Preconception Dietary Inflammatory Index and Risk of Gestational Diabetes Mellitus Based on Maternal Body Mass Index: Findings from a Japanese Birth Cohort Study
Abstract
:1. Introduction
2. Material and Methods
2.1. The Japan Environment and Children’s Study (JECS)
2.2. Data Collection
2.3. Calculation of DII
2.4. Measurement of 8-OHdG Levels
2.5. Obstetric Outcomes and Confounding Factors
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Metzger, B.E.; Coustan, D.R. Summary and recommendations of the Fourth International Workshop-Conference on Gestational Diabetes Mellitus. The Organizing Committee. Diabetes Care 1998, 21 (Suppl. 2), B161–B167. [Google Scholar] [PubMed]
- Kyozuka, H.; Fujimori, K.; Hosoya, M.; Yasumura, S.; Yokoyama, T.; Sato, A.; Hashimoto, K. The Japan Environment and Children’s Study (JECS) in Fukushima Prefecture: Pregnancy Outcome after the Great East Japan Earthquake. Tohoku J. Exp. Med. 2018, 246, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koivusalo, S.B.; Rönö, K.; Klemetti, M.M.; Roine, R.P.; Lindström, J.; Erkkola, M.; Kaaja, R.J.; Pöyhönen-Alho, M.; Tiitinen, A.; Huvinen, E.; et al. Gestational Diabetes Mellitus Can Be Prevented by Lifestyle Intervention: The Finnish Gestational Diabetes Prevention Study (RADIEL). A Randomized Controlled Trial. Diabetes Care 2016, 39, 24–30, Erratum in Diabetes Care 2017, 40, 1133. [Google Scholar] [CrossRef] [PubMed]
- Silverman, B.L.; Rizzo, T.A.; Cho, N.H.; Metzger, B.E. Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center. Diabetes Care 1998, 21 (Suppl. 2), B142–B149. [Google Scholar]
- Reece, E.A.; Homko, C.J. Infant of the diabetic mother. Semin. Perinatol. 1994, 18, 459–469. [Google Scholar] [PubMed]
- Adane, A.A.; Mishra, G.D.; Tooth, L.R. Diabetes in Pregnancy and Childhood Cognitive Development: A Systematic Review. Pediatrics 2016, 137, e20154234. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; England, L.; Wilson, H.G.; Bish, C.; Satten, G.A.; Dietz, P. Percentage of gestational diabetes mellitus attributable to overweight and obesity. Am. J. Public Health 2010, 100, 1047–1052. [Google Scholar] [CrossRef]
- Ma, R.C.W.; Schmidt, M.I.; Tam, W.H.; McIntyre, H.D.; Catalano, P.M. Clinical management of pregnancy in the obese mother: Before conception, during pregnancy, and post partum. Lancet Diabetes Endocrinol. 2016, 4, 1037–1049. [Google Scholar] [CrossRef] [Green Version]
- Lecorguillé, M.; Lioret, S.; de Lauzon-Guillain, B.; de Gavelle, E.; Forhan, A.; Mariotti, F.; Charles, M.A.; Heude, B. Association between Dietary Intake of One-Carbon Metabolism Nutrients in the Year before Pregnancy and Birth Anthropometry. Nutrients 2020, 12, 838. [Google Scholar] [CrossRef] [Green Version]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, M.; Kyozuka, H.; Yamaguchi, A.; Fujimori, K.; Hosoya, M.; Yasumura, S.; Masahito, K.; Sato, A.; Ogata, Y.; Hashimoto, K. Effect of proinflammatory diet before pregnancy on gestational age and birthweight: The Japan Environment and Children’s Study. Matern. Child Nutr. 2020, 16, e12899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erhola, M.; Toyokuni, S.; Okada, K.; Tanaka, T.; Hiai, H.; Ochi, H.; Uchida, K.; Osawa, T.; Nieminen, M.M.; Alho, H.; et al. Biomarker evidence of DNA oxidation in lung cancer patients: Association of urinary 8-hydroxy-2′-deoxyguanosine excretion with radiotherapy, chemotherapy, and response to treatment. FEBS Lett. 1997, 409, 287–291. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.; Hevner, K.; Abetew, D.; Enquobahrie, D.A.; Williams, M.A. Oxidative DNA damage in early pregnancy and risk of gestational diabetes mellitus: A pilot study. Clin. Biochem. 2011, 44, 804–808. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wu, Y.; Zhong, C.; Zhou, X.; Liu, C.; Li, Q.; Chen, R.; Gao, Q.; Li, X.; Zhang, H.; et al. Association between dietary inflammatory index and gestational diabetes mellitus risk in a prospective birth cohort study. Nutrition 2021, 87–88, 111193. [Google Scholar] [CrossRef]
- Shivappa, N.; Hébert, J.R.; Akhoundan, M.; Mirmiran, P.; Rashidkhani, B. Association between inflammatory potential of diet and odds of gestational diabetes mellitus among Iranian women. J. Matern. Fetal Neonatal Med. 2019, 32, 3552–3558. [Google Scholar] [CrossRef]
- Phillips, C.M.; Chen, L.W.; Heude, B.; Bernard, J.Y.; Harvey, N.C.; Duijts, L.; Mensink-Bout, S.M.; Polanska, K.; Mancano, G.; Suderman, M.; et al. Dietary Inflammatory Index and Non-Communicable Disease Risk: A Narrative Review. Nutrients 2019, 11, 1873. [Google Scholar] [CrossRef] [Green Version]
- Kawamoto, T.; Nitta, H.; Murata, K.; Toda, E.; Tsukamoto, N.; Hasegawa, M.; Yamagata, Z.; Kayama, F.; Kishi, R.; Ohya, Y.; et al. Rationale and study design of the Japan environment and children’s study (JECS). BMC Public Health 2014, 14, 25. [Google Scholar] [CrossRef] [Green Version]
- Kyozuka, H.; Murata, T.; Fukuda, T.; Yamaguchi, A.; Kanno, A.; Yasuda, S.; Sato, A.; Ogata, Y.; Hosoya, M.; Yasumura, S.; et al. Effect of Preconception Selenium Intake on the Risk for Gestational Diabetes: The Japan Environment and Children’s Study. Antioxidants 2021, 10, 568. [Google Scholar] [CrossRef]
- Kyozuka, H.; Nishigori, H.; Murata, T.; Fukuda, T.; Yamaguchi, A.; Kanno, A.; Yasuda, S.; Sato, A.; Ogata, Y.; Kuse, M.; et al. Prepregnancy antiinflammatory diet in pregnant women with endometriosis: The Japan Environment and Children’s Study. Nutrition 2021, 85, 111129. [Google Scholar] [CrossRef]
- Kyozuka, H.; Fukusda, T.; Murata, T.; Yamaguchi, A.; Kanno, A.; Yasuda, S.; Sato, A.; Ogata, Y.; Kuse, M.; Hosoya, M.; et al. Impact of preconception sodium intake on hypertensive disorders of pregnancy: The Japan Environment and Children’s study. Pregnancy Hypertens 2021, 23, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Kyozuka, H.; Murata, T.; Fukuda, T.; Yamaguchi, A.; Kanno, A.; Yasuda, S.; Sato, A.; Ogata, Y.; Kuse, M.; Hosoya, M.; et al. Association between pre-pregnancy calcium intake and hypertensive disorders during the first pregnancy: The Japan environment and children’s study. BMC Pregnancy Childbirth 2020, 20, 424. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Takachi, R.; Ishihara, J.; Ishii, Y.; Sasazuki, S.; Sawada, N.; Shinozawa, Y.; Tanaka, J.; Kato, E.; Kitamura, K.; et al. Validity of Short and Long Self-Administered Food Frequency Questionnaires in Ranking Dietary Intake in Middle-Aged and Elderly Japanese in the Japan Public Health Center-Based Prospective Study for the Next Generation (JPHC-NEXT) Protocol Area. J. Epidemiol. 2016, 26, 420–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyozuka, H.; Murata, T.; Fukuda, T.; Yamaguchi, A.; Kanno, A.; Yasuda, S.; Sato, A.; Ogata, Y.; Kuse, M.; Hosoya, M.; et al. Dietary Inflammatory Index during Pregnancy and the Risk of Intrapartum Fetal Asphyxia: The Japan Environment and Children’s Study. Nutrients 2020, 12, 3482. [Google Scholar] [CrossRef] [PubMed]
- Nishihama, Y.; Nakayama, S.F.; Tabuchi, T.; Isobe, T.; Jung, C.R.; Iwai-Shimada, M.; Kobayashi, Y.; Michikawa, T.; Sekiyama, M.; Taniguchi, Y.; et al. Determination of Urinary Cotinine Cut-Off Concentrations for Pregnant Women in the Japan Environment and Children’s Study (JECS). Int. J. Environ. Res. Public Health 2020, 17, 5537. [Google Scholar] [CrossRef] [PubMed]
- Minakami, H.; Maeda, T.; Fujii, T.; Hamada, H.; Iitsuka, Y.; Itakura, A.; Itoh, H.; Iwashita, M.; Kanagawa, T.; Kanai, M.; et al. Guidelines for obstetrical practice in Japan: Japan Society of Obstetrics and Gynecology (JSOG) and Japan Association of Obstetricians and Gynecologists (JAOG) 2014 edition. J. Obstet. Gynaecol. Res. 2014, 40, 1469–1499. [Google Scholar] [CrossRef] [PubMed]
- Kyozuka, H.; Yasuda, S.; Murata, T.; Fukuda, T.; Yamaguchi, A.; Kanno, A.; Sato, A.; Ogata, Y.; Hosoya, M.; Yasumura, S.; et al. Adverse obstetric outcomes in early-diagnosed gestational diabetes mellitus: The Japan Environment and Children’s Study. J. Diabetes Investig. 2021, 12, 2071–2079. [Google Scholar] [CrossRef]
- Kyozuka, H.; Yamaguchi, A.; Suzuki, D.; Fujimori, K.; Hosoya, M.; Yasumura, S.; Yokoyama, T.; Sato, A.; Hashimoto, K. Risk factors for placenta accreta spectrum: Findings from the Japan environment and Children’s study. BMC Pregnancy Childbirth 2019, 19, 447. [Google Scholar] [CrossRef]
- Morisaki, N.; Nagata, C.; Jwa, S.C.; Sago, H.; Saito, S.; Oken, E.; Fujiwara, T. Pre-pregnancy BMI-specific optimal gestational weight gain for women in Japan. J. Epidemiol. 2017, 27, 492–498. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Kyozuka, H.; Kanno, A.; Murata, T.; Fukuda, T.; Yasuda, S.; Hosoya, M.; Yasumura, S.; Kuse, M.; Sato, A.; et al. Gestational weight gain and risk factors for postpartum depression symptoms from the Japan Environment and Children’s Study: A prospective cohort study. J. Affect. Disord. 2021, 283, 223–228. [Google Scholar] [CrossRef]
- Murata, T.; Kyozuka, H.; Yamaguchi, A.; Fukuda, T.; Yasuda, S.; Sato, A.; Ogata, Y.; Shinoki, K.; Hosoya, M.; Yasumura, S.; et al. Maternal pre-pregnancy body mass index and foetal acidosis in vaginal and caesarean deliveries: The Japan Environment and Children’s Study. Sci. Rep. 2021, 11, 4350. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Rifas-Shiman, S.L.; Shivappa, N.; Wirth, M.D.; Hébert, J.R.; Gold, D.R.; Gillman, M.W.; Oken, E. Dietary Inflammatory Potential during Pregnancy Is Associated with Lower Fetal Growth and Breastfeeding Failure: Results from Project Viva. J. Nutr. 2016, 146, 728–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radesky, J.S.; Oken, E.; Rifas-Shiman, S.L.; Kleinman, K.P.; Rich-Edwards, J.W.; Gillman, M.W. Diet during early pregnancy and development of gestational diabetes. Paediatr. Perinat. Epidemiol. 2008, 22, 47–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephenson, J.; Vogel, C.; Hall, J.; Hutchinson, J.; Mann, S.; Duncan, H.; Woods-Townsend, K.; de Lusignan, S.; Poston, L.; Cade, J.; et al. Preconception health in England: A proposal for annual reporting with core metrics. Lancet 2019, 393, 2262–2271. [Google Scholar] [CrossRef]
- Vandorsten, J.P.; Dodson, W.C.; Espeland, M.A.; Grobman, W.A.; Guise, J.M.; Mercer, B.M.; Minkoff, H.L.; Poindexter, B.; Prosser, L.A.; Sawaya, G.F.; et al. NIH consensus development conference: Diagnosing gestational diabetes mellitus. NIH Consens. State Sci. Statements 2013, 29, 1–31. [Google Scholar]
- Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, S183–S192. [CrossRef]
Variable | Q1 (Most Proinflammatory Group) | Q2 | Q3 | Q4 (Most Anti-Inflammatory Group) | p-Value |
---|---|---|---|---|---|
n = 22,501 | n = 22,743 | n = 22,784 | n = 22,712 | ||
Maternal background | |||||
DII, mean (SD) | 3.41 (0.91) | 0.99 (0.60) | −1.03 (0.59) | −3.40 (0.90) | <0.001 a |
Maternal age, mean year (SD) | 29.8 (5.2) | 31.1 (4.8) | 31.7 (4.9) | 32.1 (4.8) | <0.001 a |
Maternal age category, % | |||||
≤19 | 1.6 | 0.6 | 0.6 | 0.4 | <0.001 b |
20–29 | 47.2 | 37.3 | 32.4 | 29.2 | |
30–39 | 48.0 | 57.8 | 61.9 | 64.6 | |
≥40 | 3.2 | 4.3 | 5.1 | 5.8 | |
BMI, mean (SD) | 21.3 (3.4) | 21.2 (3.2) | 21.2 (3.2) | 21.3 (3.3) | <0.001 a |
BMI, % | |||||
<18.5 | 17.2 | 16.4 | 15.8 | 15.1 | <0.001 b |
18.5–19.9 | 23.8 | 25.4 | 24.8 | 24.4 | |
20.0–22.9 | 37.0 | 37.4 | 39.0 | 39.1 | |
23.0–24.9 | 10.4 | 10.6 | 10.4 | 10.8 | |
≥25.0 | 11.6 | 10.2 | 9.9 | 10.6 | |
Primipara, % | 48.8 | 41.5 | 38.0 | 33.1 | <0.001 b |
Smoking, % | 6.8 | 4.7 | 3.9 | 3.8 | <0.001 b |
ART, % | 2.2 | 2.9 | 3.2 | 3.4 | <0.001 b |
Chronic HT, % | 1.3 | 1.2 | 1.1 | 1.1 | 0.443 |
Maternal education (years), % | |||||
<10 | 7.3 | 4.6 | 3.8 | 3.5 | <0.001 b |
10–12 | 39.5 | 31.9 | 28.4 | 26.6 | |
13–16 | 38.1 | 42.1 | 43.4 | 44.7 | |
≥17 | 15.2 | 21.4 | 24.5 | 25.2 | |
WBC, counts per liter, mean (SD) | 8081 (1948) | 8045 (1934) | 8011 (1933) | 8003 (1925) | <0.001 a |
WBC >9000 (counts per liter), % | 26.9 | 26.0 | 25.3 | 25.0 | <0.001 b |
Urine 8-OHdG levels, median (IQR) | 1.93 (1.17–2.84) | 1.84 (1.10–2.73) | 1.77 (1.04–2.64) | 1.70 (0.99–2.59) | <0.001 c |
Obstetrics outcomes | |||||
GDM, % | 2.5 | 2.7 | 2.7 | 2.7 | 0.256 b |
Ed-GDM, % | 0.7 | 0.8 | 0.8 | 0.9 | 0.073 b |
Ld-GDM, % | 1.6 | 1.6 | 1.6 | 1.6 | 0.961 b |
BMI Category | <18.5 (G1) | 18.5 to <20.0 (G2) | 20 to <23.0 (G3) | 23.0 to <25.0 (G4) | >25 (G5) | p-Value |
---|---|---|---|---|---|---|
Number of patients | 14,643 | 22,321 | 34,591 | 9594 | 9591 | |
BMI, mean (SD) | 17.6 (0.7) | 19.3 (0.4) | 21.3 (0.8) | 23.9 (0.6) | 29.4 (3.3) | <0.001 a |
Maternal age, mean year (SD) | 30.3 (5.0) | 31.0 (4.9) | 31.4 (5.0) | 31.8 (5.1) | 31.8 (5.1) | <0.001 a |
Smoking, % | 5.5 | 4.1 | 4.3 | 5.0 | 6.9 | <0.001 b |
Chronic HT, % | 0.5 | 0.6 | 0.9 | 1.4 | 4.5 | <0.001 c |
DII, median (IQR) | 0.14 (−1.91–2.18) | −0.03 (−2.05–1.97) | −0.12 (−2.12–1.97) | −0.05 (−2.12–2.00) | 0.10 (−2.07–2.24) | <0.001 c |
Urine 8-OHdG levels, ng/mL, median (IQR) | 1.81 (1.07–2.71) | 1.78 (1.04–2.66) | 1.77 (1.04–2.65) | 1.84 (1.11–2.71) | 2.02 (1.24–2.98) | <0.001 c |
WBC, counts per liter, mean (SD) | 7860 (1904) | 7913 (1898) | 7997 (1915) | 8229 (1949) | 8534 (2030) | <0.001 a |
WBC >9000 (counts per liter), % | 22.7 | 23.3 | 25.1 | 29.4 | 35.1 | <0.001 c |
GDM, % | 1.6 | 1.6 | 2.2 | 3.2 | 7.8 | <0.001 d |
Ed-GDM, % | 0.3 | 0.5 | 0.5 | 0.9 | 2.8 | <0.001 d |
Ld-GDM, % | 1.0 | 0.9 | 1.4 | 1.9 | 4.2 | <0.001 d |
BMI Category | Q1 (Most Proinflammatory Group) | Q2 | Q3 | Q4 (Most Anti-Inflammatory Group) | |
---|---|---|---|---|---|
G1 | |||||
Number | 3872 | 3739 | 3611 | 3421 | |
Case, % | 1.5 | 1.6 | 1.7 | 1.5 | |
OR (95% CI) | Ref | 1.04 (0.72–1.49) | 1.09 (0.76–1.56) | 0.98 (0.67–1.43) | |
aOR (95% CI) | Ref | 0.97 (0.67–1.39) | 0.99 (0.69–1.43) | 0.88 (0.60–1.29) | |
G2 | |||||
Number | 5361 | 5771 | 5646 | 5543 | |
Case, % | 1.7 | 1.4 | 1.7 | 1.8 | |
OR (95% CI) | Ref | 0.82 (0.61–1.12) | 1.00 (0.75–1.34) | 1.07 (0.80–1.42) | |
aOR (95% CI) | Ref | 0.73 (0.54–1.00) | 0.86 (0.64–1.16) | 0.88 (0.66–1.19) | |
G3 | |||||
Number | 8321 | 8497 | 8897 | 8876 | |
Case, % | 2.0 | 2.3 | 2.3 | 2.1 | |
OR (95% CI) | Ref | 1.16 (0.94–1.43) | 1.14 (0.93–1.40) | 1.06 (0.86–1.31) | |
aOR (95% CI) | Ref | 1.07 (0.87–1.32) | 1.02 (0.83–1.26) | 0.93 (0.75–1.15) | |
G4 | |||||
Number | 2344 | 2409 | 2380 | 2461 | |
Case, % | 2.0 | 3.6 | 3.4 | 3.8 | |
OR (95% CI) | Ref | 1.85 (1.29–2.66) | 1.76 (1.22–2.54) | 1.96 (1.37–2.81) | |
aOR (95% CI) | Ref | 1.74 (1.20–2.50) | 1.59 (1.09–2.30) | 1.75 (1.21–2.52) | |
G5 | |||||
Number | 2603 | 2327 | 2250 | 2411 | |
Case, % | 7.4 | 8.4 | 7.4 | 7.9 | |
OR (95% CI) | Ref | 1.14 (0.93–1.41) | 1.00 (0.81–1.24) | 1.07 (0.87–1.32) | |
aOR (95% CI) | Ref | 1.12 (0.91–1.39) | 0.96 (0.77–1.19) | 1.02 (0.82–1.26) |
BMI Category | Q1 (Most Proinflammatory Group) | Q2 | Q3 | Q4 (Most Anti-Inflammatory Group) | |
---|---|---|---|---|---|
G1 | |||||
Number | 3872 | 3739 | 3611 | 3421 | |
Case, % | 0.3 | 0.3 | 0.4 | 0.4 | |
OR (95% CI) | Ref | 1.04 (0.45–2.39) | 1.37 (0.62–3.01) | 1.44 (0.65–3.18) | |
aOR (95% CI) | Ref | 0.99 (0.42–2.31) | 1.27 (0.57–2.84) | 1.33 (0.59–2.98) | |
G2 | |||||
Number | 5361 | 5771 | 5646 | 5543 | |
Case, % | 0.6 | 0.4 | 0.5 | 0.6 | |
OR (95% CI) | Ref | 0.65 (0.37–1.14) | 0.98 (0.59–1.62) | 1.00 (0.60–1.65) | |
aOR (95% CI) | Ref | 0.55 (0.32–0.97) | 0.79 (0.47–1.31) | 0.76 (0.46–1.27) | |
G3 | |||||
Number | 8321 | 8497 | 8897 | 8876 | |
Case, % | 0.4 | 0.5 | 0.6 | 0.6 | |
OR (95% CI) | Ref | 1.27 (0.81–1.99) | 1.49 (0.97–2.29) | 1.41 (0.91–2.18) | |
aOR (95% CI) | Ref | 1.15 (0.73–1.80) | 1.29 (0.84–2.00) | 1.19 (0.76–1.85) | |
G4 | |||||
Number | 2344 | 2409 | 2380 | 2461 | |
Case, % | 0.4 | 1.2 | 0.8 | 1.1 | |
OR (95% CI) | Ref | 2.75 (1.33–5.66) | 1.98 (0.92–4.24) | 2.69 (1.30–5.54) | |
aOR (95% CI) | Ref | 2.41 (1.16–4.99) | 1.61 (0.74–3.47) | 2.11 (1.02–4.40) | |
G5 | |||||
Number | 2603 | 2327 | 2250 | 2411 | |
Case, % | 2.4 | 3.4 | 2.6 | 3.1 | |
OR (95% CI) | Ref | 1.40 (1.00–1.96) | 1.07 (0.74–1.53) | 1.28 (0.91–1.80) | |
aOR (95% CI) | Ref | 1.41 (1.00–1.98) | 1.06 (0.73–1.53) | 1.26 (0.89–1.78) |
BMI Category | Q1 (Most Proinflammatory Group) | Q2 | Q3 | Q4 (Most Anti-Inflammatory Group) | |
---|---|---|---|---|---|
G1 | |||||
Number | 3872 | 3739 | 3611 | 3421 | |
Case, % | 1.1 | 1.1 | 1.0 | 1.0 | |
OR (95% CI) | Ref | 1.06 (0.69–1.64) | 0.97 (0.62–1.51) | 0.91 (0.57–1.44) | |
aOR (95% CI) | Ref | 1.01 (0.65–1.57) | 0.92 (0.58–1.44) | 0.86 (0.54–1.37) | |
G2 | |||||
Number | 5361 | 5771 | 5646 | 5543 | |
Case, % | 1.0 | 0.8 | 0.9 | 1.1 | |
OR (95% CI) | Ref | 0.89 (0.60–1.32) | 0.95 (0.64–1.40) | 1.12 (0.77–1.63) | |
aOR (95% CI) | Ref | 0.84 (0.56–1.24) | 0.88 (0.59–1.30) | 1.02 (0.69–1.50) | |
G3 | |||||
Number | 8321 | 8497 | 8897 | 8876 | |
Case, % | 1.4 | 1.6 | 1.4 | 1.3 | |
OR (95% CI) | Ref | 1.13 (0.88–1.45) | 1.02 (0.80–1.32) | 0.94 (0.72–1.21) | |
aOR (95% CI) | Ref | 1.05 (0.82–1.35) | 0.92 (0.72–1.19) | 0.83 (0.63–1.07) | |
G4 | |||||
Number | 2344 | 2409 | 2380 | 2461 | |
Case, % | 1.5 | 1.9 | 2.1 | 2.2 | |
OR (95% CI) | Ref | 1.26 (0.80–1.96) | 1.42 (0.92–2.19) | 1.51 (0.98–2.31) | |
aOR (95% CI) | Ref | 1.22 (0.78–1.91) | 1.34 (0.86–2.09) | 1.43 (0.93–2.22) | |
G5 | |||||
Number | 2603 | 2327 | 2250 | 2411 | |
Case, % | 4.3 | 4.2 | 4.0 | 4.2 | |
OR (95% CI) | Ref | 0.97 (0.74–1.28) | 0.92 (0.69–1.22) | 0.96 (0.73–1.27) | |
aOR (95% CI) | Ref | 0.94 (0.71–1.24) | 0.86 (0.65–1.15) | 0.89 (0.67–1.17) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyozuka, H.; Murata, T.; Isogami, H.; Imaizumi, K.; Fukuda, T.; Yamaguchi, A.; Yasuda, S.; Sato, A.; Ogata, Y.; Hosoya, M.; et al. Preconception Dietary Inflammatory Index and Risk of Gestational Diabetes Mellitus Based on Maternal Body Mass Index: Findings from a Japanese Birth Cohort Study. Nutrients 2022, 14, 4100. https://doi.org/10.3390/nu14194100
Kyozuka H, Murata T, Isogami H, Imaizumi K, Fukuda T, Yamaguchi A, Yasuda S, Sato A, Ogata Y, Hosoya M, et al. Preconception Dietary Inflammatory Index and Risk of Gestational Diabetes Mellitus Based on Maternal Body Mass Index: Findings from a Japanese Birth Cohort Study. Nutrients. 2022; 14(19):4100. https://doi.org/10.3390/nu14194100
Chicago/Turabian StyleKyozuka, Hyo, Tsuyoshi Murata, Hirotaka Isogami, Karin Imaizumi, Toma Fukuda, Akiko Yamaguchi, Shun Yasuda, Akiko Sato, Yuka Ogata, Mitsuaki Hosoya, and et al. 2022. "Preconception Dietary Inflammatory Index and Risk of Gestational Diabetes Mellitus Based on Maternal Body Mass Index: Findings from a Japanese Birth Cohort Study" Nutrients 14, no. 19: 4100. https://doi.org/10.3390/nu14194100