Enzobiotics—A Novel Therapy for the Elimination of Uremic Toxins in Patients with CKD (EETOX Study): A Multicenter Double-Blind Randomized Controlled Trial
Abstract
:1. Introduction
Why Would This Study Be Crucial?
2. Materials and Methods
2.1. Study Site, Design, and Participants
2.2. Ethical Consideration
2.3. Study Design
2.3.1. Inclusion Criteria
2.3.2. Exclusion Criteria
2.3.3. Intervention
2.3.4. Blinding Procedure
2.4. Analysis Methods for PCS, IS, and Biochemical Parameters
2.4.1. Diagnostic Variables Studied on Day 0 and Day 90
2.4.2. Measurement of Quality of Life
2.5. Statistical Analysis
2.5.1. Descriptive Analysis
2.5.2. Predictive Analysis
3. Results
3.1. Risk of CKD Progression
3.2. Quality of Life
3.3. Prediction of Toxins Using Multiple Regression Method
3.4. Prediction Equations
4. Discussion
4.1. Strength of the Study
4.2. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Registration
References
- Vanholder, R.; Meert, N.; Schepers, E.; Glorieux, G.; Argiles, A.; Brunet, P.; Cohen, G.; Drüeke, T.; Mischak, H.; Spasovski, G.; et al. Review on uraemic solutes II–variability in reported concentrations: Causes andconsequences. Nephrol. Dial. Transplant. 2007, 22, 3115–3121. [Google Scholar] [CrossRef] [PubMed]
- Raff, A.C.; Meyer, T.W.; Hostetter, T.H. New insights into uremic toxicity. Curr. Opin. Nephrol. Hypertens. 2008, 17, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Motojima, M.; Hosokawa, A.; Yamato, H.; Muraki, T.; Yoshioka, T. Uremic toxinsof organic anions up-regulate pai-1 expression by induction of nf-kappab and freeradical in proximal tubular cells. Kidney Int. 2003, 63, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Ise, M.; Seo, H.; Niwa, T. Indoxyl sulfate increases the gene expressions of tgf-beta 1, timp-1 and pro-alpha 1(i) collagen in uremic rat kidneys. Kidney Int. Suppl. 1997, 62, S15–S22. [Google Scholar]
- Watanabe, H.; Miyamoto, Y.; Honda, D.; Tanaka, H.; Wu, Q.; Endo, M.; Noguchi, T.; Kadowaki, D.; Ishima, Y.; Kotani, S.; et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int. 2013, 83, 582–592. [Google Scholar] [CrossRef]
- Yu, M.; Kim, Y.J.; Kang, D.-H. Indoxyl Sulfate–Induced Endothelial Dysfunction in Patients with Chronic Kidney Disease via an Induction of Oxidative Stress. Clin. J. Am. Soc. Nephrol. 2010, 6, 30–39. [Google Scholar] [CrossRef]
- Lin, C.J.; Pan, C.F.; Chuang, C.K.; Sun, F.J.; Wang, D.J.; Chen, H.H.; Liu, H.L.; Wu, C.J. P-cresyl sulfate is a valuable predictor of clinical outcomes in pre-ESRD patients. BioMed Res. Int. 2014, 2014, 526932. [Google Scholar] [CrossRef]
- Meyer, T.W.; Hostetter, T.H. Uremia. N. Engl. J. Med. 2007, 357, 1316–1325. [Google Scholar] [CrossRef]
- Meijers, B.K.I.; De Loor, H.; Bammens, B.; Verbeke, K.; Vanrenterghem, Y.; Evenepoel, P. p-Cresyl Sulfate and Indoxyl Sulfate in Hemodialysis Patients. Clin. J. Am. Soc. Nephrol. 2009, 4, 1932–1938. [Google Scholar] [CrossRef]
- Martinez, A.W.; Recht, N.S.; Hostetter, T.H.; Meyer, T.W. Removal of P-Cresol Sulfate by Hemodialysis. J. Am. Soc. Nephrol. 2005, 16, 3430–3436. [Google Scholar] [CrossRef]
- Meijers, B.K.; Verbeke, K.; Dehaen, W.; Vanrenterghem, Y.; Hoylaerts, M.F.; Evenepoel, P. The uremic retention solute p-cresyl sulfate and markers of endothelial damage. Am. J. Kidney Dis. 2009, 54, 891–901. [Google Scholar] [CrossRef]
- Barreto, F.C.; Barreto, D.V.; Liabeuf, S.; Meert, N.; Glorieux, G.; Temmar, M.; Choukroun, G.; Vanholder, R.; Massy, Z.A.; European Uremic Toxin Work Group (EUTox). Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 2009, 4, 1551–1558. [Google Scholar] [CrossRef]
- Culleton, B.F.; Wilson, P.W. Cardiovascular disease: Risk factors, secular trends, and therapeutic guidelines. J. Am. Soc. Nephrol. 1998, 9, 5–15. [Google Scholar]
- Foley, R.N.; Parfrey, P.S.; Sarnak, M.J. Epidemiology of cardiovascular disease in chronic renal disease. J. Am. Soc. Nephrol. 1998, 9, S16–S23. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Ni, Z.; Nguyen, T.H.; Andersen, G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013, 83, 308–315. [Google Scholar] [CrossRef]
- Wong, J.; Piceno, Y.M.; DeSantis, T.Z.; Pahl, M.; Andersen, G.L.; Vaziri, N.D. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am. J. Nephrol. 2014, 39, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Cano, D.A.; Hebrok, M.; Zenker, M. Pancreatic Development and Disease. Gastroenterology 2007, 132, 745–762. [Google Scholar] [CrossRef]
- Rysz, J.; Franczyk, B.; Ławiński, J.; Olszewski, R.; Ciałkowska-Rysz, A.; Gluba-Brzózka, A. The Impact of CKD on Uremic Toxins and Gut Microbiota. Toxins 2021, 13, 252. [Google Scholar] [CrossRef]
- Björn, K.I. Meijers and Pieter Evenepoelthe gut–kidney axis: Indoxyl sulfate, p-cresyl sulfate and CKD progression. Nephrol. Dial. Transplant. 2011, 26, 759–761. [Google Scholar]
- Armani, R.G.; Ramezani, A.; Yasir, A.; Sharama, S.; Canziani, M.E.F.; Raj, D.S. Gut Microbiome in Chronic Kidney Disease. Curr. Hypertens. Rep. 2017, 19. [Google Scholar] [CrossRef]
- Wu, I.W.; Hsu, K.H.; Lee, C.C.; Sun, C.Y.; Hsu, H.J.; Tsai, C.J.; Tzen, C.Y.; Wang, Y.C.; Lin, C.Y.; Wu, M.S. p-Cresylsulphate and indoxylsulphate predict progression of chronic kidney disease. Nephrol. Dial. Transplant. 2011, 26, 938–947. [Google Scholar] [CrossRef] [PubMed]
- Bammens, B.; Verbeke, K.; Vanrenterghem, Y.; Evenepoel, P. Evidence for impaired assimilation of protein in chronic renal failure. Kidney Int. 2003, 64, 2196–2203. [Google Scholar] [CrossRef]
- Graboski, A.L. Gut-derived Protein Bound Uremic Toxins. Toxins 2020, 12, 590. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa, S.; Madhusudhan, S.K. A prospective study to evaluate the safety and efficacy of symbiotic supplementation (probiotic and prebiotic combination) in stage 5D chronic kidney disease patients. Int. J. Basic Clin. Pharmacol. 2017, 6, 765. [Google Scholar] [CrossRef]
- Vishal, S. Combating protein-energy wasting in end-stage kidney disease: Role of the exogenous proteolytic enzyme as an adjuvant to dietary protein. Int. J. Basic Clin. Pharmacol. 2019, 8, 1424. [Google Scholar]
- Mohankumar, S.; Santhosh Kumar, M.; Santhosh Kumar, R.; Sanjay, S.; Raveendra, K.; Prabhakaran, P. Preclinical Evaluation of Nephroprotective Potential of Probiotic/Proteolytic Enzymes Formulation on Gentamycin Induced Uremic Ra. Inventi Rapid Urol. Nephrol. 2021, 4, 204–210. [Google Scholar]
- Tavakol, M. RegDennick Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53–55. [Google Scholar] [CrossRef]
- Gryp, T.; De Paepe, K.; Vanholder, R.; Kerckhof, F.-M.; Van Biesen, W.; Van de Wiele, T.; Verbeke, F.; Speeckaert, M.; Joossens, M.; Couttenye, M.M.; et al. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int. 2020, 97, 1230–1242. [Google Scholar] [CrossRef]
- Ramezani, A.; Raj, D.S. The Gut Microbiome, Kidney Disease, and Targeted Interventions. J. Am. Soc. Nephrol. 2014, 25, 657–670. [Google Scholar] [CrossRef]
- Lin, C.J.; Wu, V.; Wu, P.C.; Wu, C.J. Meta-analysis of the associations of p-cresyl sulfate (PCS) and indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure. PLoS ONE 2015, 10, e0132589. [Google Scholar] [CrossRef]
- Thompson, S.; James, M.; Wiebe, N.; Hemmelgarn, B.; Manns, B.; Klarenbach, S.; Tonelli, M.; Alberta Kidney Disease Network. Cause of death in patients with reduced kidney function. J. Am. Soc. Nephrol. 2015, 26, 2504–2511. [Google Scholar] [CrossRef] [PubMed]
- Baaten, C.C.; Sternkopf, M.; Henning, T.; Marx, N.; Jankowski, J.; Noels, H. Platelet Function in CKD: A Systematic Review and Meta-Analysis. J. Am. Soc. Nephrol. 2021, 32, 1583–1598. [Google Scholar] [CrossRef] [PubMed]
- Ocak, G.; Rookmaaker, M.B.; Algra, A.; de Borst, G.J.; Doevendans, P.A.; Kappelle, L.J.; SMART Study Group. Chronic kidney disease and bleeding risk in patients at high cardiovascular risk: A cohort study. J. Thromb. Haemost. 2018, 16, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Molnar, A.O.; Bota, S.E.; Garg, A.X.; Harel, Z.; Lam, N.; McArthur, E.; Nesrallah, G.; Perl, J.; Sood, M.M. The Risk of Major Hemorrhage with CKD. J. Am. Soc. Nephrol. 2016, 27, 2825–2832. [Google Scholar] [CrossRef]
- Hamza, E.; Metzinger, L.; Meuth, M.L. Uremic toxins affect erythropoiesis during the course of chronic kidney disease: A review. Cells 2020, 9, 2039. [Google Scholar] [CrossRef]
- Perna, A.F.; Glorieux, G.; Zacchia, M.; Trepiccione, F.; Capolongo, G.; Vigorito, C.; Anishchenko, E.; Ingrosso, D. The role of the intestinal microbiota in uremic solute accumulation: A focus on sulfur compounds. J. Nephrol. 2019, 32, 733–740. [Google Scholar] [CrossRef]
- Ito, S.; Yoshida, M. Protein-Bound Uremic Toxins: New Culprits of Cardiovascular Events in Chronic Kidney Disease Patients. Toxins 2014, 6, 665–678. [Google Scholar] [CrossRef]
- Rossi, M.; Campbell, K.L.; Johnson, D.W.; Stanton, T.; Vesey, D.A.; Coombes, J.S.; Weston, K.S.; Hawley, C.M.; McWhinney, B.C.; Ungerer, J.P.; et al. Protein-bound uremic toxins, inflammation and oxidative stress: A cross-sectional study in stage 3–4 chronic kidney disease. Arch. Med. Res. 2014, 45, 309–317. [Google Scholar] [CrossRef]
- van der Meijden, P.E.J.; Heemskerk, J.W.M. Platelet biology and functions: New concepts and clinical perspectives. Nat. Rev. Cardiol. 2019, 16, 166–179. [Google Scholar] [CrossRef]
- Christiansen, C.F.; Schmidt, M.; Lamberg, A.L.; Horváth-Puhó, E.; Baron, J.A.; Jespersen, B.; Sørensen, H.T. Kidney disease and risk of venous thromboembolism: A nationwide population-based case-control study. J. Thromb. Haemost. 2014, 12, 1449–1454. [Google Scholar] [CrossRef]
- McFarlane, C.; Ramos, C.I. Prebiotic, Probiotic, and SynbioticSupplementation in CKD: A Systemic Review and Meta-analysis. J. Ren. Nutr. 2019, 29, 209–220. [Google Scholar] [CrossRef]
- Rossi, M.; Klein, K.; Johnson, D.W.; Campbell, K.L. Pre-, pro-, and synbiotics: Do they have a role in reducing uremic toxins? A systematic review and meta-analysis. Int. J. Nephrol. 2012, 2012, 673631. [Google Scholar] [CrossRef]
- Massy, Z.A.; Drueke, T.B. Drueke Diet–microbiota interaction and kidney disease progression. Kidney Int. 2021, 99, 797–800. [Google Scholar] [CrossRef]
- Manju, L.; Joseph, J.; Beevi, N. Validation of Kidney Disease Quality of Life Short Form 36 (KDQOL-SF™) in Malayalam among Patients Undergoing Haemodialysis in South Kerala. Health Qual. Life Outcomes 2018, 16, 111. [Google Scholar] [CrossRef]
- Rossi, M.; Johnson, D.W.; Morrison, M.; Pascoe, E.M.; Coombes, J.S.; Forbes, J.M.; Szeto, C.C.; McWhinney, B.C.; Ungerer, J.P.J.; Campbell, K.L. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): A randomized trial. Clin. J. Am. Soc. Nephrol. 2016, 11, 223–231. [Google Scholar] [CrossRef]
- Guldris, S.C.; Parra, E.G.; Amenόs, A.C. Gut microbiota in chronic kidney disease. Nefrología 2017, 37, 9–19. [Google Scholar] [CrossRef]
- De Almeida Duarte, J.B.; de Aguilar-Nascimento, J.E.; Nascimento, M.; Nochi, R.J., Jr. Bacterial translocation in experimental uremia. Urol. Res. 2004, 32, 266–270. [Google Scholar] [CrossRef]
- Liu, W.C.; Shyu, J.F.; Lin, Y.F.; Chiu, H.W.; Lim, P.S.; Lu, C.L.; Zheng, C.M.; Hou, Y.C.; Chen, P.H.; Lu, K.C. Resveratrol Rescue Indoxyl Sulfate-Induced Deterioration of Osteoblastogenesis via the Aryl Hydrocarbon Receptor /MAPK Pathway. Int. J. Mol. Sci. 2020, 21, 7483. [Google Scholar] [CrossRef]
- Borges, N.A.; Carmo, F.L.; Stockler-Pinto, M.B.; de Brito, J.S.; Dolenga, C.J.; Ferreira, D.C.; Nakao, L.S.; Rosado, A.; Fouque, D.; Mafra, D. Probiotic Supplementation in Chronic Kidney Disease: A Double-blind, Randomized, Placebo-controlled Trial. J. Ren. Nutr. 2018, 28, 28–36. [Google Scholar] [CrossRef]
- Shariaty, Z.; Mahmoodi Shan, G.R.; Farajollahi, M.; Amerian, M.; Behnam Pour, N. The effects of probiotic supplement on hemoglobin in chronic renal failure patients under hemodialysis: A randomized clinical trial. J. Res. Med. Sci. 2017, 22, 74. [Google Scholar]
- Wang, I.K.; Wu, Y.Y.; Yang, Y.F.; Ting, I.W.; Lin, C.C.; Yen, T.H.; Chen, J.H.; Wang, C.H.; Huang, C.C.; Lin, H.C. The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: A randomised, double-blind, placebo-controlled trial. Benef. Microbes 2015, 6, 423–430. [Google Scholar] [CrossRef] [PubMed]
- el Haouari, M. Platelet Oxidative Stress and its Relationship with Cardiovascular Diseases in Type 2 Diabetes Mellitus Patients. Curr. Med. Chem. 2019, 26, 4145–4165. [Google Scholar] [CrossRef] [PubMed]
- Roller, M.; Rechkemmer, G.; Watzl, B. Prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis modulates intestinal immune functions in rats. J. Nutr. 2004, 134, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Meijers, B.K.; Claes, K.; Bammens, B.; de Loor, H.; Viaene, L.; Verbeke, K.; Kuypers, D.R.; Vanrenterghem, Y.; Evenepoel, P. p-Cresol and Cardiovascular Risk in Mild-to-Moderate Kidney Disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 1182–1189. [Google Scholar] [CrossRef] [Green Version]
Enzobiotic Group | Placebo Group | |
---|---|---|
Total patients recruited at start of study | 50 | 35 |
Lost to follow-up | 3 | 1 |
Consent withdrawn | 1 | 6 |
Logistic delays (sample reaching central lab after >48 h) | 4 | 2 |
Protocol violation (missed follow-up visit) | 5 | 3 |
Follow-up after predefined acceptable study window for final visit, i.e., reported after 97 days. | 8 | 2 |
Total dropouts | 21 | 14 |
Total patients who completed study | 29 | 21 |
Variables | Placebo Group | Enzobiotic Group | Significance | |||
---|---|---|---|---|---|---|
Statistics | Day 0 (n = 21) | Day 90 (n = 21) | Day 0 (n = 29) | Day 90 (n = 29) | p-Value | |
Mean ± SD Median CI | Mean ± SD Median CI | Mean ± SD Median CI | Mean ± SD Median CI | Placebo vs. Enzobiotics on Day 90 | ||
Age | Mean CI for mean | 49 ± 15 | 49 ± 15 | 54 ± 10 | 54 ± 10 | 0.176 |
42–56 | 42–56 | 50–58 | 50–58 | |||
Body mass index | Mean | 26.08 ± 6.921 | 26.28 ± 7.04 | 25.61 ± 4.52 | 25.57 ± 4.55 | 0.689 |
CI for mean | 22.93–29.23 | 23.073–29.480 | 23.89–27.33 | 23.838–27.300 | ||
Blood pressure—systolic * | Median | 130 ± 22.6 | 138 ± 18.89 | 140 ± 15.29 | 130 ± 26.54 | 0.084 |
CI for median | 128.37–138.65 | 130–144.33 | 130–144 | 128.34–140.0 | ||
Blood pressure—diastolic | Mean | 84.05 ± 15.53 | 85.19 ± 12.89 | 90 ± 11.77 * | 75 ± 9.982 * | 0.034 * |
CI for mean | 76.98–91.12 | 79.32–106 | 78.84–90 | 70–80 | ||
Blood urea | Mean | 89.63 ± 46.96 | 92.9 ± 48.9 | 81.33 ± 39.86 | 91.47 ± 40.80 | 0.912 |
CI for mean | 68.25–111 | 70.61–115.17 | 66.17–96.49 | 75.95–106.99 | ||
Plasma creatinine | Mean | 5.14 ± 2.40 | 5.03 ± 2.9 | 4.02 ± 1.84 | 4.4 * | 0.523 |
CI for mean | 4.04–6.23 | 3.70–6.35 | 3.32–4.72 | 2.88–5.22 | ||
Hemoglobin | Mean | 10.71 ± 2.28 | 10.73 ± 2.24 | 11.56 ± 1.79 | 11.59 ± 2.00 | 0.169 |
CI for mean | 9.68–11.75 | 9.64–11.81 | 10.86–12.25 | 10.83–12.35 | ||
WBC—total count | Mean | 8.33 ± 2.15 | 8.29 ± 0.44 | 8.55 ± 2.21 | 8.73 ± 0.74 | 0.546 |
CI for mean | 7.35–9.31 | 7.37–9.22 | 7.7–9.4 | 7.69–9.78 | ||
Platelet count | Mean | 229.57 ± 72.06 | 247 ± 81 | 238.21 ± 68.14 | 232 * | 0.866 |
CI for mean | 196.77–262.37 | 208.26–286.37 | 211.79–264.64 | 208–247.17 | ||
Potassium * | Median | 4.5 | 4.60 | 4.8 | 4.70 | 1.000 |
CI for median | 4–4.75 | 4.27–4.95 | 4.3–5 | 4.19–4.90 | ||
Uric acid | Mean | 6.87 ± 1.46 | 6.61 ± 2.05 | 6.96 ± 1.65 | 6.65 ± 2.17 | 0.939 |
CI for mean | 6.21–7.53 | 5.67–7.54 | 6.33–7.58 | 5.82–7.47 | ||
Phosphorus | Mean | 4.44 ± 1.43 | 4.32 ± 0.98 | 4.29 ± 1.02 | 4.25 ± 0.92 | 0.811 |
CI for mean | 3.79–5.09 | 3.88–4.77 | 3.9–4.67 | 3.91–4.61 | ||
Albumin | Mean | 3.71 ± 0.48 | 3.72 ± 0.49 | 3.8 ± 0.64 | 3.59 ± 0.62 | 0.433 |
CI for mean | 3.5–3.9 | 3.49–3.94 | 3.58–4.06 | 3.35–3.82 | ||
hsCRP * | Median | 3.66 | 2.47 | 2.11 | 3.32 | 0.535 |
CI for median | 1.86–5.67 | 0.79–5.33 | 1.25–4.51 | 1.55–6.06 | ||
LDL-cholesterol | Mean | 98.5 ± 45.44 | 94.1 ± 47.7 | 80 * | 76.54 ± 24.79 | 0.134 |
CI for mean | 77.89–119.25 | 72.43–115.86 | 62.83–108.5 | 66.92–86.14 | ||
Triglycerides | Mean | 169.48 ± 74.66 | 152.6 ± 72 | 204.28 ± 107.73 | 144 * | 0.687 |
CI for mean | 135.49–203.98 | 119.84–185.40 | 163.3–245.25 | 111.67–207.17 | ||
Sodium | Mean | 134.90 ± 3.99 | 135.10 ± 3.13 | 135.24 ± 3.52 | 135 * | 0.722 |
CI for mean | 133.03–136.77 | 133.03–136.77 | 133.9–136.58 | 133.45–136.55 | ||
eGFR (W—CGF) * | Median | 23.24/16 + 19.01 | 24.57/17 + 19.97 | 28.93/19 + 25.39 | 25.65/20 + 19.54 | 0.723 |
CI for median | 12.35–21.33 | 12.67–26.57 | 13.67–33.17 | 12.67–26.33 | ||
eGFR (A—MDRD) * | Median | 15.9/12 + 12.87 | 17.38/12 + 14.85 | 22.90/15 + 22.31 | 19.52/14 + 14.86 | 0.491 |
CI for median | 7.67–14.98 | 9.02–19.61 | 10.83–21.66 | 10–23.17 |
Toxin | Placebo | Enzobiotics |
---|---|---|
PCS Day 0 | 10.773–24.135 μg/mL | 14.837–31.822 μg/mL |
PCS Day 90 | 13.844–27.959 μg/mL | 9.592–19.035 μg/mL |
IS Day 0 | 6258–32,081 ng/mlL | 6672–24,498 ng/mL |
IS Day 90 | 6001–23,925 ng/mL | 6960–20,799 ng/mL |
Toxins | Placebo | Enzobiotics | |||||
---|---|---|---|---|---|---|---|
Mean | SD (±) | CI | Mean | SD (±) | CI | ||
PCS | Day 90/Day 0 | 1.27 (n = 21) | 0.93 | 0.85 to 1.69 | 0.77 (n = 24) | 0.48 | 0.60 to 0.96 |
Day 0 absolute (μg/mL) | 18.66 | 10.99 | 13.70 to 23.62 | 22.72 | 10.34 | 18.35 to 27.09 | |
Day 90 absolute (μg/mL) | 20.97 | 13.4 | 14.87 to 27.07 | 15.69 | 9.51 | 11.68 to 19.70 | |
Change between Day 90 and Day 0 | (+)12% | (−)31% | |||||
IS | Day 90/Day 0 | 1.2 (n = 20) | 0.71 | 1.00 (n = 27) | 0.5 | ||
Day 0 absolute (ng/mL) | 11,462 * | 20,679 | 7603 to 28,355 | 11,668 * | 13,221 | 8070 to 23,272 | |
Day 90 absolute (ng/mL) | 12,466 * | 34,481 | 7869 to 18,673 | 10,888 * | 12,804 | 7339 to 16,847 | |
Change between Day 90 and Day 0 | (+)8.8% | (−)6.7% |
QOL Components | Number of Questions | Adversity Ratio | Standard Deviation | ||
---|---|---|---|---|---|
Day 0 | Day 90 | Day-0 | Day-90 | ||
Enzobiotic Group | |||||
Daily activity limitations | 10 | 0.2284 | 0.1003 | 0.020 | 0.0150 |
General wellbeing | 2 | 0.4884 | 0.1875 | 0.0539 | 0.0436 |
Health | 4 | 0.4012 | 0.2278 | 0.0373 | 0.0334 |
Emotional problems in last 4 weeks | 6 | 0.4380 | 0.2333 | 0.0309 | 0.0273 |
Feelings in last 4 weeks | 10 | 0.4047 | 0.2481 | 0.0237 | 0.0216 |
Problems in last 4 weeks | 4 | 0.4750 | 0.2597 | 0.0395 | 0.0353 |
Overall | 36 | 0.3726 | 0.2000 | 0.0123 | 0.0105 |
Placebo Group | |||||
Daily activity limitations | 10 | 0.2382 | 0.0320 | 0.0239 | 0.0111 |
General wellbeing | 2 | 0.6563 | 0.2200 | 0.0594 | 0.086 |
Health | 4 | 0.4375 | 0.2400 | 0.0438 | 0.0427 |
Emotional problems in last 4 weeks | 6 | 0.4896 | 0.1800 | 0.0361 | 0.0314 |
Feelings in last 4 weeks | 10 | 0.4375 | 0.2600 | 0.0277 | 0.0277 |
Problems in last 4 weeks | 4 | 0.6667 | 0.3052 | 0.0436 | 0.0472 |
Overall | 36 | 0.4263 | 0.1832 | 0.0146 | 0.0129 |
No. | Parameters | Regression Equation PCS Day 0 | R2 | p-Value |
---|---|---|---|---|
1 | HR | 5.44 + 0.4977 HR − 0.003919 HR2 | 4.12% | 0.190 |
2 | PR | 7.01 + 0.4476 PR − 0.003544 PR2 | 4.01% | 0.197 |
3 | PC | 6.49 + 0.06809 PC − 0.000049 PC2 | 7.75% | 0.044 * |
4 | RBC | 10.22 + 2.32 RBC + 0.030 RBC2 | 3.33% | 0.186 |
5 | BUN | 17.97 + 0.1803 BUN − 0.002787 BUN2 | 2.66% | 0.385 |
6 | Creatinine | 16.97 + 2.456 Creat − 0.3384 Creat2 | 5.61% | 0.249 |
7 | Urea | 17.96 + 0.0843 Urea − 0.000607 Urea2 | 2.67% | 0.385 |
8 | UA | 22.47 − 3.998 UA + 0.4949 UA2 | 15.31% | 0.005 * |
9 | HDL | 35.49 − 0.5509 HDL + 0.003407 HDL2 | 4.44% | 0.133 |
10 | eGFR (W-CGF) | 13.19 + 0.4523 EGFR(W) − 0.004626 EGFR(W)2 | 7.53% | 0.623 |
11 | P | 4.26 + 6.128 P − 0.5534 P2 | 1.81% | 0.614 |
12 | hsCRP | 18.59 + 0.0860 hsCRP + 0.00531 hsCRP2 | 6.59% | 0.066 |
13 | Albumin | −2.17 + 16.29 Albumin − 2.717 Albumin2 | 4.07% | 0.330 |
Regression equation IS Day 0 | ||||
1 | HR | −3025 + 476 HR − 2.827 HR2 | 0.22% | 0.944 |
2 | PR | −3830 + 494 PR − 2.911 PR2 | 0.28% | 0.930 |
3 | PC | 31,509 − 115.7 PC + 0.2056 PC2 | 1.29% | 0.717 |
4 | RBC | 58,127 − 15,756 RBC + 1256 RBC2 | 9.99% | 0.068 |
5 | BUN | −1191 + 550.6 BUN − 2.123 BUN2 | 18.94% | 0.004 * |
6 | Creatinine | 756 + 1143 Creat + 436.0 Creat2 | 50.65% | 0.000 * |
7 | Urea | −1182 + 256.3 Urea − 0.460 Urea2 | 18.94% | 0.004 * |
8 | UA | −23,027 + 11,446 UA − 790.3 UA2 | 2.33% | 0.542 |
9 | HDL | 27,254 − 444 HDL + 4.01 HDL2 | 0.37% | 0.907 |
10 | eGFR (W-CGF) | 34,676 − 994.4 EGFR(W) + 6.904 EGFR(W)2 | 32.46% | 0.000 * |
11 | P | 7922 − 909 P + 599.6 P2 | 15.25% | 0.014 |
12 | hsCRP | 15,276 + 510.2 hsCRP − 15.65 hsCRP2 | 2.05% | 0.583 |
13 | Albumin | −36,814 + 40,140 Albumin − 6733 Albumin2 | 11.87% | 0.037 * |
Variable | PC1 | PC2 | PC3 | PC4 | Variable | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|---|---|---|---|---|
HT | 0.097 | −0.112 | 0.016 | 0.173 | Hg (hemoglobin) | 0.261 | 0.073 | −0.258 | 0.123 |
WT | 0.184 | 0.212 | 0.261 | −0.013 | HMT | 0.280 | 0.095 | −0.218 | 0.116 |
BMI | 0.133 | 0.268 | 0.253 | −0.131 | Albumin | 0.212 | −0.131 | −0.300 | 0.112 |
Temp | 0.125 | 0.063 | 0.001 | −0.178 | Na | 0.158 | −0.164 | 0.050 | −0.141 |
HR | −0.034 | −0.065 | −0.297 | −0.357 | K | 0.115 | 0.100 | 0.092 | 0.243 |
PR | −0.032 | −0.075 | −0.300 | −0.355 | Urea | −0.279 | 0.194 | −0.109 | 0.149 |
RR | 0.038 | −0.082 | 0.056 | −0.031 | UA | −0.036 | 0.096 | 0.008 | 0.191 |
Systolic | 0.026 | 0.215 | −0.135 | −0.022 | TP | 0.165 | 0.092 | −0.192 | 0.107 |
Diastolic | 0.102 | 0.064 | −0.226 | −0.106 | Triglycerides | 0.189 | 0.207 | −0.161 | 0.048 |
PC | −0.014 | 0.030 | 0.146 | −0.158 | TC | −0.005 | 0.416 | −0.111 | −0.189 |
WBC | 0.134 | 0.156 | −0.008 | −0.096 | EGFR(A- MDRD) | 0.278 | −0.060 | 0.132 | −0.098 |
RBC | 0.239 | 0.125 | −0.255 | 0.059 | LDL | −0.018 | 0.403 | −0.108 | −0.193 |
SGOT | 0.127 | 0.155 | 0.053 | 0.345 | HDL | −0.102 | 0.144 | 0.110 | −0.118 |
SGPT | 0.163 | 0.066 | 0.054 | 0.337 | EGFR(W-CGF) | 0.289 | −0.028 | 0.174 | −0.120 |
Total bilirubin | 0.136 | −0.077 | 0.174 | −0.060 | HBA1 c | 0.039 | 0.293 | 0.179 | −0.122 |
BUN | −0.279 | 0.194 | −0.110 | 0.149 | P | −0.232 | 0.176 | 0.046 | 0.146 |
Creatinine | −0.306 | 0.104 | −0.114 | 0.065 | hsCRP | 0.045 | 0.181 | 0.249 | −0.121 |
Term | Coef | SE Coef | 95% CI | t-Value | p-Value | VIF |
---|---|---|---|---|---|---|
Prediction of PCS (Day 0) as a function of platelet count, uric acid, and creatinine | ||||||
Constant | −5.97 | 7.73 | (−21.48, 9.55) | −0.77 | 0.443 | |
PC | 0.0453 | 0.0185 | (0.0081, 0.0825) | 2.45 | 0.018 * | 1 |
UA | 2.987 | 0.873 | (1.233, 4.741) | 3.42 | 0.001 * | 1.03 |
Creat | −1.31 | 0.642 | (−2.600, −0.020) | −2.04 | 0.047 * | 1.04 |
Prediction of PCS (Day 90) as a function of platelet count (Day 0) and PCS (Day 0) | ||||||
Constant | 22.92 | 6.46 | (9.77, 36.06) | 3.55 | 0.001 * | |
PC (Day 0) | −0.0542 | 0.0239 | (−0.1029, −0.0056) | −2.27 | 0.03 * | 1.02 |
PCS (Day 0) | 0.283 | 0.128 | (0.021, 0.544) | 2.2 | 0.035 * | 1.01 |
Placebo | 5.7 | 3.17 | (−0.74, 12.15) | 1.8 | 0.081 | 1.01 |
p-Value | Coefficient | SE Coefficient | |
---|---|---|---|
Age | 0.0000 | −0.04082 | −0.0081 |
Uric Acid | 0.0000 | 0.2904 | 0.0498 |
Platelet Count | 0.0180 | −0.000003 | −0.000001 |
Term | Coef | SE Coef | 95% CI | t-Value | p-Value | VIF |
---|---|---|---|---|---|---|
Constant | −19,551 | 7873 | (−35,607, −3494) | −2.48 | 0.019 | |
Creatinine (Day 0) | 4689 | 2320 | (−42, 94.20) | 2.02 | 0.052 | 4.83 |
Urea (Day 0) | −242.7 | 91.5 | (−4292, −56.2) | −2.65 | 0.012 | 3.17 |
Phosphorus (Day 0) | 3946 | 2313 | (−771, 8664) | 1.71 | 0.098 | 1.85 |
IS (Day 0) | 1.206 | 0.227 | (0.744, 1.668) | 5.32 | 0.000 | 1.83 |
Randomization Placebo | 3281 | 5083 | (−7086, 13,647) | 0.65 | 0.523 | 1.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saxena, A.; Srinivasa, S.; Veerappan, I.; Jacob, C.; Mahaldar, A.; Gupta, A.; Rajagopal, A. Enzobiotics—A Novel Therapy for the Elimination of Uremic Toxins in Patients with CKD (EETOX Study): A Multicenter Double-Blind Randomized Controlled Trial. Nutrients 2022, 14, 3804. https://doi.org/10.3390/nu14183804
Saxena A, Srinivasa S, Veerappan I, Jacob C, Mahaldar A, Gupta A, Rajagopal A. Enzobiotics—A Novel Therapy for the Elimination of Uremic Toxins in Patients with CKD (EETOX Study): A Multicenter Double-Blind Randomized Controlled Trial. Nutrients. 2022; 14(18):3804. https://doi.org/10.3390/nu14183804
Chicago/Turabian StyleSaxena, Anita, Sanjay Srinivasa, Ilangovan Veerappan, Chakko Jacob, Amol Mahaldar, Amit Gupta, and Ananthasubramaniam Rajagopal. 2022. "Enzobiotics—A Novel Therapy for the Elimination of Uremic Toxins in Patients with CKD (EETOX Study): A Multicenter Double-Blind Randomized Controlled Trial" Nutrients 14, no. 18: 3804. https://doi.org/10.3390/nu14183804
APA StyleSaxena, A., Srinivasa, S., Veerappan, I., Jacob, C., Mahaldar, A., Gupta, A., & Rajagopal, A. (2022). Enzobiotics—A Novel Therapy for the Elimination of Uremic Toxins in Patients with CKD (EETOX Study): A Multicenter Double-Blind Randomized Controlled Trial. Nutrients, 14(18), 3804. https://doi.org/10.3390/nu14183804