The Levels of Bioelements in Postmenopausal Women with Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organization and Course of Study
2.2. Study Design
2.3. Anthropometric Measurements
- Waist circumference (WC) was measured to the nearest 0.01 m with a flexible measuring tape (SECA) at the level of the navel, as a horizontal distance around the abdomen [50].
- WHtR (waist to height ratio) was calculated using the formula [50]: WHtR = waist circumference (cm)/height (cm).
- Body weight and height were assessed using a certified medical scale with an integrated SECA 711 growth meter, according to a standardized procedure with an accuracy of 0.1 kg and 0.1 cm, respectively. The participants stood with their backs straight, heels together, barefoot, and lightly dressed.
- BMI (body mass index) was calculated using the formula: BMI = weight (kg)/height (m)2. BMI (kg/m2) was divided into the following categories according to the Center for Disease Control and Prevention (CDC): underweight (BMI < 18.5), normal weight (BMI = 18.5–24.9), overweight (BMI = 25.0–29.9), and obesity (BMI ≥ 30) [51].
2.4. RR Measurement
2.5. Laboratory Analysis
Determination of Serum Ca, P, Na, K, Fe, Mg, Cu, Zn, Sr Levels
2.6. Distribution of Respondents
2.6.1. Menopausal Status
- Perimenopausal respondents: women immediately before menopause with symptoms of impending menopause (when endocrinological, biological, and clinical features of impending menopause begin);
- Postmenopausal respondents: the last menstrual period at least 12 months before the survey.
2.6.2. Metabolic Syndrome
- WC ≥ 80 cm, TG > 150 mg/dL (1.7 mmol/L) or specific treatment of this lipid abnormality;
- HDL < 50 mg/dL (1.3 mmol/L) or specific treatment of this lipid abnormality;
- Elevated blood pressure (BP): systolic BP ≥ 130 or diastolic BP ≥ 85 mmHg or treatment of previously diagnosed hypertension;
- Elevated fasting plasma glucose (FPG) level ≥ 100 mg/dL (5.6 mmol/L) or previously diagnosed type 2 diabetes. If it is above 5.6 mmol/L or 100 mg/dL, an oral glucose tolerance test (OGTT) is strongly recommended, but it is not necessary to determine the presence of the syndrome.
- MetS group: women with MetS;
- Pre-MetS group: women at risk of MetS;
- Control group: women without MetS and the risk of MetS.
2.6.3. Hypertension
2.6.4. Obesity
- Abdominal obesity (central obesity) was defined as waist circumference ≥ 88 cm and ≥ 102 cm for women and men, respectively;
- General obesity was defined as BMI ≥ 30 kg/m2.
2.7. Statistical Analysis
3. Results
3.1. Baseline Clinical Characteristics and Laboratory Results
3.2. Correlations between the Levels of Bioelements (Ca, P, Na, K, Fe, Mg, Cu, Zn, Sr) and MetS, Menopausal Status, BMI, and HA
3.3. Relationships between the Concentrations of Elements (Ca, P, Na, K, Fe, Mg, Cu, Zn, Sr) and the Concentrations of Lipid Parameters (TC, HDL, LDL, TG), Parameters of Carbohydrate Metabolism (Fasting Glucose, Insulin), as well as Anthropometric Parameters (BMI, WC, WhtR) and Blood Pressure (BP)
4. Discussion
4.1. Correlation between the Levels of Bioelements (Ca, P, Na, K, Fe, Mg, Cu, Zn, Sr) and Factors such as MetS, Menopausal Status, BMI, and HA
4.2. Relationships between the Concentrations of Elements (Ca, P, Na, K, Fe, Mg, Cu, Zn, Sr) and the Concentrations of Lipid Parameters (TC, HDL, LDL, TG), Parameters of Carbohydrate Metabolism (Fasting Glucose, Insulin), as well as Anthropometric Parameters (BMI, WC, WhtR) and Blood Pressure (BP)
5. Conclusions
- Low blood K levels in perimenopausal women are associated with increased risk of MetS. It is therefore important to treat K deficiencies through dietary K intake to reduce the risk of MetS among perimenopausal women. Further research is needed to determine whether K supplementation is an effective solution in reducing the risk of MetS among women.
- Significantly higher levels of Cu were observed in overweight women. Moreover, the concentration of Cu negatively correlated with the values of TC, LDL, and SBP. This finding shows that there are links between trace element levels and metabolic risk in perimenopausal women. However, more research is required to elucidate the causal relationship between trace element levels and metabolic risk in women.
6. Limitations
- The biggest limitation of the study is a relatively small number of patients in both groups. This was mainly due to the strict inclusion and exclusion criteria.
- In this study, we did not specify dietary factors, and we excluded micronutrient supplementation.
- The duration of elevated BP, glucose intolerance, and dyslipidemia has not been reported in patients with and without MetS, suggesting a potential impact of the trajectory of cardiometabolic diseases on the change in serum micronutrient levels over time.
- The lack of menstruation for at least 12 months was diagnosed on the basis of gynecological history but was not confirmed by the measurement of FSH levels. Both of these variables may have influenced the results of our study.
- The study does not include liver function parameters. This is a major limitation, given that NAFLD is an important correlate of MetS.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alberti, K.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Adawi, R.M.; Prabhu, K.S.; Stewart, D.; Ryan, C.; Abdelaziz, H.; Eledrisi, M.; Ibrahim, M.I.M.; Uddin, S.; Tonna, A.P. The Incidence and Determinants of Metabolic Syndrome Amongst a Group of Migrants to Qatar: A Prospective Longitudinal Observational Cohort Study 24-Months Post-Migration. J. Clin. Med. 2021, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, S.; O’Driscoll, L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015, 16, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, E.S.; Giles, W.H.; Mokdad, A.H. Increasing prevalence of the metabolic syndrome among U.S. Adults. Diabetes Care 2004, 27, 2444–2449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ervin, R.B. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. Natl. Health Stat. Rep. 2009, 5, 1–7. [Google Scholar]
- Aguilar, M.; Bhuket, T.; Torres, S.; Liu, B.; Wong, R.J. Prevalence of the Metabolic Syndrome in the United States, 2003–2012. JAMA 2015, 313, 1973–1974. [Google Scholar] [CrossRef] [Green Version]
- Scuteri, A.; Laurent, S.; Cucca, F.; Cockcroft, J.; Cunha, P.; Rodriguez-Manas, L.; Raso, F.U.M.; Muiesan, M.L.; Ryliškytė, L.; Rietzschel, E.; et al. Metabolic syndrome across Europe: Different clusters of risk factors. Eur. J. Prev. Cardiol. 2014, 22, 486–491. [Google Scholar] [CrossRef] [Green Version]
- Vishram-Nielsen, J.K.; Borglykke, A.; Andreasen, A.H.; Jeppesen, J.; Ibsen, H.; Jørgensen, T.; Palmieri, L.; Giampaoli, S.; Donfrancesco, C.; Kee, F.; et al. Impact of Age and Gender on the Prevalence and Prognostic Importance of the Metabolic Syndrome and Its Components in Europeans. The MORGAM Prospective Cohort Project. PLoS ONE 2014, 9, e107294. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet-Ostaptchouk, J.V.; Nuotio, M.-L.; Slagter, S.N.; Doiron, D.; Fischer, K.; Foco, L.; Gaye, A.; Gögele, M.; Heier, M.; Hiekkalinna, T.; et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: A collaborative analysis of ten large cohort studies. BMC Endocr. Disord. 2014, 14, 9. [Google Scholar] [CrossRef] [Green Version]
- Zdrojewski, T.; Bandosz, P.; Szpakowski, P.; Konarski, R.; Manikowski, A.; Wołkiewicz, E.; Jakubowski, Z.; Łysiak-Szydłowska, W.; Bautembach, S.; Wyrzykowski, B. Rozpowszechnienie głównych czynników ryzyka chorób układu sercowo-naczyniowego w Polsce. Wyniki badania NATPOL PLUS. Kardiol. Pol. 2004, 61, 5–26. [Google Scholar]
- Wyrzykowski, B.; Zdrojewski, T.; Sygnowska, E.; Biela, U.; Drygas, W.; Tykarski, A.; Kozakiewicz, K.; Broda, G. Epidemiologia zespołu metabolicznego w Polsce. Wyniki programu WOBASZ. Kardiol. Pol. 2005, 63, 1–4. [Google Scholar]
- Moreira, G.C.; Cipullo, J.P.; Ciorlia, L.A.S.; Cesarino, C.B.; Vilela-Martin, J.F. Prevalence of Metabolic Syndrome: Association with Risk Factors and Cardiovascular Complications in an Urban Population. PLoS ONE 2014, 9, e105056. [Google Scholar] [CrossRef] [PubMed]
- Pu, D.; Tan, R.; Yu, Q.; Wu, J. Metabolic syndrome in menopause and associated factors: A meta-analysis. Climacteric 2017, 20, 583–591. [Google Scholar] [CrossRef]
- Mumusoglu, S.; Yildiz, B.O. Metabolic Syndrome During Menopause. Curr. Vasc. Pharmacol. 2019, 17, 595–603. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics—2019 Update: A Report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Roa-Díaz, Z.M.; Raguindin, P.F.; Bano, A.; Laine, J.E.; Muka, T.; Glisic, M. Menopause and cardiometabolic diseases: What we (don’t) know and why it matters. Maturitas 2021, 152, 48–56. [Google Scholar] [CrossRef]
- Zimny, M.; Starczewska, M.; Szkup, M.; Cybulska, A.; Grochans, E. Body Composition and Biological Functioning in Polish Perimenopausal Women with Type 2 Diabetes. Int. J. Environ. Res. Public Health 2021, 18, 11422. [Google Scholar] [CrossRef]
- Cybulska, A.M.; Skonieczna-Żydecka, K.; Drozd, A.; Rachubińska, K.; Pawlik, J.; Stachowska, E.; Jurczak, A.; Grochans, E. Fatty Acid Profile of Postmenopausal Women Receiving, and Not Receiving, Hormone Replacement Therapy. Int. J. Environ. Res. Public Health 2019, 16, 4273. [Google Scholar] [CrossRef] [Green Version]
- Teede, H.J.; Lombard, C.; Deeks, A.A. Obesity, metabolic complications and the menopause: An opportunity for prevention. Climacteric 2010, 13, 203–209. [Google Scholar] [CrossRef]
- Marini, H.R. Mediterranean Diet and Soy Isoflavones for Integrated Management of the Menopausal Metabolic Syndrome. Nutrients 2022, 14, 1550. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, M.A.; Filaire, E.; Matran, R.; Robin, S.; Fabre, C. Lifelong Voluntary Exercise Modulates Age-Related Changes in Oxidative Stress. Int. J. Sport Med. 2018, 39, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Król, M.; Kupnicka, P.; Bosiacki, M.; Chlubek, D. Mechanisms Underlying Anti-Inflammatory and Anti-Cancer Properties of Stretching—A Review. Int. J. Mol. Sci. 2022, 23, 10127. [Google Scholar] [CrossRef] [PubMed]
- Simioni, C.; Zauli, G.; Martelli, A.M.; Vitale, M.; Sacchetti, G.; Gonelli, A.; Neri, L.M. Oxidative stress: Role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 2018, 9, 17181–17198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chastin, S.F.M.; Abaraogu, U.; Bourgois, J.G.; Dall, P.M.; Darnborough, J.; Duncan, E.; Dumortier, J.; Pavón, D.J.; McParland, J.; Roberts, N.J.; et al. Effects of Regular Physical Activity on the Immune System, Vaccination and Risk of Community-Acquired Infectious Disease in the General Population: Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 1673–1686. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zou, Y.; Shen, Z.; Xiong, Y.; Zhang, W.; Liu, C.; Chen, S. Trace Elements, PPARs, and Metabolic Syndrome. Int. J. Mol. Sci. 2020, 21, 2612. [Google Scholar] [CrossRef] [Green Version]
- Luciano-Mateo, F.; Cabré, N.; Nadal, M.; García-Heredia, A.; Baiges-Gaya, G.; Hernández-Aguilera, A.; Camps, J.; Joven, J.; Domingo, J.L. Serum concentrations of trace elements and their relationships with paraoxonase-1 in morbidly obese women. J. Trace Elem. Med. Biol. 2018, 48, 8–15. [Google Scholar] [CrossRef]
- Abu-El-Zahab, H.; Aal, W.E.A.; Awadallah, R.; Mikhail, T.M.; Zakaria, K. The correlation between serum total cholesterol and some trace elements in serum, liver and heart of rats fed high cholesterol diet. Food Nahr. 1991, 35, 827–834. [Google Scholar] [CrossRef]
- Houtman, J.P. Trace elements and cardiovascular diseases. J. Cardiovasc. Risk 1996, 3, 18–24. [Google Scholar] [CrossRef]
- Maret, W. Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv. Nutr. 2013, 4, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Ma, X.; Li, M.; Yan, S.; Zhao, H.; Pan, Y.; Wang, C.; Yao, Y.; Jin, L.; Li, B. Association between dietary mineral nutrient intake, body mass index, and waist circumference in U.S. Adults using quantile regression analysis NHANES 2007–2014. PeerJ 2020, 8, e9127. [Google Scholar] [CrossRef] [PubMed]
- Kelly, O.J.; Gilman, J.C.; Kim, Y.; Ilich, J.Z. Macronutrient Intake and Distribution in the Etiology, Prevention and Treatment of Osteosarcopenic Obesity. Curr. Aging Sci. 2016, 10, 83–105. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Ridker, P.M.; Manson, J.A.E.; Cook, N.R.; Buring, J.E.; Liu, S. Magnesium intake, C-reactive protein, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care 2005, 28, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.M.; Jacques, P.F.; Zhang, X.L.; Juan, W.; Sahyoun, N.R. Dietary magnesium intake is related to metabolic syndrome in older Americans. Eur. J. Nutr. 2008, 47, 210–216. [Google Scholar] [CrossRef]
- Mirmiran, P.; Shab-Bidar, S.; Hosseini-Esfahani, F.; Asghari, G.; Hosseinpour-Niazi, S.; Azizi, F. Magnesium intake and prevalence of metabolic syndrome in adults: Tehran lipid and glucose study. Public Health Nutr. 2012, 15, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.K.; Bae, Y.J. Relationship between dietary magnesium, manganese, and copper and metabolic syndrome risk in Korean Adults: The Korea national health and nutrition examination survey (2007–2008). Biol. Trace Elem. Res. 2013, 156, 56–66. [Google Scholar] [CrossRef]
- Dibaba, D.T.; Xun, P.; Fly, A.D.; Yokota, K.; He, K. Dietary magnesium intake and risk of metabolic syndrome: A meta-analysis. Diabet. Med. 2014, 31, 1301–1309. [Google Scholar] [CrossRef] [Green Version]
- Sarrafzadegan, N.; Khosravi-Boroujeni, H.; Lotfizadeh, M.; Pourmogaddas, A.; Salehi-Abargouei, A. Magnesium status and the metabolic syndrome: A systematic review and meta-analysis. Nutrition 2016, 32, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Jang, N.; He, L.; Li, Y.; Xu, L.; Ping, F.; Li, W.; Zhang, H. Reduced Insulin Resistance Partly Mediated the Association of High Dietary Magnesium Intake with Less Metabolic Syndrome in a Large Chinese Population. Diabetes Metab. Syndr. Obes. 2020, 13, 2541–2550. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Shen, Y.; Fang, X.; Wang, Y.; Wang, F. Obesity and iron deficiency: A quantitative meta-analysis. Obes. Rev. 2015, 16, 1081–1093. [Google Scholar] [CrossRef]
- Cybulska, A.M.; Rachubińska, K.; Szkup, M.; Schneider-Matyka, D.; Baranowska-Bosiacka, I.; Chlubek, D.; Lubkowska, A.; Panczyk, M.; Sołek-Pastuszka, J.; Grochans, E. Serum levels of proinflammatory cytokines and selected bioelements in perimenopausal women with regard to body mass index. Aging 2021, 13, 25025–25037. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Fang, X.; Su, D.; Huang, L.; He, M.; Zhao, D.; Zou, Y.; Zhang, R. Dietary Calcium Intake and the Risk of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 19046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore-Schiltz, L.; Albert, J.M.; Singer, M.E.; Swain, J.; Nock, N.L. Dietary intake of calcium and magnesium and the metabolic syndrome in the National Health and Nutrition Examination (NHANES) 2001–2010 data. Br. J. Nutr. 2015, 114, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, S.K.; Bae, Y.J. Relationship between serum calcium and magnesium concentrations and metabolic syndrome diagnostic components in middle-aged Korean men. Biol. Trace Elem. Res. 2012, 146, 35–41. [Google Scholar] [CrossRef]
- Dai, Q.; Shu, X.O.; Deng, X.; Xiang, Y.B.; Li, H.; Yang, G.; Shrubsole, M.J.; Ji, B.; Cai, H.; Chow, W.H.; et al. Modifying effect of calcium/magnesium intake ratio and mortality: A population based cohort study. BMJ Open 2013, 3, e002111. [Google Scholar] [CrossRef] [Green Version]
- Jurczak, A.; Brodowski, J.; Grochans, E.; Karakiewicz, B.; Szkup-Jabłońska, M.; Wieder-Huszla, S.; Mroczek, B.; Włoszczak-Szubzda, A.; Grzywacz, A. Effect of menopausal hormone therapy on the levels of magnesium, zinc, lead and cadmium in post-menopausal women. Ann. Agric. Environ. Med. 2013, 20, 147–151. [Google Scholar]
- Horecka, A.; Hordyjewska, A.; Blicharski, T.; Kocot, J.; Żelazowska, R.; Lewandowska, A.; Kurzepa, J. Simvastatin Effect on Calcium and Silicon Plasma Levels in Postmenopausal Women with Osteoarthritis. Biol. Trace Elem. Res. 2016, 171, 1–5. [Google Scholar] [CrossRef]
- Lips, P. Interaction between vitamin D and calcium. Scand. J. Clin. Lab. Investig. 2012, 243, 60–64. [Google Scholar]
- Gröber, U. Magnesium and Drugs. Int. J. Mol. Sci. 2019, 20, 2094. [Google Scholar] [CrossRef] [Green Version]
- WHO. Waist Circumference and Waist-Hip Ratio Report of a WHO Expert Consultation. 2011. Available online: https://www.who.int/nutrition/publications/obesity/WHO_report_waistcircumference_and_waisthip_ratio/en/ (accessed on 19 February 2019).
- World Health Organization. BMI classification. In Global Database on Body Mass Index; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- TRUE Consortium. Recommended Standards for Assessing Blood Pressure in Human Research Where Blood Pressure or Hypertension Is a Major Focus. Kidney Int. Rep. 2017, 2, 733–738. [Google Scholar] [CrossRef]
- Pickering, T.G.; Hall, J.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for Blood Pressure Measurement in Humans and Experimental Animals. Circulation 2005, 111, 697–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statistical Office in Szczecin. Statistical Yearbook of Zachodniopomorskie Voivodship 2020; Statistical Office in Szczecin: Szczecin, Poland, 2020. [Google Scholar]
- McKinlay, S.M.; Brambilla, D.J.; Posner, J.G. The normal menopause transition. Am. J. Hum. Biol. 1992, 4, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Parikh, R.M.; Mohan, V. Changing definitions of metabolic syndrome. Indian J. Endocrinol. Metab. 2012, 16, 7–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Q.; Chen, X.; Li, L.; Zhou, R.; Huang, J.; Yang, N. Apolipoprotein B/apolipoprotein A1 ratio is a good predictive marker of metabolic syndrome and pre-metabolic syndrome in Chinese adolescent women with polycystic ovary syndrome. J. Obstet. Gynaecol. Res. 2012, 39, 203–209. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- WHO. Obesity and Overweight, Factsheet: WHO. 2014. Available online: http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 15 July 2022).
- Croci, S.; D’Apolito, L.I.; Gasperi, V.; Catani, M.V.; Savini, I. Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients 2021, 13, 1389. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, J.; Hwang, S.S.; Kim, S.; Chin, H.J.; Han, J.S.; Heo, N.J. Potassium intake and the prevalence of metabolic syndrome: The Korean National Health and Nutrition Examination Survey 2008–2010. PLoS ONE 2013, 8, e55106. [Google Scholar] [CrossRef]
- D’Elia, L.; Barba, G.; Cappuccio, F.P.; Strazzullo, P. Potassium intake, stroke, and cardiovascular disease a meta-analysis of prospective studies. J. Am. Coll. Cardiol. 2011, 57, 1210–1219. [Google Scholar] [CrossRef]
- Sun, K.; Su, T.; Li, M.; Xu, B.; Xu, M.; Lu, J.; Liu, J.; Bi, Y.; Ning, G. Serum potassium level is associated with metabolic syndrome: A population-based study. Clin. Nutr. 2014, 33, 521–527. [Google Scholar] [CrossRef]
- Murao, S.; Takata, Y.; Yasuda, M.; Osawa, H.; Kohi, F. The Influence of Sodium and Potassium Intake and Insulin Resistance on Blood Pressure in Normotensive Individuals Is More Evident in Women. Am. J. Hypertens. 2018, 31, 876–885. [Google Scholar] [CrossRef] [Green Version]
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teramoto, T.; Kawamori, R.; Miyazaki, S.; Teramukai, S.; OMEGA Study Group. Sodium intake in men and potassium intake in women determine the prevalence of metabolic syndrome in Japanese hypertensive patients: OMEGA Study. Hypertens. Res. 2011, 34, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Li, X.; Fan, W.; Yu, W.; Wang, S.; Li, Z.; Scott, E.M.; Li, X. Potassium and Obesity/Metabolic Syndrome: A Systematic Review and Meta-Analysis of the Epidemiological Evidence. Nutrients 2016, 8, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Zhou, J.; Cao, L.; Xu, Q.; Hao, J.; Zhao, L.; Wang, J. Serum calcium is a novel parameter to assess metabolic syndrome in endometrial carcinoma. J. Gynecol. Oncol. 2019, 30, e12. [Google Scholar] [CrossRef] [PubMed]
- Sperling, D.C.; Verdoodt, F.; Kjaer Hansen, M.; Dehlendorff, C.; Friis, S.; Kjaer, S.K. Statin use and mortality among endometrial cancer patients: A Danish nationwide cohort study. Int. J. Cancer 2018, 143, 2668–2676. [Google Scholar] [CrossRef]
- Pardhe, B.D.; Pathak, S.; Bhetwal, A.; Ghimire, S.; Shakya, S.; Khanal, P.R.; Marahatta, S.B. Effect of age and estrogen on biochemical markers of bone turnover in postmenopausal women: A population-based study from Nepal. Int. J. Womens Health 2017, 9, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Lekhi, A.; Lekhi, M.; Sathian, B.; Mittal, A. The role of biochemical markers in the early detection of osteoporosis in women: A comparative study from the Western Region of Nepal. J. Clin. Diagn. Res. 2012, 6, 274–277. [Google Scholar]
- Onyeukwu, C.U.; Nsonwu, A.C. Biochemical bone turnover markers in postmenopausal women in Calabar municipality. Asian J. Biochem. 2007, 2, 130–135. [Google Scholar]
- Lu, C.W.; Lee, Y.C.; Kuo, C.S.; Chiang, C.H.; Chang, H.H.; Huang, K.C. Association of Serum Levels of Zinc, Copper, and Iron with Risk of Metabolic Syndrome. Nutrients 2021, 13, 548. [Google Scholar] [CrossRef]
- Seo, J.A.; Song, S.-W.; Han, K.; Lee, K.J.; Kim, H.N. The Associations between Serum Zinc Levels and Metabolic Syndrome in the Korean Population: Findings from the 2010 Korean National Health and Nutrition Examination Survey. PLoS ONE 2014, 9, e105990. [Google Scholar]
- Eshak, E.S.; Iso, H.; Maruyama, K.; Muraki, I.; Tamakoshi, A. Associations between dietary intakes of iron, copper and zinc with risk of type 2 diabetes mellitus: A large population-based prospective cohort study. Clin. Nutr. 2018, 37, 667–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seet, R.C.; Lee, C.Y.J.; Lim, E.C.; Quek, A.M.; Huang, H.; Huang, S.H.; Looi, W.F.; Long, L.H.; Halliwell, B.; Lee, J.C.Y. Oral zinc supplementation does not improve oxidative stress or vascular function in patients with type 2 diabetes with normal zinc levels. Atherosclerosis 2011, 219, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Wu, W.; Gu, X.; Dai, S.; Zhou, Q.; Deng, H.; Shen, F.; Chen, J. Association of serum copper, zinc and selenium levels with risk of metabolic syndrome: A nested case-control study of middle-aged and older Chinese adults. J. Trace Elem. Med. Biol. 2019, 52, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Chen, C.; Yang, K.; Zhu, J.; Xun, P.; Shikany, J.M.; He, K. Magnesium intake is inversely associated with risk of obesity in a 30-year prospective follow-up study among American young adults. Eur. J. Nutr. 2020, 59, 3745–3753. [Google Scholar] [CrossRef]
- Galan, P.; Preziosi, P.; Durlach, V.; Valeix, P.; Ribas, L.; Bouzid, D.; Favier, A.; Hercberg, S. Dietary magnesium intake in a French adult population. Magnes. Res. 1997, 10, 321–328. [Google Scholar] [CrossRef]
- Castellanos-Gutiérrez, A.; Sánchez-Pimienta, T.G.; Carriquiry, A.; Da Costa, T.H.M.; Ariza, A.C. Higher dietary magnesium intake is associated with lower body mass index, waist circumference and serum glucose in Mexican adults. Nutr. J. 2018, 17, 114. [Google Scholar] [CrossRef]
- He, K.; Liu, K.; Daviglus, M.L.; Morris, S.J.; Loria, C.M.; Van Horn, L.; Jacobs, D.R.; Savage, P.J. Magnesium intake and incidence of metabolic syndrome among young adults. Circulation 2006, 113, 1675–1682. [Google Scholar] [CrossRef] [Green Version]
- Shamnani, G.; Rukadikar, C.; Gupta, V.; Singh, S.; Tiwari, S.; Bhartiy, S.; Sharma, P. Serum magnesium in relation with obesity. Natl. J. Physiol. Pharm. 2018, 8, 1074–1077. [Google Scholar] [CrossRef]
- Fang, X.; Wang, K.; Han, D.; He, X.; Wei, J.; Zhao, L.; Imam, M.U.; Ping, Z.; Li, Y.; Xu, Y.; et al. Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: A dose-response meta-analysis of prospective cohort studies. BMC Med. 2016, 14, 210. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Iso, H.; Ohira, T.; Date, C.; Tamakoshi, A. Associations of dietary magnesium intake with mortality from cardiovascular disease: The JACC study. Atherosclerosis 2012, 221, 587–595. [Google Scholar] [CrossRef]
- Veronese, N.; Watutantrige-Fernando, S.; Luchini, C.; Solmi, M.; Sartore, G.; Sergi, G.; Manzato, E.; Barbagallo, M.; Maggi, S.; Stubbs, B. Effect of magnesium supplementation on glucose metabolism in people with or at risk of diabetes: A systematic review and meta-analysis of double-blind randomized controlled trials. Eur. J. Clin. Nutr. 2016, 70, 1354–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veronese, N.; Demurtas, J.; Pesolillo, G.; Celotto, S.; Barnini, T.; Calusi, G.; Caruso, M.G.; Notarnicola, M.; Reddavide, R.; Stubbs, B.; et al. Magnesium and health outcomes: An umbrella review of systematic reviews and meta-analyses of observational and intervention studies. Eur. J. Nutr. 2020, 59, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.R.; Cruz, K.J.; Severo, J.S.; Morais, J.B.; Freitas, T.E.; Araújo, R.S.; Marreiro, D.D. Hypomagnesemia and its relation with chronic low-grade inflammation in obesity. Rev. Assoc. Med. Bras. 2017, 63, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Rosique-Esteban, N.; Guasch-Ferré, M.; Hernández-Alonso, P.; Salas-Salvadó, J. Dietary magnesium and cardiovascular disease: A review with emphasis in epidemiological studies. Nutrients 2018, 10, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maria De Lourdes, L.; Cruz, T.; Rodrigues, L.E.; Bomfim, O.; Melo, J.; Correia, R.; Porto, M.; Cedro, A.; Vicente, E. Serum and intracellular magnesium deficiency in patients with metabolic syndrome—Evidences for its relation to insulin resistance. Diabetes Res. Clin. Pract. 2009, 83, 257–262. [Google Scholar] [CrossRef]
- Ghasemi, A.; Zahediasl, S.; Syedmoradi, L.; Azizi, F. Low serum magnesium levels in elderly subjects with metabolic syndrome. Biol. Trace Elem. Res. 2010, 136, 18–25. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, J.; Zeng, C.; Yang, T.; Li, H.; Cui, Y.; Xie, D.; Xu, B.; Liu, Z.; Li, J.; et al. Association between serum magnesium concentration and metabolic syndrome, diabetes, hypertension and hyperuricaemia in knee osteoarthritis: A cross-sectional study in Hunan Province, China. BMJ Open 2018, 8, e019159. [Google Scholar] [CrossRef]
- Sachinidis, A.; Doumas, M.; Imprialos, K.; Stavropoulos, K.; Katsimardou, A.; Athyros, V.G. Dysmetabolic Iron Overload in Metabolic Syndrome. Curr. Pharm. Des. 2020, 26, 1019–1024. [Google Scholar] [CrossRef]
- Zhang, C.; Rawal, S. Dietary iron intake, iron status, and gestational diabetes. Am. J. Clin. Nutr. 2017, 106, 1672S–1680S. [Google Scholar] [CrossRef] [Green Version]
- Yun, S.; Nguyen, H.D.; Park, J.S.; Oh, C.; Kim, M.S. The association between the metabolic syndrome and iron status in pre- and postmenopausal women: Korean National Health and Nutrition Examination Survey (KNHANES) in 2012. Br. J. Nutr. 2022, 127, 630–640. [Google Scholar] [CrossRef]
- Pitchika, A.; Schipf, S.; Nauck, M.; Dörr, M.; Lerch, M.M.; Felix, S.B.; Markus, M.R.P.; Völzke, H.; Ittermann, T. Associations of iron markers with type 2 diabetes mellitus and metabolic syndrome: Results from the prospective SHIP study. Diabetes Res. Clin. Pract. 2020, 163, 108149. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Kanazawa, I.; Takaoka, S.; Sugimoto, T. Serum calcium is positively correlated with fasting plasma glucose and insulin resistance, independent of parathyroid hormone, in male patients with type 2 diabetes mellitus. Metabolism 2011, 60, 1334–1339. [Google Scholar] [CrossRef]
- Sun, G.; Vasdev, S.; Martin, G.R.; Gadag, V.; Zhang, H. Altered calcium homeostasis is correlated with abnormalities of fasting serum glucose, insulin resistance, and β-cell function in the Newfoundland population. Diabetes 2005, 54, 3336–3339. [Google Scholar] [CrossRef] [Green Version]
- De Bacquer, D.; De Henauw, S.; De Backer, G.; Kornitzer, M. Epidemiological evidence for an association between serum calcium and serum lipids. Atherosclerosis 1994, 108, 193–200. [Google Scholar] [CrossRef]
- Obeid, O.A.; Elfakhani, M.; Hlais, S.; Iskandar, M.; Batal, M.; Mouneimne, Y.; Adra, N.; Hwalla, N. Plasma Copper, Zinc, and Selenium Levels and Correlates with Metabolic Syndrome Components of Lebanese Adults. Biol. Trace Elem. Res. 2008, 123, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Liu, H.L.; Sun, J.Y.; Kong, X.Q.; Sun, W.; Xiong, Y.Q. Association between Serum Calcium and the Prevalence of Hypertension Among US Adults. Front. Cardiovasc. Med. 2021, 8, 719165. [Google Scholar] [CrossRef] [PubMed]
- McCarron, D.A.; Morris, C.D.; Henry, H.J.; Stanton, J.L. Blood pressure and nutrient intake in the United States. Science 1984, 224, 1392–1398. [Google Scholar] [CrossRef]
- McCarron, D.A.; Morris, C.D.; Cole, C. Dietary calcium in human hypertension. Science 1982, 217, 267–269. [Google Scholar] [CrossRef]
- Kromhout, D.; Bosschieter, E.B.; Coulander, C.D. Potassium, calcium, alcohol intake and blood pressure: The Zutphen study. Am. J. Clin. Nutr. 1985, 41, 1299–1304. [Google Scholar] [CrossRef]
- Cormick, G.; Ciapponi, A.; Cafferata, M.L.; Belizán, J.M. Calcium supplementation for prevention of primary hypertension. Cochrane Database Syst. Rev. 2015, 8, Cd010037. [Google Scholar] [CrossRef]
- Dickinson, H.O.; Nicolson, D.J.; Cook, J.V.; Campbell, F.; Beyer, F.R.; Ford, G.A.; Mason, J. Calcium supplementation for the management of primary hypertension in adults. Cochrane Database Syst. Rev. 2006, 2, Cd004639. [Google Scholar] [CrossRef] [PubMed]
- Cho, G.J.; Park, H.T.; Shin, J.H.; Hur, J.Y.; Kim, Y.T.; Kim, S.H.; Lee, K.W.; Kim, T. Calcium intake is inversely associated with metabolic syndrome in postmenopausal women: Korea National Health and Nutrition Survey, 2001 and 2005. Menopause 2009, 16, 992–997. [Google Scholar] [CrossRef] [PubMed]
- Drouillet, P.; Balkau, B.; Charles, M.A.; Vol, S.; Bedouet, M.; Ducimetière, P.; Desir Study Group. Calcium consumption and insulin resistance syndrome parameters. Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Nutr. Metab. Cardiovasc. Dis. 2007, 17, 486–492. [Google Scholar] [CrossRef] [PubMed]
Variables | Pre-MetS (n = 45) | MetS (n = 16) | Control (n = 109) | F (2,167) | p * | η2 (95%CI) | |||
---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | ||||
Age (years) | 54.71 | 5.42 | 54.44 | 5.15 | 54.12 | 5.03 | 0.217 | 0.805 | - |
WC (cm) | 96.18 | 10.69 | 93.50 | 7.31 | 86.73 | 14.60 | 8.898 | <0.001 | 0.096 (0.024; 0.181) |
Body mass (kg) | 76.28 | 12.77 | 77.09 | 11.19 | 72.71 | 15.99 | 1.292 | 0.277 | - |
Height (cm) | 163.29 | 5.35 | 164.94 | 6.06 | 164.39 | 6.30 | 0.682 | 0.507 | - |
BMI (kg/m2) | 28.58 | 4.47 | 28.36 | 3.97 | 26.82 | 5.11 | 2.408 | 0.093 | - |
WHtR (%) | 0.59 | 0.067 | 0.57 | 0.055 | 0.53 | 0.09 | 9.366 | <0.001 | 0.101 (0.026; 0.186) |
SBP (mmHg) | 128.04 | 18.06 | 124.63 | 17.93 | 111.30 | 12.56 | 22.970 | <0.001 | 0.216 (0.110; 0.313) |
DBP (mmHg) | 83.62 | 9.34 | 81.94 | 9.02 | 74.22 | 9.02 | 19.133 | <0.001 | 0.186 (0.086; 0.282) |
Variables | Control (n = 109) | Pre-MetS (n = 45) | MetS (n = 16) | χ2df=2 | p * | |||
---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | |||
Obesity | 26 | 23.85 | 14 | 31.11 | 4 | 25.00 | 0.882 | 0.643 |
Abdominal obesity | 51 | 46.79 | 39 | 86.67 | 15 | 93.75 | 29.099 | <0.001 |
General obesity | 29 | 26.61 | 17 | 37.78 | 4 | 25.00 | 2.080 | 0.353 |
Current smoking | 23 | 21.10 | 4 | 8.89 | 5 | 31.25 | 4.893 | 0.087 |
Hypertension | 7 | 6.42 | 24 | 53.33 | 8 | 50.00 | 46.965 | <0.001 |
Variables | Pre-MetS (n = 45) | MetS (n = 16) | Control (n = 109) | F (2,167) | p * | η2 (95%CI) | |||
---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | ||||
FPG (mg/dL) | 90.68 | 34.81 | 99.99 | 25.88 | 83.29 | 8.68 | 5.613 | 0.004 | 0.062 (0.007; 0.138) |
TG (mg/dL) | 109.16 | 53.82 | 168.26 | 74.36 | 85.56 | 29.86 | 27.501 | <0.001 | 0.248 (0.138; 0.345) |
TC (mg/dL) | 217.77 | 33.01 | 223.38 | 37.06 | 210.82 | 31.18 | 1.515 | 0.223 | - |
HDL (mg/dL) | 67.11 | 20.41 | 51.04 | 14.76 | 73.87 | 15.55 | 13.577 | <0.001 | 0.140 (0.051; 0.232) |
LDL (mg/dL) | 125.98 | 38.13 | 138.69 | 26.00 | 119.77 | 27.58 | 2.921 | 0.057 | - |
HbA1C (%) | 5.43 | 0.63 | 5.82 | 0.85 | 5.28 | 0.27 | 9.717 | <0.001 | 0.104 (0.028; 0.190) |
Insulin (µlu/mL) | 11.12 | 8.67 | 12.66 | 6.03 | 7.89 | 4.16 | 7.967 | <0.001 | 0.087 (0.019; 0.169) |
TG/HDL ratio | 1.85 | 1.18 | 3.58 | 2.18 | 1.32 | 1.05 | 24.130 | <0.001 | 0.224 (0.117; 0.321) |
TC/HDL ratio | 3.52 | 1.12 | 4.54 | 0.81 | 2.95 | 0.64 | 30.398 | <0.001 | 0.267 (0.155; 0.364) |
LDL/HDL ratio | 2.11 | 0.97 | 2.83 | 0.58 | 1.70 | 0.57 | 20.323 | <0.001 | 0.196 (0.094; 0.292) |
Element | M | SD | Mdn | IQR/2 | Min | Max |
---|---|---|---|---|---|---|
Ca (mg/L) | 103.28 | 28.71 | 98.35 | 21.94 | 52.49 | 244.85 |
P (mg/L) | 110.68 | 38.85 | 104.82 | 19.03 | 51.17 | 357.73 |
Na (mg/L) | 2271.05 | 709.09 | 2225.36 | 391.82 | 839.98 | 6551.39 |
K (mg/L) | 394.63 | 308.61 | 263.42 | 180.26 | 62.02 | 1415.86 |
Fe (mg/L) | 1.59 | 0.63 | 1.45 | 0.40 | 0.38 | 3.84 |
Mg (mg/L) | 18.51 | 6.37 | 17.66 | 3.57 | 9.10 | 54.74 |
Cu (mg/L) | 1.09 | 0.43 | 1.05 | 0.26 | 0.36 | 3.25 |
Zn (mg/L) | 2.56 | 1.45 | 2.18 | 0.76 | 0.63 | 9.25 |
Sr (mg/L) | 0.14 | 0.07 | 0.12 | 0.04 | 0.03 | 0.34 |
Bioelement | Perimenopause (n = 42) | Postmenopause (n = 128) | tdf = 168 | p * | Δ | 95%CI | ||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | |||||
Ca (mg/L) | 101.93 | 27.30 | 103.72 | 29.25 | −0.349 | 0.728 | 1.78 | −8.32; 11.89 |
P (mg/L) | 107.43 | 37.09 | 111.75 | 39.49 | −0.625 | 0.533 | 4.33 | −9.34; 17.99 |
Na (mg/L) | 2302.24 | 746.61 | 2260.82 | 699.08 | 0.328 | 0.744 | −41.42 | −291.02; 208.17 |
K (mg/L) | 371.50 | 310.18 | 402.22 | 308.94 | −0.559 | 0.577 | 30.72 | −77.84; 139.28 |
Fe (mg/L) | 1.50 | 0.56 | 1.62 | 0.66 | −1.058 | 0.291 | 0.12 | −0.10; 0.34 |
Mg (mg/L) | 18.64 | 7.61 | 18.47 | 5.95 | 0.148 | 0.883 | −0.17 | −2.41; 2.08 |
Cu (mg/L) | 1.15 | 0.42 | 1.08 | 0.43 | 0.915 | 0.362 | −0.07 | −0.22; 0.08 |
Zn (mg/L) | 2.47 | 1.56 | 2.59 | 1.41 | −0.435 | 0.664 | 0.11 | −0.40; 0.62 |
Sr (mg/L) | 0.13 | 0.05 | 0.15 | 0.07 | −1.003 | 0.317 | 0.01 | −0.01; 0.04 |
Bioelement Levels | MetS (IDF) | F (2, 167) | p * | η2 (95%CI) | |||||
---|---|---|---|---|---|---|---|---|---|
Pre-MetS (n = 45) | MetS (n = 16) | Control (n = 109) | |||||||
M | SD | M | SD | M | SD | ||||
Ca (mg/L) | 100.37 | 25.78 | 99.74 | 28.45 | 104.99 | 29.97 | 0.543 | 0.582 | - |
P (mg/L) | 103.88 | 26.65 | 96.01 | 23.91 | 115.65 | 43.78 | 2.780 | 0.065 | - |
Na (mg/L) | 2139.34 | 567.21 | 2035.64 | 548.37 | 2359.98 | 768.47 | 2.562 | 0.080 | - |
K (mg/L) | 482.60 | 357.43 | 251.26 | 253.45 | 379.36 | 285.58 | 3.811 | 0.024 | 0.044 (0.000; 0.111) |
Fe (mg/L) | 1.57 | 0.56 | 1.59 | 0.77 | 1.60 | 0.65 | 0.034 | 0.967 | - |
Mg (mg/L) | 17.54 | 7.14 | 17.20 | 5.03 | 19.11 | 6.19 | 1.341 | 0.264 | - |
Cu (mg/L) | 1.09 | 0.42 | 0.89 | 0.32 | 1.13 | 0.44 | 2.247 | 0.109 | - |
Zn (mg/L) | 2.78 | 2.04 | 2.76 | 1.77 | 2.44 | 1.05 | 1.085 | 0.340 | - |
Sr (mg/L) | 0.14 | 0.06 | 0.17 | 0.08 | 0.14 | 0.07 | 1.325 | 0.269 | - |
Bioelement Levels | Body Weight | F (2, 167) | p * | η2 (95%CI) | |||||
---|---|---|---|---|---|---|---|---|---|
Normal Weight (n = 55) | Overweight (n = 70) | Obesity (n = 44) | |||||||
M | SD | M | SD | M | SD | ||||
Ca (mg/L) | 107.80 | 27.84 | 98.20 | 25.12 | 105.36 | 34.05 | 1.923 | 0.149 | - |
P (mg/L) | 115.69 | 34.96 | 107.14 | 35.65 | 109.76 | 47.70 | 0.772 | 0.464 | - |
Na (mg/L) | 2438.55 | 675.22 | 2102.83 | 576.82 | 2317.88 | 878.29 | 3.746 | 0.026 | 0.043 (0.000; 0.110) |
K (mg/L) | 422.61 | 307.11 | 331.93 | 269.32 | 456.71 | 354.24 | 2.597 | 0.078 | - |
Fe (mg/L) | 1.72 | 0.65 | 1.49 | 0.58 | 1.59 | 0.67 | 1.995 | 0.139 | - |
Mg (mg/L) | 20.20 | 6.77 | 17.17 | 4.90 | 18.45 | 7.44 | 3.638 | 0.028 | 0.042 (0.000; 0.108) |
Cu (mg/L) | 1.14 | 0.39 | 1.00 | 0.39 | 1.19 | 0.50 | 3.425 | 0.035 | 0.039 (0.000; 0.104) |
Zn (mg/L) | 2.56 | 1.07 | 2.51 | 1.56 | 2.64 | 1.69 | 0.106 | 0.899 | - |
Sr (mg/L) | 0.14 | 0.07 | 0.15 | 0.07 | 0.14 | 0.06 | 0.481 | 0.619 | - |
Bioelement | HA (n = 39) | Non-HA (n = 131) | tdf = 168 | p * | Δ | 95%CI | ||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | |||||
Ca (mg/L) | 99.20 | 26.18 | 104.49 | 29.40 | −1.011 | 0.314 | 5.29 | −5.04; 15.63 |
P (mg/L) | 102.25 | 21.73 | 113.19 | 42.38 | −1.550 | 0.123 | 10.94 | −2.99; 24.87 |
Na (mg/L) | 2130.29 | 551.72 | 2312.96 | 746.30 | −1.416 | 0.159 | 182.67 | −71.93; 437.27 |
K (mg/L) | 437.86 | 344.50 | 381.76 | 297.31 | 0.997 | 0.320 | −56.10 | −167.24; 55.04 |
Fe (mg/L) | 1.60 | 0.63 | 1.59 | 0.64 | 0.090 | 0.928 | −0.01 | −0.24; 0.22 |
Mg (mg/L) | 17.23 | 5.38 | 18.90 | 6.61 | −1.440 | 0.152 | 1.67 | −0.62; 3.96 |
Cu (mg/L) | 1.01 | 0.31 | 1.12 | 0.45 | −1.466 | 0.145 | 0.11 | −0.04; 0.27 |
Zn (mg/L) | 2.72 | 1.90 | 2.51 | 1.29 | 0.808 | 0.420 | −0.21 | −0.73; 0.31 |
Sr (mg/L) | 0.15 | 0.07 | 0.14 | 0.06 | 1.033 | 0.303 | −0.01 | −0.04; 0.01 |
Variables | Bioelements | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca (mg/L) | P (mg/L) | Na (mg/L) | K (mg/L) | Fe (mg/L) | Mg (mg/L) | Cu (mg/L) | Zn (mg/L) | Sr (mg/L) | ||||||||||
r | p | r | p | r | p | r | p | r | p | r | p | r | p | r | p | r | p | |
FPG (mg/dL) | 0.10 | 0.197 | −0.07 | 0.387 | −0.01 | 0.916 | −0.09 | 0.227 | −0.01 | 0.934 | −0.01 | 0.916 | −0.04 | 0.561 | 0.03 | 0.656 | 0.16 | 0.041 |
Insulin (µlu/mL) | −0.09 | 0.261 | −0.13 | 0.080 | −0.10 | 0.175 | 0.13 | 0.092 | −0.09 | 0.227 | −0.05 | 0.527 | 0.12 | 0.125 | −0.03 | 0.733 | −0.12 | 0.135 |
HbA1C (%) | 0.09 | 0.244 | −0.05 | 0.480 | 0.02 | 0.810 | −0.14 | 0.079 | −0.04 | 0.630 | 0.05 | 0.493 | −0.11 | 0.147 | −0.02 | 0.772 | 0.18 | 0.017 |
TC (mg/dL) | −0.05 | 0.511 | −0.09 | 0.224 | −0.12 | 0.133 | 0.03 | 0.737 | 0.00 | 0.997 | −0.08 | 0.272 | −0.18 | 0.022 | 0.06 | 0.421 | 0.10 | 0.207 |
TG (mg/dL) | 0.06 | 0.457 | −0.12 | 0.114 | −0.07 | 0.354 | −0.01 | 0.874 | −0.02 | 0.837 | 0.08 | 0.318 | −0.09 | 0.261 | 0.10 | 0.173 | 0.13 | 0.096 |
HDL (mg/dL) | 0.09 | 0.247 | 0.02 | 0.801 | 0.10 | 0.198 | 0.02 | 0.788 | 0.11 | 0.165 | −0.02 | 0.821 | 0.02 | 0.807 | 0.07 | 0.396 | 0.05 | 0.554 |
LDL (mg/dL) | −0.10 | 0.173 | −0.08 | 0.288 | −0.15 | 0.045 | 0.02 | 0.843 | −0.05 | 0.540 | −0.09 | 0.230 | −0.16 | 0.042 | 0.00 | 0.978 | 0.06 | 0.451 |
WC (cm) | 0.00 | 0.967 | 0.07 | 0.384 | −0.02 | 0.828 | 0.08 | 0.323 | 0.04 | 0.632 | −0.16 | 0.035 | 0.06 | 0.414 | 0.10 | 0.184 | 0.10 | 0.191 |
BMI | −0.04 | 0.626 | −0.04 | 0.594 | −0.07 | 0.335 | −0.02 | 0.796 | −0.09 | 0.257 | −0.13 | 0.092 | 0.04 | 0.562 | 0.05 | 0.518 | 0.06 | 0.447 |
WHtr | 0.02 | 0.763 | 0.10 | 0.186 | 0.01 | 0.896 | 0.09 | 0.259 | 0.05 | 0.480 | −0.14 | 0.075 | 0.09 | 0.222 | 0.11 | 0.172 | 0.09 | 0.218 |
DBP (mmHg) | −0.08 | 0.316 | −0.03 | 0.679 | −0.09 | 0.261 | 0.02 | 0.795 | −0.06 | 0.448 | −0.13 | 0.086 | −0.01 | 0.902 | 0.04 | 0.567 | −0.01 | 0.914 |
SBP (mmHg) | −0.09 | 0.266 | −0.14 | 0.064 | −0.19 | 0.011 | 0.01 | 0.940 | −0.08 | 0.313 | −0.23 | 0.003 | −0.17 | 0.029 | 0.13 | 0.087 | 0.12 | 0.133 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cybulska, A.M.; Schneider-Matyka, D.; Bosiacki, M.; Chlubek, D.; Panczyk, M.; Grochans, E. The Levels of Bioelements in Postmenopausal Women with Metabolic Syndrome. Nutrients 2022, 14, 4102. https://doi.org/10.3390/nu14194102
Cybulska AM, Schneider-Matyka D, Bosiacki M, Chlubek D, Panczyk M, Grochans E. The Levels of Bioelements in Postmenopausal Women with Metabolic Syndrome. Nutrients. 2022; 14(19):4102. https://doi.org/10.3390/nu14194102
Chicago/Turabian StyleCybulska, Anna Maria, Daria Schneider-Matyka, Mateusz Bosiacki, Dariusz Chlubek, Mariusz Panczyk, and Elżbieta Grochans. 2022. "The Levels of Bioelements in Postmenopausal Women with Metabolic Syndrome" Nutrients 14, no. 19: 4102. https://doi.org/10.3390/nu14194102
APA StyleCybulska, A. M., Schneider-Matyka, D., Bosiacki, M., Chlubek, D., Panczyk, M., & Grochans, E. (2022). The Levels of Bioelements in Postmenopausal Women with Metabolic Syndrome. Nutrients, 14(19), 4102. https://doi.org/10.3390/nu14194102