Google Scholar] [CrossRef]
- Park, B.-J.; Shim, J.-Y.; Lee, H.-R.; Lee, J.-H.; Jung, D.-H.; Kim, H.-B.; Na, H.-Y.; Lee, Y.-J. Relationship of neutrophil-lymphocyte ratio with arterial stiffness and coronary calcium score. Clin. Chim. Acta 2011, 412, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Balta, S.; Celik, T.; Mikhailidis, D.P.; Ozturk, C.; Demirkol, S.; Aparci, M.; Iyisoy, A. The Relation Between Atherosclerosis and the Neutrophil-Lymphocyte Ratio. Clin. Appl. Thromb. Hemost. 2016, 22, 405–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziedzic, E.A.; Gąsior, J.S.; Tuzimek, A.; Dąbrowski, M.; Jankowski, P. Neutrophil-to-Lymphocyte Ratio Is Not Associated with Severity of Coronary Artery Disease and Is Not Correlated with Vitamin D Level in Patients with a History of an Acute Coronary Syndrome. Biology 2022, 11, 1001. [Google Scholar] [CrossRef]
- Tinkov, A.A.; Bogdański, P.; Skrypnik, D.; Skrypnik, K.; Skalny, A.V.; Aaseth, J.; Skalnaya, M.G.; Suliburska, J. Trace Element and Mineral Levels in Serum, Hair, and Urine of Obese Women in Relation to Body Composition, Blood Pressure, Lipid Profile, and Insulin Resistance. Biomolecules 2021, 11, 689. [Google Scholar] [CrossRef]
- Kim, H.-N.; Song, S.-W. Concentrations of chromium, selenium, and copper in the hair of viscerally obese adults are associated with insulin resistance. Biol. Trace Elem. Res. 2014, 158, 152–157. [Google Scholar] [CrossRef]
- Afridi, H.I.; Kazi, T.G.; Kazi, N.; Talpur, F.N.; Naeemullah; Arain, S.S.; Brahman, K.D.; Wadhwa, S.K.; Shah, F. Distribution of copper, iron, and zinc in biological samples of Pakistani hypertensive patients and referent subjects of different age groups. Clin. Lab. 2013, 59, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Vivoli, G.; Borella, P.; Bergomi, M.; Fantuzzi, G. Zinc and copper levels in serum, urine, and hair of humans in relation to blood pressure. Sci. Total Environ. 1987, 66, 55–64. [Google Scholar] [CrossRef]
- Kazi, T.G.; Afridi, H.I.; Kazi, N.; Jamali, M.K.; Arain, M.B.; Jalbani, N.; Kandhro, G.A. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol. Trace Elem. Res. 2008, 122, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hotta, Y.; Fujino, R.; Kimura, O.; Endo, T. Essential and Non-essential Elements in Scalp Hair of Diabetics: Correlations with Glycated Hemoglobin (HbA1c). Biol. Pharm. Bull. 2018, 41, 1034–1039. [Google Scholar] [CrossRef] [Green Version]
- Taneja, S.K.; Mahajan, M.; Gupta, S.; Singh, K.P. Assessment of copper and zinc status in hair and urine of young women descendants of NIDDM parents. Biol. Trace Elem. Res. 1998, 62, 255–264. [Google Scholar] [CrossRef]
- Mooradian, A.D.; Failla, M.; Hoogwerf, B.; Maryniuk, M.; Wylie-Rosett, J. Selected vitamins and minerals in diabetes. Diabetes Care 1994, 17, 464–479. [Google Scholar] [CrossRef]
- Suliburska, J.; Bogdański, P.; Pupek-Musialik, D.; Krejpcio, Z. Dietary intake and serum and hair concentrations of minerals and their relationship with serum lipids and glucose levels in hypertensive and obese patients with insulin resistance. Biol. Trace Elem. Res. 2011, 139, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, A.; Ahmad, H.; Shah, M.H. Comparative Distribution, Correlation, and Chemometric Analyses of Selected Metals in Scalp Hair of Angina Patients and Healthy Subjects. Biol. Trace Elem. Res. 2015, 168, 33–43. [Google Scholar] [CrossRef]
- Ilyas, A.; Shah, M.H. Disparities of Selected Metal Levels in the Blood and Scalp Hair of Ischemia Heart Disease Patients and Healthy Subjects. Biol. Trace Elem. Res. 2017, 180, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, A.; Ahmad, H.; Shah, M.H. Comparative Study of Elemental Concentrations in the Scalp Hair and Nails of Myocardial Infarction Patients Versus Controls from Pakistan. Biol. Trace Elem. Res. 2015, 166, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.-R.; Zhang, S.-Q.; Xiong, Y.; Zhao, Y.; Fu, H.; Zhang, H.-P.; Xiong, K.-M. Studies of Five Microelement Contents in Human Serum, Hair, and Fingernails Correlated with Aged Hypertension and Coronary Heart Disease. Biol. Trace Elem. Res. 2003, 92, 97–104. [Google Scholar] [CrossRef]
- Tan, C.; Chen, H.; Xia, C. The prediction of cardiovascular disease based on trace element contents in hair and a classifier of boosting decision stumps. Biol. Trace Elem. Res. 2009, 129, 9–19. [Google Scholar] [CrossRef]
- Chen, A.; Li, G.; Liu, Y. Association between copper levels and myocardial infarction: A meta-analysis. Inhal. Toxicol. 2015, 27, 237–246. [Google Scholar] [CrossRef]
- Białkowska, M.; Hoser, A.; Szostak, W.B.; Dybczyński, R.; Sterliński, S.; Nowicka, G.; Majchrzak, J.; Kaczorowski, J.; Danko, B. Hair zinc and copper concentration in survivors of myocardial infarction. Ann. Nutr. Metab. 1987, 31, 327–332. [Google Scholar] [CrossRef]
- Afridi, H.I.; Kazi, T.G.; Kazi, G.H.; Jamali, M.K.; Shar, G.Q. Essential trace and toxic element distribution in the scalp hair of Pakistani myocardial infarction patients and controls. Biol. Trace Elem. Res. 2006, 113, 19–34. [Google Scholar] [CrossRef]
- Kazi, T.G.; Afridi, H.I.; Kazi, N.; Jamali, M.K.; Arain, M.B.; Sarfraz, R.A.; Jalbani, N.; Ansari, R.; Shah, A.Q.; Memon, A.-U.-R.; et al. Distribution of zinc, copper and iron in biological samples of Pakistani myocardial infarction (1st, 2nd and 3rd heart attack) patients and controls. Clin. Chim. Acta 2008, 389, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K.; Górecka, H.; Górecki, H. The effect of age, sex, smoking habit and hair color on the composition of hair. Environ. Toxicol. Pharmacol. 2006, 22, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Li, Y.; Liu, Y.; Li, H.; Wang, W.; Yu, J. Hair elements and healthy aging: A cross-sectional study in Hainan Island, China. Environ. Geochem. Health 2016, 38, 723–735. [Google Scholar] [CrossRef] [Green Version]
- Bertazzo, A.; Costa, C.; Biasiolo, M.; Allegri, G.; Cirrincione, G.; Presti, G. Determination of copper and zinc levels in human hair: Influence of sex, age, and hair pigmentation. Biol. Trace Elem. Res. 1996, 52, 37–53. [Google Scholar] [CrossRef] [PubMed]
Variable | Values |
---|---|
Age (years) | 65 (60–75) |
BMI (kg/m2) | 28 (25–31) |
Diabetes mellitus (yes/pre-diabetes/no) | 42 (32%)/7 (5%)/84 (63%) |
TC (mg/dL) | 166 (137–204) |
HDL (mg/dL) | 46 (40–54) |
LDL (mg/dL) | 91 (70–126) |
TG (mg/dL) | 111 (88–154) |
Hyperlipidemia (yes/no) | 55 (41%)/68 (51%) |
Hypertension (yes/no) | 114 (86%)/19 (14%) |
Smoking (active/former smoker/no) | 40 (30%)/17 (13%)/76 (57%) |
Stable CAD/ACS | 66 (50%)/67 (50%) |
Previous MI (yes/no) | 40 (30%)/93 (70%) |
Cu (ppm) | 9 (7–11) |
Cu/Zn-ratio | 0.05 (0.04–0.07) |
Variable | Stable CAD | STEMI | NSTEMI | UA | p-Value |
---|---|---|---|---|---|
Number (♀/♂) | 21 (16%)/45 (34%) | 7 (5%)/25 (19%) | 5 (4%)/15 (11%) | 4 (3%)/11 (8%) | 0.758 |
Age (years) | 63 (61–74) | 62 (57–80) | 74 (62–79) | 66 (64–77) | 0.193 |
BMI (kg/m2) | 28 (25–32) | 28 (25–30) | 27 (25–33) | 29 (28–30) | 0.632 |
Diabetes mellitus (yes/pre-diabetes/no) | 23 (17%)/3 (2%)/40 (30%) | 9 (7%)/2 (2%)/21 (16%) | 4 (3%)/2 (2%)/14 (11%) | 6 (5%)/0/9 (7%) | 0.735 |
TC (mg/dL) | 160 (135–191) | 170 (155–221) | 161 (133–190) | 167 (132–211) | 0.174 |
HDL (mg/dL) | 46 (41–58) | 47 (38–50) | 44 (37–48) | 45 (43–53) | 0.505 |
LDL (mg/dL) | 79 (65–118) | 106 (85–153) | 100 (74–130) | 102 (76–139) | 0.028 |
TG (mg/dL) | 125 (94–162) | 105 (88–123) | 97 (70–134) | 101 (85–146) | 0.043 |
Hyperlipidemia (yes/no) | 29 (24%)/33 (27%) | 13 (11%)/17 (14%) | 6 (5%)/11 (9%) | 7 (6%)/7 (6%) | 0.826 |
Hypertension (yes/no) | 55 (41%)/11 (8%) | 25 (19%)/7 (5%) | 19 (14%)/1 (1%) | 15 (11%)/0 | 0.126 |
Smoking (active/former smoker/no) | 18 (14%)/15 (11%)/33 (25%) | 13 (10%)/1 (1%)/18 (14%) | 6 (5%)/0/14 (11%) | 3 (2%)/1 (1%)/11 (8%) | 0.028 |
Previous MI (yes/no) | 22 (17%)/44 (33%) | 7 (5%)/25 (19%) | 6 (5%)/14 (11%) | 5 (4%)/10 (8%) | 0.698 |
Cu (ppm) | 9 (7–11) | 9 (7–10) | 8 (7–10) | 10 (8–11) | 0.444 |
Cu/Zn-ratio | 0.05 (0.04–0.08) | 0.05 (0.05–0.06) | 0.05 (0.04–0.06) | 0.06 (0.05–0.07) | 0.209 |
Determinant | Β (SE β) | p | Partial Correlation | Tolerance | R2 |
---|---|---|---|---|---|
Age (years) | −0.12 (0.12) | 0.354 | −0.10 | 0.70 | 0.30 |
Sex (♀/♂) | 0.05 (0.12) | 0.672 | 0.05 | 0.77 | 0.23 |
BMI (kg/m2) | −0.02 (0.11) | 0.871 | −0.02 | 0.86 | 0.14 |
Diagnosis (stable CAD/ACS) | 0.17 (0.12) | 0.156 | 0.16 | 0.74 | 0.26 |
TC (mg/dL) | 0.60 (0.69) | 0.385 | 0.10 | 0.02 | 0.98 |
HDL (mg/dL) | 0.06 (0.22) | 0.796 | 0.03 | 0.22 | 0.78 |
LDL (mg/dL) | −0.64 (0.57) | 0.266 | −0.12 | 0.03 | 0.97 |
TG (mg/dL) | −0.03 (0.21) | 0.886 | −0.02 | 0.25 | 0.75 |
Hyperlipidemia (no/yes) | 0.06 (0.16) | 0.687 | 0.04 | 0.41 | 0.59 |
Hypertension (no/yes) | 0.06 (0.11) | 0.586 | 0.06 | 0.84 | 0.16 |
Diabetes mellitus (no/yes) | −0.17 (0.12) | 0.144 | −0.16 | 0.80 | 0.20 |
Previous MI (no/yes) | −0.08 (0.11) | 0.483 | −0.08 | 0.89 | 0.11 |
Smoking (no/yes) | −0.12 (0.12) | 0.301 | −0.11 | 0.79 | 0.21 |
Determinant | Β (SE β) | p | Partial Correlation | Tolerance | R2 |
---|---|---|---|---|---|
Age (years) | −0.08 (0.13) | 0.511 | −0.07 | 0.70 | 0.30 |
Sex (♀/♂) | −0.01 (0.12) | 0.908 | −0.01 | 0.77 | 0.23 |
BMI (kg/m2) | −0.01 (0.12) | 0.987 | −0.01 | 0.86 | 0.14 |
Diagnosis (stable CAD/ACS) | 0.19 (0.12) | 0.124 | 0.17 | 0.74 | 0.26 |
TC (mg/dL) | 0.34 (0.71) | 0.634 | 0.05 | 0.02 | 0.98 |
HDL (mg/dL) | 0.05 (0.23) | 0.833 | 0.02 | 0.22 | 0.78 |
LDL (mg/dL) | −0.38 (0.59) | 0.516 | −0.07 | 0.03 | 0.97 |
TG (mg/dL) | 0.10 (0.21) | 0.645 | 0.05 | 0.25 | 0.75 |
Hyperlipidemia (no/yes) | 0.07 (0.17) | 0.660 | 0.05 | 0.41 | 0.59 |
Hypertension (no/yes) | 0.05 (0.12) | 0.668 | 0.05 | 0.84 | 0.16 |
Diabetes mellitus (no/yes) | 0.04 (0.12) | 0.730 | 0.04 | 0.80 | 0.20 |
Previous MI (no/yes) | 0.01 (0.11) | 0.908 | 0.01 | 0.89 | 0.11 |
Smoking (no/yes) | −0.01 (0.12) | 0.954 | −0.01 | 0.79 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziedzic, E.A.; Tuzimek, A.; Gąsior, J.S.; Paleczny, J.; Junka, A.; Kwaśny, M.; Dąbrowski, M.; Jankowski, P. Investigation on the Association of Copper and Copper-to-Zinc-Ratio in Hair with Acute Coronary Syndrome Occurrence and Its Risk Factors. Nutrients 2022, 14, 4107. https://doi.org/10.3390/nu14194107
Dziedzic EA, Tuzimek A, Gąsior JS, Paleczny J, Junka A, Kwaśny M, Dąbrowski M, Jankowski P. Investigation on the Association of Copper and Copper-to-Zinc-Ratio in Hair with Acute Coronary Syndrome Occurrence and Its Risk Factors. Nutrients. 2022; 14(19):4107. https://doi.org/10.3390/nu14194107
Chicago/Turabian StyleDziedzic, Ewelina A., Agnieszka Tuzimek, Jakub S. Gąsior, Justyna Paleczny, Adam Junka, Mirosław Kwaśny, Marek Dąbrowski, and Piotr Jankowski. 2022. "Investigation on the Association of Copper and Copper-to-Zinc-Ratio in Hair with Acute Coronary Syndrome Occurrence and Its Risk Factors" Nutrients 14, no. 19: 4107. https://doi.org/10.3390/nu14194107
APA StyleDziedzic, E. A., Tuzimek, A., Gąsior, J. S., Paleczny, J., Junka, A., Kwaśny, M., Dąbrowski, M., & Jankowski, P. (2022). Investigation on the Association of Copper and Copper-to-Zinc-Ratio in Hair with Acute Coronary Syndrome Occurrence and Its Risk Factors. Nutrients, 14(19), 4107. https://doi.org/10.3390/nu14194107