Influence of Educational Level and Healthy Habits on the Prevalence of Diabesity in a Spanish Working Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type of Study and Sample
2.2. Determination of Variables
2.3. Inclusion Criteria
- Agree to participate in the study.
- Work in one of the companies participating in the study.
- Age between 18 and 69 years.
- Have the variables in the database to calculate diabesity.
2.4. Exclusion Criteria
- Decline to participate in the study.
- Age under 18 or over 69.
- Lack any variable to calculate diabesity scales.
2.5. Scales of Obesity
2.6. Sociodemographic Variables and Tobacco
2.7. Statistical Analysis
2.8. Ethical Considerations and Aspects
3. Results
3.1. Participants in the Study and Characteristics of Participants
3.2. Prevalence of Diabesity
3.3. Multivariate Analysis
3.4. Correlation and Concordance between Different Scales
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, G.A.; Kim, K.K.; Wilding, J.P.H.; World Obesity Federation. Obesity: A chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes. Rev. 2017, 18, 715–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kheriji, N.; Boukhalfa, W.; Mahjoub, F.; Hechmi, M.; Dakhlaoui, T.; Mrad, M.; Hadj Salah Bahlous, A.; Ben Amor, N.; Jamoussi, H.; Kefi, R. The Role of Dietary Intake in Type 2 Diabetes Mellitus: Importance of Macro and Micronutrients in Glucose Homeostasis. Nutrients 2022, 14, 2132. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.A.; Fraile-Martínez, O.; Naya, I.; García-Honduvilla, N.; Álvarez-Mon, M.; Buján, J.; Asúnsolo, Á.; de la Torre, B. Type 2 Diabetes Mellitus Associated with Obesity (Diabesity). The Central Role of Gut Microbiota and Its Translational Applications. Nutrients 2020, 12, 2749. [Google Scholar] [CrossRef] [PubMed]
- López-González, A.A.; Ramírez Manent, J.I.; Vicente-Herrero, M.T.; García Ruiz, E.; Albaladejo Blanco, M.; López Safont, N. Prevalence of diabesity in the Spanish working population: Influence of sociodemographic variables and tobacco consumption. An. Del Sist. Sanit. De Navar. 2022, 45, e0977. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.C.T.; Delgado, V.; Borlaug, B.A.; Bax, J.J. Diabesity: The combined burden of obesity and diabetes on heart disease and the role of imaging. Nat. Rev. Cardiol. 2021, 18, 291–304. [Google Scholar] [CrossRef] [PubMed]
- El Khoury, L.; Chouillard, E.; Chahine, E.; Saikaly, E.; Debs, T.; Kassir, R. Metabolic Surgery and Diabesity: A Systematic Review. Obes. Surg. 2018, 28, 2069–2077. [Google Scholar] [CrossRef] [PubMed]
- Bhupathiraju, S.N.; Hu, F.B. Epidemiology of Obesity and Diabetes and Their Cardiovascular Complications. Circ. Res. 2016, 118, 1723–1735. [Google Scholar] [CrossRef] [Green Version]
- Wykoff, C.C.; Khurana, R.N.; Nguyen, Q.D.; Kelly, S.P.; Lum, F.; Hall, R.; Abbass, I.M.; Abolian, A.M.; Stoilov, I.; To, T.M.; et al. Risk of Blindness Among Patients With Diabetes and Newly Diagnosed Diabetic Retinopathy. Diabetes Care 2021, 44, 748–756. [Google Scholar] [CrossRef]
- Kamitani, F.; Nishioka, Y.; Noda, T.; Myojin, T.; Kubo, S.; Higashino, T.; Okada, S.; Akai, Y.; Ishii, H.; Takahashi, Y.; et al. Incidence of lower limb amputation in people with and without diabetes: A nationwide 5-year cohort study in Japan. BMJ Open 2021, 11, e048436. [Google Scholar] [CrossRef]
- Braunwald, E. Diabetes, heart failure, and renal dysfunction: The vicious circles. Prog. Cardiovasc. Dis. 2019, 62, 298–302. [Google Scholar] [CrossRef]
- Pincock, S. Paul Zimmet: Fighting the “diabesity” pandemic. Lancet 2006, 368, 1643. [Google Scholar] [CrossRef]
- Horvath, A.; Leber, B.; Feldbacher, N.; Tripolt, N.; Rainer, F.; Blesl, A.; Trieb, M.; Marsche, G.; Sourij, H.; Stadlbauer, V. Effects of a multispecies synbiotic on glucose metabolism, lipid marker, gut microbiome composition, gut permeability, and quality of life in diabesity: A randomized, double-blind, placebo-controlled pilot study. Eur. J. Nutr. 2020, 59, 2969–2983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farag, Y.M.; Gaballa, M.R. Diabesity: An overview of a rising epidemic. Nephrol. Dial. Transplant. 2011, 26, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farzi, A.; Hassan, A.M.; Zenz, G.; Holzer, P. Diabesity and mood disorders: Multiple links through the microbiota-gut-brain axis. Mol. Aspects Med. 2019, 66, 80–93. [Google Scholar] [CrossRef]
- Bowen, P.G.; Lee, L.T.; Martin, M.Y.; Clay, O.J. Depression and physical functioning among older Americans with diabesity: NHANES 2009–2010. J. Am. Assoc. Nurse Pract. 2017, 29, 70–76. [Google Scholar] [CrossRef]
- Morselli, L.; Leproult, R.; Balbo, M.; Spiegel, K. Role of sleep duration in the regulation of glucose metabolism and appetite. Best Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 687–702. [Google Scholar] [CrossRef] [Green Version]
- Schusterbauer, V.; Feitek, D.; Kastner, P.; Toplak, H. Two-Stage Evaluation of a Telehealth Nutrition Management Service in Support of Diabesity Therapy. Stud. Health Technol. Inform. 2018, 248, 314–321. [Google Scholar]
- Castro, E.A.; Carraça, E.V.; Cupeiro, R.; López-Plaza, B.; Teixeira, P.J.; González-Lamuño, D.; Peinado, A.B. The Effects of the Type of Exercise and Physical Activity on Eating Behavior and Body Composition in Overweight and Obese Subjects. Nutrients 2020, 12, 557. [Google Scholar] [CrossRef] [Green Version]
- Tilinca, M.C.; Tiuca, R.A.; Burlacu, A.; Varga, A. A 2021 Update on the Use of Liraglutide in the Modern Treatment of ‘Diabesity’: A Narrative Review. Medicina 2021, 57, 669. [Google Scholar] [CrossRef]
- Lean, M.E.J.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019, 7, 344–355. [Google Scholar] [CrossRef] [Green Version]
- Nicklas, B.J.; Gaukstern, J.E.; Beavers, K.M.; Newman, J.C.; Leng, X.; Rejeski, W.J. Self-monitoring of spontaneous physical activity and sedentary behavior to prevent weight regain in older adults. Obesity 2014, 22, 1406–1412. [Google Scholar] [CrossRef] [PubMed]
- Available online: https//www.seca.com/es_es.html (accessed on 14 September 2021).
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2010, 33 (Suppl. I), S62–S69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrero-Romero, F.; Rodríguez-Morán, M. Abdominal volume index. An anthropometry-based index for estimation of obesity is strongly related to impaired glucose tolerance and type 2 diabetes mellitus. Arch. Med. Res. 2003, 34, 428–432. [Google Scholar] [CrossRef]
- Bennasar-Veny, M.; Lopez-Gonzalez, A.A.; Tauler, P.; Cespedes, M.L.; Vicente-Herrero, T.; Yañez, A.M.; Tomas-Salva, M.; Aguilo, A. Body adiposity index and cardiovascular health risk factors in Caucasians: A comparison with the body mass index and others. PLoS ONE. 2013, 8, e63999. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Guan, H.; Zhang, S.; Zhu, Q.; Fu, X.; Chen, H.; Tang, S.; Feng, Y.; Kuang, J. Body Roundness Index Is a Superior Obesity Index in Predicting Diabetes Risk Among Hypertensive Patients: A Prospective Cohort Study in China. Front. Cardiovasc. Med. 2021, 8, 736073. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. Untangling Waist Circumference and Hip Circumference from Body Mass Index with a Body Shape Index, Hip Index, and Anthropometric Risk Indicator. Metab. Syndr. Relat. Disord. 2018, 16, 160–165. [Google Scholar] [CrossRef]
- Segheto, W.; Marins, J.C.B.; Amorim, P.R.D.S.; Franco, A.B.; Almeida, M.A.; Alvarenga, N.V.A.; Lima, L.M. Is relative fat mass a better indicator of high blood pressure levels when compared to other anthropometric indexes? Nutr. Hosp. 2021, 38, 1175–1181. [Google Scholar] [CrossRef]
- Molina-Luque, R.; Yañez, A.M.; Bennasar-Veny, M.; Romero-Saldaña, M.; Molina-Recio, G.; López-González, Á.A. A Comparison of Equation Córdoba for Estimation of Body Fat (ECORE-BF) with Other Prediction Equations. Int. J. Environ. Res. Public Health 2020, 17, 7940. [Google Scholar] [CrossRef]
- Costa, A.; Konieczna, J.; Reynés, B.; Martín, M.; Fiol, M.; Palou, A.; Romaguera, D.; Oliver, P. CUN-BAE Index as a Screening Tool to Identify Increased Metabolic Risk in Apparently Healthy Normal-Weight Adults and Those with Obesity. J. Nutr. 2021, 151, 2215–2225. [Google Scholar] [CrossRef]
- Kapoor, N.; Jiwanmall, S.A.; Nandyal, M.B.; Kattula, D.; Paravathareddy, S.; Paul, T.V.; Furler, J.; Oldenburg, B.; Thomas, N. Metabolic Score for Visceral Fat (METS-VF) Estimation—A Novel Cost-Effective Obesity Indicator for Visceral Adipose Tissue Estimation. Diabetes Metab. Syndr. Obes. 2020, 13, 3261–3267. [Google Scholar] [CrossRef]
- Bello-Chavolla, O.Y.; Almeda-Valdes, P.; Gómez-Velasco, D.; Viveros-Ruiz, T.; Cruz-Bautista, I.; Romo-Romo, A.; Sánchez-Lázaro, D.; Meza-Oviedo, D.; Vargas-Vazquez, A.; Campos, O.A.; et al. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur. J. Endocrinol. 2018, 178, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Riutord, P.; Riutord-Fe, T.; Riutord-Fe, N.; Arroyo, S.; López-González, A.A.; Ramirez-Manent, J.I. Influence of physical activity and mediterranean diet on the values of different scales of overweight and obesity. Acad. J. Health Sci. 2022, 37, 21–28. [Google Scholar] [CrossRef]
- Domingo-Salvany, A.; Bacigalupe, A.; Carrasco, J.M.; Espelt, A.; Ferrando, J.; Borrell, C. Propuesta de clase social neoweberiana y neomarxista a partir de la Clasificación Nacional de Ocupaciones 2011. Gac. Sanit. 2013, 27, 263–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okorodudu, D.; Jumean, M.; Montori, V.; Romero-Corral, A.; Somers, V.; Erwin, P.; López Jiménez, F. Rendimiento diagnóstico del índice de masa corporal para identificar la obesidad definida por la adiposidad corporal: Una revisión sistemática y un metanálisis. Int. J. Obes. 2010, 34, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Piché, M.E.; Tchernof, A.; Després, J.P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 2020, 126, 1477–1500. [Google Scholar] [CrossRef]
- Wiechert, M.; Holzapfel, C. Nutrition Concepts for the Treatment of Obesity in Adults. Nutrients 2021, 14, 169. [Google Scholar] [CrossRef]
- Wing, R.R.; Look AHEAD Research Group. Does Lifestyle Intervention Improve Health of Adults with Overweight/Obesity and Type 2 Diabetes? Findings from the Look AHEAD Randomized Trial. Obesity 2021, 29, 1246–1258. [Google Scholar] [CrossRef]
- Moravcová, K.; Karbanová, M.; Bretschneider, M.P.; Sovová, M.; Ožana, J.; Sovová, E. Comparing Digital Therapeutic Intervention with an Intensive Obesity Management Program: Randomized Controlled Trial. Nutrients 2022, 14, 2005. [Google Scholar] [CrossRef]
- Faeh, D.; William, J.; Tappy, L.; Ravussin, E.; Bovet, P. Prevalence, awareness and control of diabetes in the Seychelles and relationship with excess body weight. BMC Public Health 2007, 7, 163. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, R.N.; Heymsfield, S.B.; Lichtman, S.; Wang, J.; Pierson, R.N., Jr. Body composition in elderly people: Effect of criterion estimates on predictive equations. Am. J. Clin. Nutr. 1991, 53, 1345–1353. [Google Scholar] [CrossRef]
- Jungert, A.; Eichner, G.; Neuhäuser-Berthold, M. Trajectories of Body Composition during Advanced Aging in Consideration of Diet and Physical Activity: A 20-Year Longitudinal Study. Nutrients 2020, 12, 3626. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tan, Y.; Shi, Y.; Wang, X.; Liao, Z.; Wei, P. Diabetes and Sarcopenic Obesity: Pathogenesis, Diagnosis, and Treatments. Front. Endocrinol. 2020, 11, 568. [Google Scholar] [CrossRef] [PubMed]
- Toplak, H.; Leitner, D.R.; Harreiter, J.; Hoppichler, F.; Wascher, T.C.; Schindler, K.; Ludvik, B. Diabesity“—Adipositas und Typ-2-Diabetes (Update 2019) [“Diabesity”-Obesity and type 2 diabetes (Update 2019)]. Wien Klin Wochenschr. 2019, 131 (Suppl. 1), 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balicco, A.; Oleko, A.; Szego, E.; Boschat, L.; Deschamps, V.; Saoudi, A.; Zeghnoun, A.; Fillol, C. Esteban design: A cross-sectional health survey about environment, biomonitoring, physical activity and nutrition (2014–2016). Toxicol. Anal. Et Clin. 2017, 29, 517–537. [Google Scholar]
- Do, W.L.; Bullard, K.M.; Stein, A.D.; Ali, M.K.; Narayan, K.M.V.; Siegel, K.R. Consumption of Foods Derived from Subsidized Crops Remains Associated with Cardiometabolic Risk: An Update on the Evidence Using the National Health and Nutrition Examination Survey 2009–2014. Nutrients 2020, 12, 3244. [Google Scholar] [CrossRef]
- Jimenez-Mora, M.A.; Nieves-Barreto, L.D.; Montaño-Rodríguez, A.; Betancourt-Villamizar, E.C.; Mendivil, C.O. Association of Overweight, Obesity and Abdominal Obesity with Socioeconomic Status and Educational Level in Colombia. Diabetes Metab. Syndr. Obes. 2020, 13, 1887–1898. [Google Scholar] [CrossRef]
- Bartolini, L.; Caranci, N.; Gnavi, R.; Di Girolamo, C. Educational inequalities in the prevalence and outcomes of diabetes in the Emilian Longitudinal Study. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1525–1534. [Google Scholar] [CrossRef]
- Abdullah, A.; Liew, S.M.; Salim, H.; Ng, C.J.; Chinna, K. Prevalence of limited health literacy among patients with type 2 diabetes mellitus: A systematic review. PLoS ONE 2019, 14, e0216402, Erratum in: PLoS ONE 2022, 17, e0261430. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Bragg, F.; Yang, L.; Du, H.; Guo, Y.; Jackson, C.A.; Zhu, S.; Yu, C.; Luk, A.O.Y.; Chan, J.C.N.; et al. Sex differences in the association between socioeconomic status and diabetes prevalence and incidence in China: Cross-sectional and prospective studies of 0.5 million adults. Diabetologia 2019, 62, 1420–1429. [Google Scholar] [CrossRef] [Green Version]
- Volaco, A.; Cavalcanti, A.M.; Filho, R.P.; Précoma, D.B. Socioeconomic Status: The Missing Link Between Obesity and Diabetes Mellitus? Curr. Diabetes Rev. 2018, 14, 321–326. [Google Scholar] [CrossRef]
- Javed, Z.; Valero-Elizondo, J.; Maqsood, M.H.; Mahajan, S.; Taha, M.B.; Patel, K.V.; Sharma, G.; Hagan, K.; Blaha, M.J.; Blankstein, R.; et al. Social determinants of health and obesity: Findings from a national study of US adults. Obesity 2022, 30, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Bremner, J.D.; Moazzami, K.; Wittbrodt, M.T.; Nye, J.A.; Lima, B.B.; Gillespie, C.F.; Rapaport, M.H.; Pearce, B.D.; Shah, A.J.; Vaccarino, V. Diet, Stress and Mental Health. Nutrients 2020, 12, 2428. [Google Scholar] [CrossRef] [PubMed]
- Correia, J.C.; Locatelli, L.; Hafner, C.; Pataky, Z.; Golay, A. Rôle du stress dans l’obésité [The role of stress in obesity]. Rev. Med. Suisse 2021, 17, 567–570. [Google Scholar] [PubMed]
- Tomiyama, A.J. Stress and Obesity. Annu. Rev. Psychol. 2019, 70, 703–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viana, R.B.; Naves, J.P.A.; Coswig, V.S.; de Lira, C.A.B.; Steele, J.; Fisher, J.P.; Gentil, P. Is interval training the magic bullet for fat loss? A systematic review and meta-analysis comparing moderate-intensity continuous training with high-intensity interval training (HIIT). Br. J. Sports Med. 2019, 53, 655–664. [Google Scholar] [CrossRef] [Green Version]
- Abdelbasset, W.K.; Badr, N.M.; Elsayed, S.H. Outcomes of resisted exercise on serum liver transaminases in hepatic patients with diabesity. Med. J. Cairo. Univ. 2014, 82, 9–16. [Google Scholar]
- AbdelBasset, W.K.; Elsayed, S.H.; Nambi, G.; Alrawaili, S.; Elnegamy, T.E.; Khalil, M.A.; Tantawy, S.A.; Soliman, G.S.; Ibrahim, A.A.; Kamel, D.M. Effect of Moderate-Intensity Aerobic Exercise on Hepatic Fat Content and Visceral Lipids in Hepatic Patients with Diabesity: A Single-Blinded Randomised Controlled Trial. Evid. Based. Complement Altern. Med. 2020, 2020, 1923575. [Google Scholar] [CrossRef] [Green Version]
- Ryan, B.J.; Schleh, M.W.; Ahn, C.; Ludzki, A.C.; Gillen, J.B.; Varshney, P.; Van Pelt, D.W.; Pitchford, L.M.; Chenevert, T.L.; Gioscia-Ryan, R.A.; et al. Moderate-Intensity Exercise and High-Intensity Interval Training Affect Insulin Sensitivity Similarly in Obese Adults. J. Clin. Endocrinol. Metab. 2020, 105, e2941–e2959. [Google Scholar] [CrossRef]
- Myers, J.; Kokkinos, P.; Nyelin, E. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients 2019, 11, 1652. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, G.E.; Dingess, P.M.; Aadland, J.A.; Brown, T.E. Acute high-intensity interval exercise attenuates incubation of craving for foods high in fat. Obesity 2022, 30, 994–998. [Google Scholar] [CrossRef]
- Passos, C.M.D.; Maia, E.G.; Levy, R.B.; Martins, A.P.B.; Claro, R.M. Association between the price of ultra-processed foods and obesity in Brazil. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kahn, H.S.; Jackson, S.L.; Steele, E.M.; Gillespie, C.; Yang, Q. Associations between ultra- or minimally processed food intake and three adiposity indicators among US adults: NHANES 2011 to 2016. Obesity 2022, 4, 1887–1897. [Google Scholar] [CrossRef] [PubMed]
- de Mestral, C.; Chatelan, A.; Marques-Vidal, P.; Stringhini, S.; Bochud, M. The Contribution of Diet Quality to Socioeconomic Inequalities in Obesity: A Population-based Study of Swiss Adults. Nutrients 2019, 11, 1573. [Google Scholar] [CrossRef] [PubMed]
Formula | Values | Cut-Off Points for Obesity |
---|---|---|
Waist/height ratio waist/height circumference | >0.50 | |
Waist/hip ratio waist circumference/hip circumference | ≥0.85 women ≥0.95 men | |
AVI (abdominal Volume Index) =2 × waist circumference + 0.7 × (waist/hip)2/1000 | >24.5 | |
BAI (body adiposity index) =hip circumference/height 1.5–18 | Women > 37.7 Men > 25.6 | |
BRI (body roundness index) =364.2 − 365.5 × √1 − (waist circumference/2∏)2/(0.5 × height)2 | >4.62 | |
ABSI (body shape index) =waist circumference/BMI 1/3 × height 1/2) | >0.091 | |
RFM (relative fat mass) Women 76 − 20 × (height/waist circumference) Men 64 − 20 × (height/waist circumference) | ||
>32% | ||
>25% | ||
ECORE-BF (Equation Córdoba for Estimation of Body Fat) =−97.102 + 0.123 × age + 11.9 × sex + 35.959 × LN BMI | Men = 0 Woman = 1 | Women > 35% Men > 25% |
CUN-BAE (Clínica Universitaria de Navarra Body Adiposity Estimator) =−44.988 + (0.503 × age) + (10.689 × gender) + (3.172 × BMI) − (0.026 × BMI2) + (0.181 × BMI × gender) − (0.02 × BMI × age) − (0.005 × BMI2 × sex) + (0.00021 × BMI2 × age) | Men = 0 Woman = 1 | Women > 35% Men > 25% |
BMI (body mass index) weight(kg)/height2 (meters) | ≥30 kg/m2 | |
METS-VF (metabolic score for visceral fat) =4.466 + 0.011 × LN(METS-IR)3 + 3.239 × LN(waist/height)3 + 0.319 × gender + 0.594 × LN (age) | Men = 1 Women = 0 | >7.18 |
METS-IR = LN(2 × blood glucose + triglycerides) × BMI/LN(HDL) |
Total | Women | Men | |
---|---|---|---|
N = 386.924 | N = 154.110 (39.8%) | N = 232.814 (60.2%) | |
Variables | Mean (SD) | Mean (SD) | Mean (SD) |
Age (years) | 39.6 (10.3) | 39.2 (10.2) | 39.8 (10.3) |
Height (cm) | 168.9 (9.3) | 161.2 (6.6) | 173.9 (7.0) |
Weight (kg) | 74.8 (15.6) | 65.3 (13.2) | 81.1 (13.9) |
Abdominal perimeter (cm) | 82.2 (11.0) | 73.9 (7.9) | 87.7 (9.1) |
Hip circumference (cm) | 98.9 (8.8) | 97.2 (8.9) | 100.1 (8.4) |
Systolic blood pressure (mmHg) | 120.4 (15.7) | 114.4 (14.8) | 124.4 (15.1) |
Diastolic blood pressure (mmHg) | 73.1 (10.9) | 69.7 (10.3) | 75.4 (10.6) |
Cholesterol (mg/dL) | 195.0 (37.9) | 193.6 (36.4) | 195.9 (38.9) |
HDL (mg/dL) | 52.1 (7.4) | 53.7 (7.6) | 51.0 (7.0) |
LDL (mg/dL) | 121.2 (37.4) | 122.3 (37.0) | 120.5 (37.6) |
Triglycerides (mg/dL) | 109.5 (76.3) | 88.1 (46.2) | 123.8 (88.0) |
Glycemia (mg/dL) | 86.5 (12.5) | 84.1 (11.5) | 88.1 (12.9) |
variables | % | % | % |
Age | |||
18–29 years | 18.5 | 19.5 | 17.9 |
30–39 years | 33.2 | 33.3 | 33.1 |
40–49 years | 29.6 | 29.4 | 29.7 |
50–59 years | 15.9 | 15.3 | 16.3 |
60–69 years | 2.8 | 2.5 | 3.0 |
Educational level | |||
Primaries | 57.4 | 51.8 | 61.2 |
Secondaries | 36.7 | 40.7 | 34 |
University students | 5.9 | 7.5 | 4.8 |
Smoking habit | |||
Nope | 64.6 | 67.0 | 52.9 |
Yes | 35.4 | 33.0 | 37.1 |
Regular physical exercise | |||
Nope | 51.8 | 47.8 | 54.5 |
Yes | 48.2 | 52.2 | 45.5 |
Heart-healthy diet | |||
Nope | 54.9 | 48.6 | 59.0 |
Yes | 45.1 | 51.4 | 41.0 |
Autonomous community | |||
Andalucia | 14.7 | 14.0 | 15.2 |
Balearics Islands | 6.2 | 5.8 | 6.5 |
Canary Islands | 4.8 | 4.9 | 5.0 |
Castilla la Mancha | 8.8 | 8.6 | 8.9 |
Castilla Leon | 7.8 | 6.5 | 8.4 |
Catalonia | 16.8 | 16.3 | 17.1 |
Valencian Community | 10.9 | 11.3 | 10.4 |
Madrid | 18.4 | 17.7 | 19.2 |
Basque Country | 11.6 | 14.9 | 9.3 |
Productive sector | |||
Class I | 4.1 | 3.9 | 4.3 |
Class II | 23.1 | 6.3 | 31.5 |
Class III | 72.8 | 89.8 | 64.2 |
% (IC 95%) | Diabesity According to | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ICA | WHR | AVI | BAI | BRI | ABSI | RFM | ECORE-BF | CUN-BAE | BMI | METS-VF | |
Global | 6.3 (6.2–6.4) | 1.8 (1.7–1.8) | 0.3 (0.3–0.4) | 4.7 (4.6–4.8) | 2.2 (2.1–2.3) | 2.0 (1.9–2.0) | 7.9 (7.8–8.0) | 8.2 (8.1–8.3) | 8.3 (8.2–8.4) | 3.8 (3.7–3.9) | 1.8 (1.7–1.9) |
Sex | |||||||||||
Women | 2.1 (2.0–2.2) | 0.6 (0.5–0.7) | 0.1 (0.0–0.1) | 0.6 (0.5–0.7) | 0.5 (0.4–0.6) | 0.6 (0.5–0.7) | 3.6 (3.5–3.7) | 4.9 (4.8–5.0) | 5.1 (5.0–5.2) | 2.3 (2.2–2.4) | 0.1 (0.1–0.2) |
Men | 9.0 (8.9–9.1) | 2.5 (2.4–2.5) | 0.5 (0.4–0.6) | 7.5 (7.4–7.6) | 3.30 (3.2–3.4) | 3.0 (2.9–3.1) | 10.7 (10.6–10.8) | 10.4 (10.3–10.5) | 10.4 (10.3–10.5) | 7.0 (6.9–7.1) | 2.9 (2.8–3.0) |
Age | |||||||||||
18–29 years | 1.9 (1.7–2.1) | 0.3 (0.2–0.5) | 0.1 (0.0–0.1) | 1.8 (1.7–1.9) | 0.4 (0.3–0.5) | 1.0 (0.9–1.1) | 2.3 (2.2–2.4) | 1.7 (1.6–1.8) | 1.7 (1.6–1.8) | 1.0 (0.9–1.1) | 0.1 (0.1–0.2) |
30–39 years | 3.8 (3.7–3.9) | 1.0 (0.9–1.1) | 0.3 (0.2–0.4) | 3.8 (3.7–3.9) | 1.2 (1.1–1.3) | 1.4 (1.3–1.5) | 5.0 (4.9–5.1) | 4.5 (4.4–4.6) | 4.6 (4.5–4.7) | 2.3 (2.2–2.4) | 0.5 (0.4–0.6) |
40–49 years | 7.7 (7.6–7.8) | 2.4 (2.3–2.5) | 0.4 (0.3–0.5) | 5.2 (5.1–5.3) | 2.7 (2.6–2.8) | 2.4 (2.3–2.5) | 9.4 (9.3–9.5) | 9.9 (9.8–10.0) | 9.9 (9.8–10.0) | 4.7 (4.6–4.8) | 2.0 (1.9–2.1) |
50–59 years | 12.3 (12.1–12.5) | 3.7 (3.5–3.9) | 0.5 (0.3–0.7) | 8.6 (8.4–8.8) | 4.5 (4.3–4.7) | 3.5 (3.3–3.7) | 15.1 (14.9–15.3) | 17.4 (17.2–17.6) | 17.6 (17.4–17.8) | 7.3 (7.1–7.5) | 4.8 (4.6–5.0) |
60–69 years | 16.2 (15.5–17.0) | 3.9 (3.2–4.6) | 0.7 (0.3–1.2) | 8.4 (8.0–8.8) | 6.2 (5.8–6.6) | 3.9 (3.5–4.3) | 20.2 (19.8–20.6) | 24.6 (24.2–25.0) | 25.2 (24.8–25.6) | 10.1 (9.7–10.5) | 8.2 (7.8–8.6) |
Educational level | |||||||||||
Primaries | 7.3 (7.2–7.3) | 2.0 (1.9–2.1) | 0.4 (0.3–0.4) | 5.7 (5.6–5.8) | 2.5 (2.4–2.6) | 2.3 (2.2–2.4) | 9.2 (9.1–9.3) | 9.5 (9.4–9.6) | 9.5 (9.4–9.6) | 4.3 (4.2–4.4) | 2.1 (2.0–2.2) |
Secondaries | 5.1 (5.0–5.2) | 1.5 (1.4–1.6) | 0.3 (0.2–0.4) | 3.7 (3.6–3.8) | 1.8 (1.7–1.9) | 1.7 (1.6–1.8) | 6.4 (6.3–6.5) | 6.8 (6.7–6.9) | 6.8 (6.7–6.9) | 3.1 (3.0–3.2) | 1.5 (1.4–1.6) |
University students | 3.5 (3.0–4.0) | 1.1 (0.7–1.6) | 0.2 (0.1–0.4) | 2.4 (1.9–2.9) | 1.1 (0.7–1.6) | 1.3 (0.9–1.7) | 4.6 (4.2–5.0) | 4.8 (4.4–5.2) | 4.8 (4.4–5.2) | 2.0 (1.6–2.4) | 0.8 (0.4–1.2) |
Regular physical exercise | |||||||||||
Nope | 10.6 (10.5–10.6) | 3.4 (3.3–3.5) | 0.6 (0.5–0.6) | 7.8 (7.7–7.9) | 4.2 (4.1–4.3) | 2.6 (2.5–2.7) | 12.8 (12.7–12.9) | 14.1 (14.0–14.2) | 14.2 (14.1–14.3) | 7.2 (7.1–7.3) | 3.4 (3.3–3.5) |
Yes | 1.6 (1.5–1.7) | 0.01 (0.01–0.02) | 0.01 (0.0–0.02) | 1.4 (1.3–1.5) | 0.1 (0.0–0.2) | 1.4 (1.3–1.5) | 2.5 (2.4–2.6) | 1.8 (1.7–1.9) | 1.9 (1.8–2.0) | 0.02 (0.01–0.03) | 0.02 (0.01–0.03) |
Healthy nutrition | |||||||||||
Nope | 10.2 (10.1–10.3) | 3.4 (3.3–3.5) | 0.6 (0.5–0.7) | 7.5 (7.4–7.6) | 4.2 (4.1–4.3) | 2.6 (2.5–2.7) | 12.3 (12.2–12.4) | 13.5 (13.4–13.6) | 13.5 (13.4–13.6) | 13.3 (13.2–13.4) | 3.2 (3.1–3.3) |
Yes | 1.6 (1.5–1.7) | 0.01 (0.01–0.02) | 0.01 (0.0–0.02) | 1.4 (1.3–1.5) | 0.1 (0.0–0.2) | 1.4 (1.3–1.5) | 2.5 (2.4–2.6) | 1.8 (1.7–1.9) | 1.9 (1.8–2.0) | 0.03 (0.02–0.04) | 0.03 (0.02–0.04) |
Diabesity According to | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ICA | WHR | AVI | BAI | BRI | ABSI | RFM | ECORE-BF | CUN-BAE | IMC | METS-VF | |
OR (IC 95%) | OR (IC 95%) | OR (IC 95%) | OR (IC 95%) | OR (IC 95%) | OR (IC 95%) | OR (IC 95%) | OR (IC 95%) | OR (IC 95%) | OR (IC 95%) | OR (IC 95%) | |
Women | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Men | 4.2 (4.0–4.4) | 3.6 (3.3–3.8) | 7.8 (6.2–9.7) | 13.1 (12.3–14.1) | 6.0 (5.5–6.4) | 4.8 (4.5–5.1) | 2.9 (2.8–3.0) | 2.0 (2.0–2.1) | 2.0 (1.9–2.0) | 1.8 (1.7–1.8) | 18.2 (15.9–20.8) |
18–29 years | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
30–39 years | 1.3 (1.2–1.4) | 1.1 (1.0–1.2) | 1.2 (1.1–1.3) | 1.1 (1.0–1.2) | 1.3 (1.2–1.4) | 1.1 (1.0–1.2) | 1.4 (1.3–1.4) | 1.5 (1.4–1.6) | 1.5 (1.5–1.6) | 1.3 (1.2–1.4) | 1.7 (1.6–1.9) |
40–49 years | 2.0 (1.9–2.1) | 1.3 (1.1–1.4) | 1.8 (1.6–2.0) | 1.4 (1.3–1.5) | 1.9 (1.7–2.1) | 1.5 (1.4–1.7) | 2.1 (2.0–2.2) | 2.5 (2.4–2.6) | 2.6 (2.5–2.7) | 1.8 (1.7–1.9) | 3.6 (3.3–3.9) |
50–59 years | 3.4 (3.2 (3.6) | 2.2 (2.0–2.5) | 2.1 (1.9–2.3) | 1.6 (1.5–1.7) | 3.3 (3.0–3.6) | 2.4 (2.2–2.7) | 3.4 (3.2–3.6) | 4.7 (4.4–4.9) | 4.8 (4.6–5.1) | 2.8 (2.6–3.0) | 11.0 (9.9–12.2) |
60–69 years | 5.5 (5.1–5.9) | 4.7 (4.0–5.6) | 4.8 (4.1–5.5) | 2.7 (2.5–3.0) | 6.3 (5.5–7.3) | 3.3 (2.9–3.8) | 6.1 (5.7–6.6) | 10.3 (9.6–11.1) | 10.5 (9.8–11.3) | 4.4 (4.0–4.9) | 46.9 (35.7–61.5) |
University students | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Secondaries | 1.3 (1.2–1.3) | 1.2 (1.1–1.2) | 1.2 (1.0–1.3) | 1.4 (1.3–1.4) | 1.2 (1.2–1.3) | 1.2 (1.2–1.3) | 1.3 (1.3–1.4) | 1.3 (1.2–1.3) | 1.3 (1.2 (1.3) | 1.2 (1.1–1.2) | 1.2 (1.1–1.2) |
Primaries | 1.7 (1.6–1.8) | 1.5 (1.3–1.7) | 1.5 (1.4–1.6) | 1.9 (1.7–2.0) | 1.8 (1.6–2.0) | 1.5 (1.3–1.7) | 1.7 (1.6–1.8) | 1.6 (1.5–1.8) | 1.7 (1.6–1.8) | 1.7 (1.5–1.8) | 2.0 (1.7–2.3) |
Yes physical exercise | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Not physical exercise | 3.5 (3.2–3.7) | 41.7 (26.9–64.6) | 13.8 (12.9–14.7) | 3.2 (3.0–3.5) | 22.2 (16.9–29.2) | 1.6 (1.4–1.7) | 2.8 (2.6–2.9) | 3.8 (3.6–4.0) | 3.8 (3.6–4.0) | 58.3 (40.6–83.6) | 33.4 (22.9–48.7) |
Yes feeding | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Not feeding | 1.7 (1.6–1.8) | 10.5 (6.8 (16.3) | 10.5 (9.8–11.2) | 1.5 (1.4–1.7) | 4.8 (3.7–6.3) | 1.1 (1.0–1.2) | 1.6 (1.5–1.7) | 1.9 (1.7–2.0) | 1.8 (1.7–1.9) | 19.6 (13.7–28.2) | 4.0 (2.8–5.7) |
Pearson’s Coefficient | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ICA | WHR | AVI | BAI | BRI | ABSI | RFM | ECORE-BF | CUN-BAE | BMI | METS-VF | |
ICA | 1.000 | ||||||||||
ICC | 0.422 | 1.000 | |||||||||
AVI | 0.091 | 0.235 | 1.000 | ||||||||
BAI | 0.657 | 0.314 | 0.110 | 1.000 | |||||||
BRI | 0.499 | 0.689 | 0.252 | 0.437 | 1.000 | ||||||
ABSI | 0.364 | 0.473 | 0.148 | 0.187 | 0.463 | 1.000 | |||||
RFM | 0.881 | 0.349 | 0.073 | 0.633 | 0.415 | 0.335 | 1.000 | ||||
ECORE-BF | 0.772 | 0.324 | 0.069 | 0.612 | 0.392 | 0.210 | 0.840 | 1.000 | |||
CUN-BAE | 0.769 | 0.322 | 0.068 | 0.609 | 0.389 | 0.210 | 0.837 | 0.995 | 1.000 | ||
IMC | 0.623 | 0.369 | 0.138 | 0.602 | 0.501 | 0.125 | 0.594 | 0.608 | 0.604 | 1.000 | |
METS-VF | 0.426 | 0.622 | 0.285 | 0.404 | 0.799 | 0.391 | 0.351 | 0.337 | 0.334 | 0.462 | 1.000 |
Cohen’s kappa index | |||||||||||
ICA | 1.000 | ||||||||||
ICC | 0.711 | 1.000 | |||||||||
AVI | 0.918 | 0.713 | 1.000 | ||||||||
BAI | 0.277 | 0.441 | 0.082 | 1.000 | |||||||
BRI | 0.993 | 0.689 | 0.913 | 0.306 | 1.000 | ||||||
ABSI | 0.431 | 0.720 | 0.482 | 0.436 | 0.415 | 1.000 | |||||
RFM | 0.358 | 0.034 | 0.138 | 0.650 | 0.401 | 0.112 | 1.000 | ||||
ECORE-BF | 0.244 | 0.272 | 0.086 | 0.751 | 0.283 | 0.591 | 0.805 | 1.000 | |||
CUN-BAE | 0.244 | 0.271 | 0.089 | 0.747 | 0.284 | 0.589 | 0.803 | 0.998 | 1.000 | ||
IMC | 0.684 | 0.184 | 0.633 | 0.557 | 0.687 | 0.325 | 0.376 | 0.673 | 0.672 | 1.000 | |
METS-VF | 0.925 | 0.683 | 0.850 | 0.203 | 0.886 | 0.366 | 0.181 | 0.172 | 0.171 | 0.674 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Manent, J.I.; Altisench Jané, B.; Tomás Salvà, M.; Arroyo Bote, S.; González San Miguel, H.M.; López-González, Á.A. Influence of Educational Level and Healthy Habits on the Prevalence of Diabesity in a Spanish Working Population. Nutrients 2022, 14, 4101. https://doi.org/10.3390/nu14194101
Ramírez-Manent JI, Altisench Jané B, Tomás Salvà M, Arroyo Bote S, González San Miguel HM, López-González ÁA. Influence of Educational Level and Healthy Habits on the Prevalence of Diabesity in a Spanish Working Population. Nutrients. 2022; 14(19):4101. https://doi.org/10.3390/nu14194101
Chicago/Turabian StyleRamírez-Manent, José Ignacio, Bárbara Altisench Jané, Matías Tomás Salvà, Sebastiana Arroyo Bote, Hilda María González San Miguel, and Ángel Arturo López-González. 2022. "Influence of Educational Level and Healthy Habits on the Prevalence of Diabesity in a Spanish Working Population" Nutrients 14, no. 19: 4101. https://doi.org/10.3390/nu14194101
APA StyleRamírez-Manent, J. I., Altisench Jané, B., Tomás Salvà, M., Arroyo Bote, S., González San Miguel, H. M., & López-González, Á. A. (2022). Influence of Educational Level and Healthy Habits on the Prevalence of Diabesity in a Spanish Working Population. Nutrients, 14(19), 4101. https://doi.org/10.3390/nu14194101