Dietary–Physical Activity Patterns in the Health Context of Older Polish Adults: The ‘ABC of Healthy Eating’ Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ethics Approval
2.3. Data Collection
2.4. Dietary–Physical Activity Patterns (D-PAPs)
2.5. Health Outcomes
2.6. Socioeconomic Status Index (SESI)
2.7. Statistical Analysis
3. Results
3.1. Health Outcomes and Dietary–Physical Activity Patterns—Percentage Distribution
3.2. Health Outcomes and Dietary–Physical Activity Patterns—Logistic Regression Analysis
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Good Health Adds Life to Years—Global Brief for World Health Day 2012; World Health Organization: Geneva, Switzerland, 2012.
- Dominguez, L.J.; Veronese, N.; Baiamonte, E.; Guarrera, M.; Parisi, A.; Ruffolo, C.; Tagliaferri, F.; Barbagallo, M. Healthy Aging and Dietary Patterns. Nutrients 2022, 14, 889. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, M. A New Perspective on the Health of Canadians; Minister of Supply and Services Canada: Ottawa, Canada, 1974. [Google Scholar]
- Willcox, D.C.; Scapagnini, G.; Willcox, B.J. Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Mech. Ageing Dev. 2014, 136–137, 148–162. [Google Scholar] [CrossRef]
- World Health Organization. Preventing Chronic Diseases: A Vital Investment: WHO Global Report; WHO Press: Geneva, Switzerland, 2005.
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Bennett, D.A.; Aggarwal, N.T. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimer’s Dement. 2015, 11, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, A.; Xu, W.; Fratiglioni, L.; Fabbri, C.; Berendsen, A.A.M.; Bialecka-Debek, A.; Jennings, A.; Gillings, R.; Meunier, N.; Caumon, E.; et al. Effect of the NU-AGE Diet on Cognitive Functioning in Older Adults: A Randomized Controlled Trial. Front. Physiol. 2018, 9, 349. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; World Health Organization: Geneva, Switzerland, 2018.
- WHO Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020.
- Borg, S.T.; Verlaan, S.; Mijnarends, D.; Schols, J.M.G.A.; de Groot, L.C.P.G.M.; Luiking, Y.C. Macronutrient Intake and Inadequacies of Community-Dwelling Older Adults, a Systematic Review. Ann. Nutr. Metab. 2015, 66, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.L.; Harris, T.B.; Tylavsky, F.A.; Perry, S.E.; Houston, D.K.; Lee, J.S.; Kanaya, A.M.; Sahyoun, N.R. Dietary patterns, insulin sensitivity and inflammation in older adults. Eur. J. Clin. Nutr. 2012, 66, 18–24. [Google Scholar] [CrossRef]
- Kiesswetter, E.; Poggiogalle, E.; Migliaccio, S.; Donini, L.M.; Sulmont-Rossé, C.; Feart, C.; Suwalska, A.; Wieczorowska-Tobis, K.; Pałys, W.; Łojko, D.; et al. Functional determinants of dietary intake in community-dwelling older adults: A DEDIPAC (DEterminants of DIet and Physical ACtivity) systematic literature review. Public Health Nutr. 2018, 21, 1886–1903. [Google Scholar] [CrossRef]
- Govindaraju, T.; Owen, A.J.; McCaffrey, T.A. Past, present and future influences of diet among older adults—A scoping review. Ageing Res. Rev. 2022, 77, 101600. [Google Scholar] [CrossRef]
- Anderson, A.L.; Harris, T.B.; Tylavsky, F.A.; Perry, S.E.; Houston, D.K.; Hue, T.F.; Strotmeyer, E.S.; Sahyoun, N.R. Health ABC Study. Dietary patterns and survival of older adults. J. Am. Diet. Assoc. 2011, 111, 84–91. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Ferreira, M.P.D.N.; Previdelli, Á.N.; Freitas, T.I.D.; Marques, K.M.; Goulart, R.M.M.; Aquino, R.D.C.D. Dietary patterns and associated factors among the elderly. Rev. Bras. Geriatr. Gerontol. 2017, 20, 534–544. [Google Scholar] [CrossRef]
- Hamulka, J.; Frackiewicz, J.; Stasiewicz, B.; Jeruszka-Bielak, M.; Piotrowska, A.; Leszczynska, T.; Niedzwiedzka, E.; Brzozowska, A.; Wadolowska, L. Socioeconomic, Eating- and Health-Related Limitations of Food Consumption among Polish Women 60+ Years: The ‘ABC of Healthy Eating’ Project. Nutrients 2022, 14, 51. [Google Scholar] [CrossRef]
- Guigoz, Y. The Mini-Nutritional Assessment (MNA®) Review of the Literature—What does it tell us? J. Nutr. Health Aging 2006, 10, 466–487. [Google Scholar]
- Rolland, Y.; Perrin, A.; Gardette, V.; Filhol, N.; Vellas, B. Screening Older People at Risk of Malnutrition or Malnourished Using the Simplified Nutritional Appetite Questionnaire (SNAQ): A Comparison with the Mini-Nutritional Assessment (MNA) Tool. J. Am. Med. Dir. Assoc. 2012, 13, 31–34. [Google Scholar] [CrossRef]
- Lau, S.; Pek, K.; Chew, J.; Lim, J.P.; Ismail, N.H.; Ding, Y.Y.; Cesari, M.; Lim, W.S. The Simplified Nutritional Appetite Questionnaire (SNAQ) as a Screening Tool for Risk of Malnutrition: Optimal Cutoff, Factor Structure, and Validation in Healthy Community-Dwelling Older Adults. Nutrients 2020, 12, 2885. [Google Scholar] [CrossRef]
- Committee of Human Nutrition Science. Dietary Habits and Nutrition Beliefs Questionnaire and the Manual for Developing of Nutritional Data (Kom-PAN®); Polish Academy of Science: Warsaw, Poland, 2014; Available online: http://www.knozc.pan.pl/ (accessed on 10 May 2022).
- Taylor, H.L.; Jacobs, D.R., Jr.; Schucker, B.; Knudsen, J.; Leon, A.S.; Debacker, G. A questionnaire for the assessment of leisure time physical activities. J. Chronic Dis. 1978, 31, 741–755. [Google Scholar] [CrossRef]
- International Society for the Advancement of Kinanthropometry (ISAK). International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Potchefstroom, South Africa, 2001. [Google Scholar]
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS); National Health and Nutrition Examination Survey (NHANES). Anthropometry Procedures Manual; Centers for Disease Control and Prevention (CDC): Hyattsville, MD, USA, 2007.
- Marfell-Jones, M.J.; Stewart, A.D.; de Ridder, J.H. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Wellington, New Zealand, 2012. [Google Scholar]
- Peduzzi, P.; Concato, J.; Kempe, R.E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Rosner, B. Fundamentals of Biostatistics, 7th ed.; Brooks/Cole: Boston, MA, USA, 2011. [Google Scholar]
- Armitage, P.; Berry, G.; Matthews, J.N.S. Statistical Methods in Medical Research, 4th ed.; Blackwell Science: Oxford, UK, 2001. [Google Scholar]
- Liotta, G.; Ussai, S.; Illario, M.; O’Caoimh, R.; Cano, A.; Holland, C.; Roller-Winsberger, R.; Capanna, A.; Grecuccio, C.; Ferraro, M.; et al. Frailty as the Future Core Business of Public Health: Report of the Activities of the A3 Action Group of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA). Int. J. Environ. Res. Public Health 2018, 15, 2843. [Google Scholar] [CrossRef]
- Cox, N.J.; Ibrahim, K.; Sayer, A.A.; Robinson, S.M.; Roberts, H.C. Assessment and Treatment of the Anorexia of Aging: A Systematic Review. Nutrients 2019, 11, 144. [Google Scholar] [CrossRef]
- Van Der Meij, B.S.; Wijnhoven, H.A.H.; Lee, J.S.; Houston, D.K.; Hue, T.; Harris, T.B.; Kritchevsky, S.B.; Newman, A.B.; Visser, M. Poor Appetite and Dietary Intake in Community-Dwelling Older Adults. J. Am. Geriatr. Soc. 2017, 65, 2190–2197. [Google Scholar] [CrossRef]
- Jeruszka-Bielak, M.; Kollajtis-Dolowy, A.; Santoro, A.; Ostan, R.; Berendsen, A.A.M.; Jennings, A.; Meunier, N.; Marseglia, A.; Caumon, E.; Gillings, R.; et al. Are Nutrition-Related Knowledge and Attitudes Reflected in Lifestyle and Health Among Elderly People? A Study Across Five European Countries. Front. Physiol. 2018, 9, 994. [Google Scholar] [CrossRef] [Green Version]
- Ryszewska-Łabędzka, D.; Tobis, S.; Kropińska, S.; Wieczorowska-Tobis, K.; Talarska, D. The Association of Self-Esteem with the Level of Independent Functioning and the Primary Demographic Factors in Persons over 60 Years of Age. Int. J. Environ. Res. Public Health 2022, 19, 1996. [Google Scholar] [CrossRef]
- De Boer, A.; Ter Horst, G.J.; Lorist, M.M. Physiological and psychosocial age-related changes associated with reduced food intake in older persons. Ageing Res. Rev. 2013, 12, 316–328. [Google Scholar] [CrossRef]
- Van der Meij, B.S.; Wijnhoven, H.A.; Finlayson, G.S.; Oosten, B.S.; Visser, M. Specific food preferences of older adults with a poor appetite. A forced-choice test conducted in various care settings. J. Appet. 2015, 90, 168–175. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Ortolani, E.; Savera, G.; Sisto, A.; Marzetti, E. Anorexia of Aging: Risk Factors, Consequences, and Potential Treatments. Nutrients 2016, 8, 69. [Google Scholar] [CrossRef]
- Giezenaar, C.; Chapman, I.; Luscombe-Marsh, N.; Feinle-Bisset, C.; Horowitz, M.; Soenen, S. Ageing Is Associated with Decreases in Appetite and Energy Intake—A Meta-Analysis in Healthy Adults. Nutrients 2016, 8, 28. [Google Scholar] [CrossRef]
- McPhee, J.S.; French, D.P.; Jackson, D.; Nazroo, J.; Pendleton, N.; Degens, H. Physical activity in older age: Perspectives for healthy ageing and frailty. Biogerontology 2016, 17, 567–580. [Google Scholar] [CrossRef]
- Xi, P.; Ding, J.; Wan, S.; Zheng, Z.; Zhao, Y.; Xiao, X.; Yu, C. A Meta-Analysis to Detect Efficacy of Physical Activity Interventions to Enhance Effects Related to the Fragility among Older Adults. Comput. Math Methods Med. 2022, 12, 3424972. [Google Scholar] [CrossRef]
- Toffanello, E.D.; Inelmen, E.M.; Imoscopi, A.; Perissinotto, E.; Coin, A.; Miotto, F.; Donini, L.M.; Cucinotta, D.; Barbagallo, M.; Manzato, E.; et al. Taste loss in hospitalized multimorbid elderly subjects. Clin. Interv. Aging 2013, 8, 167–174. [Google Scholar] [CrossRef]
- Little, M.O. Updates in nutrition and polypharmacy. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 4–9. [Google Scholar] [CrossRef]
- Kamphuis, C.B.; de Bekker-Grob, E.W.; van Lenthe, F.J. Factors affecting food choices of older adults from high and low socioeconomic groups: A discrete choice experiment. Am. J. Clin. Nutr. 2015, 101, 768–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajda, R.; Raczkowska, E.; Wyka, J.; Suliga, E.; Sobaś, K. Differentiation of the Nutritional Risk of Polish Elderly People According to Selected Demographic Characteristics and Declared Socioeconomic Status. Nutrients 2022, 14, 1582. [Google Scholar] [CrossRef] [PubMed]
- Krzymińska-Siemaszko, R.; Deskur-Śmielecka, E.; Kaluźniak-Szymanowska, A.; Kaczmarek, B.; Kujawska-Danecka, H.; Klich-Rączka, A.; Mossakowska, M.; Małgorzewicz, S.; Dworak, L.B.; Kostka, T.; et al. Socioeconomic Risk Factors of Poor Nutritional Status in Polish Elderly Population: The Results of PolSenior2 Study. Nutrients 2021, 13, 4388. [Google Scholar] [CrossRef] [PubMed]
- Shatenstein, B.; Gauvin, L.; Keller, H.; Richard, L.; Gaudreau, P.; Giroux, F.; Gray-Donald, K.; Jabbour, M.; Morais, J.A.; Payette, H. Baseline determinants of global diet quality in older men and women from the NuAge cohort. J. Nutr. Health Aging 2013, 17, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Sable, C.M.; Brooks-Wilson, A.; Murphy, R.A. Dietary patterns in the healthy oldest old in the healthy aging study and the Canadian longitudinal study of aging: A cohort study. BMC Geriatr. 2020, 20, 106. [Google Scholar] [CrossRef]
- Alia, S.; Aquilanti, L.; Pugnaloni, S.; Di Paolo, A.; Rappelli, G.; Vignini, A. The Influence of Age and Oral Health on Taste Perception in Older Adults: A Case-Control Study. Nutrients 2021, 13, 4166. [Google Scholar] [CrossRef]
- Zhao, D.; Jia Ning, J.; Zhao, Y.; Lu, E. Associations of dietary and drinking water habits with number of natural teeth: A longitudinal study in the Chinese elderly population. BMC Geriatr. 2021, 21, 525. [Google Scholar] [CrossRef]
- National Center for Nutrition Education Recommendations for Healthy Eating. 2020. Available online: https://ncez.pl/abczywienia-/zasady-zdrowego-zywienia/talerz-zdrowego-zywienia (accessed on 1 July 2022).
- Bamia, C.; Trichopoulos, D.; Ferrari, P.; Overvad, K.; Bjerregaard, L.; Tjønneland, A.; Halkjaer, J.; Clavel-Chapelon, F.; Kesse, E.; Boutron-Ruault, M.C.; et al. Dietary patterns and survival of older Europeans: The EPIC-Elderly Study (European Prospective Investigation into Cancer and Nutrition). Public Health Nutr. 2007, 10, 590–598. [Google Scholar] [CrossRef]
- Chen, X.; Maguire, B.; Brodaty, H.; O’Leary, F. Dietary Patterns and Cognitive Health in Older Adults: A Systematic Review. J. Alzheimers Dis. 2019, 67, 583–619. [Google Scholar] [CrossRef]
- Zielińska, M.A.; Białecka, A.; Pietruszka, B.; Hamułka, J. Vegetables and fruit, as a source of bioactive substances, and impact on memory and cognitive function of elderly. Postepy Hig. I Med. Dosw. 2017, 71, 267–280. [Google Scholar] [CrossRef]
- Söderhamn, U.; Dale, B.; Sundsli, K.; Söderhamn, O. Nutritional screening of older home-dwelling Norwegians: A comparison between two instruments. Clin. Interv. Aging 2012, 7, 383–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Components | Scoring (Points) |
---|---|
Food frequency consumption: | |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
Physical activity: | |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
Components | Scoring (Points) | |
---|---|---|
0 | 1 | |
| No | Yes |
| No | Yes |
| No | Yes |
| No | Yes |
| No | Yes |
| No | Yes |
| No | Yes |
| No | Yes |
| No | Yes |
Components | Scoring (Points) |
---|---|
Place of residence: | |
| 0 |
| 1 |
| 2 |
Self-reported economic situation of household: | |
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |
Variables | Total Sample | Dietary–Physical Activity Patterns (Tertiles) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
‘Pro-Healthy Eating and More-Active’ | ‘Sweets, Fried Foods, Sweetened Beverages’ | ‘Juices, Fish, Sweetened Beverages’ | |||||||||||
Bottom | Middle | Upper | p-Value | Bottom | Middle | Upper | p-Value | Bottom | Middle | Upper | p-Value | ||
Sample size (n) | 361 | 121 | 120 | 120 | 121 | 120 | 120 | 120 | 120 | 121 | |||
Factor scores of dietary patterns | −2.99 to <−0.36 | −0.36 to <0.54 | 0.54 to 1.92 | −2.85 to <−0.40 | −0.40 to <0.44 | 0.44 to 2.98 | −2.19 to <−0.53 | −0.53 to <0.35 | 0.35 to 3.03 | ||||
Age, years | 69.5 ± 5.5 | 69.5 ± 5.4 | 70.0 ± 5.6 | 68.9 ± 5.7 | 0.299 | 70.3 ± 5.5 a | 68.8 ± 5.5 b | 69.3 ± 5.6 ab | 0.044 | 69.1 ± 5.6 | 70.1 ± 5.8 | 69.3 ± 5.3 | 0.400 |
60–69 | 229 (63) | 74 (61) | 72 (60) | 83 (69) | 65 (54) a | 84 (70) b | 80 (67) b | 75 (62) | 74 (62) | 80 (66) | |||
70–89 | 132 (37) | 47 (39) | 48 (40) | 37 (31) | 0.275 | 56 (46) a | 36 (30) b | 40 (33) b | 0.021 | 45 (38) | 46 (38) | 41 (34) | 0.748 |
Gender | |||||||||||||
Male | 48 (13) | 21 (17) a | 17 (14) ab | 10 (8) b | 0.112 | 16 (13) | 16 (13) | 16 (13) | 1.000 | 10 (8) a | 21 (18) b | 17 (14) ab | 0.107 |
Female | 313 (87) | 100 (83) a | 103 (86) ab | 110 (92) b | 105 (87) | 104 (87) | 104 (87) | 110 (92) a | 99 (82) b | 104 (86) ab | |||
BMI (kg/m2) $ | 29.7 ± 4.9 | 29.6 ± 5.0 | 30.2 ± 4.9 | 29.2 ± 4.6 | 0.321 | 30.0 ± 4.6 | 29.5 ± 5.3 | 29.5 ± 4.7 | 0.536 | 29.3 ± 4.7 | 29.5 ± 5.3 | 30.2 ± 4.5 | 0.159 |
Normal weight, 18.5–24.9 | 50 (15) | 20 (17) | 10 (9) | 20 (18) | 11 (10) | 19 (17) | 20 (17) | 16 (15) | 21 (18) | 13 (11) | |||
Overweight, 25.0–29.9 | 145 (42) | 47 (41) | 52 (45) | 46 (41) | 0.307 | 49 (44) | 50 (44) | 46 (39) | 0.432 | 48 (45) | 49 (43) | 48 (40) | 0.345 |
Obesity, ≥30.0 | 148 (43) | 48 (42) | 53 (46) | 47 (41) | 52 (46) | 44 (39) | 52 (44) | 43 (40) | 45 (39) | 60 (50) | |||
Place of residence | |||||||||||||
Village | 41 (11) | 21 (17) a | 12 (10) ab | 8 (7) b | 13 (11) | 19 (16) | 9 (8) | 11 (9) | 15 (13) | 15 (12) | |||
Town * | 27 (7) | 9 (7) | 11 (9) | 7 (6) | 0.079 | 5 (4) | 11 (9) | 11 (9) | 0.120 | 9 (8) | 5 (4) a | 13 (11) b | 0.324 |
City ** | 293 (81) | 91 (75)a | 97 (81) | 105 (88) b | 103 (85) | 90 (75) | 100 (83) | 100 (83) a | 100 (83) b | 93 (77) ab | |||
Self-declared economic situation of household | |||||||||||||
I live poorly | 23 (6) | 14 (12) a | 4 (3) b | 5 (4) b | 7 (6) | 7 (6) | 9 (8) | 7 (6) | 7 (6) | 9 (7) | |||
I live very thriftily | 66 (18) | 31 (26) a | 16 (13) b | 19 (16) b | 22 (18) | 22 (18) | 22 (18) | 19 (16) | 27 (23) | 20 (17) | |||
I live thriftily | 149 (41) | 50 (41) | 49 (41) | 50 (42) | 0.002 | 44 (36) | 59 (49) | 46 (38) | 0.607 | 53 (44) | 47 (39) | 49 (40) | 0.907 |
I live well | 70 (19) | 18 (15) | 25 (21) | 27 (23) | 28 (23) | 18 (15) | 24 (20) | 24 (20) | 20 (17) | 26 (21) | |||
I live very well | 53 (15) | 8 (7) a | 26 (22) b | 19 (16) b | 20 (17) | 14 (12) | 19 (16) | 17 (14) | 19 (16) | 17 (14) | |||
Socioeconomic Status Index (SESI), points | 2.1 ± 1.3 | 2.6 ± 1.4 a | 1.9 ± 1.2 b | 1.9 ± 1.2 b | <0.001 | 2.0 ± 1.3 | 2.3 ± 1.2 | 2.1 ± 1.3 | 0.060 | 2.0 ± 1.3 | 2.2 ± 1.4 | 2.2 ± 1.2 | 0.530 |
Higher, 0–1 | 100 (28) | 21 (17) a | 39 (33) b | 40 (33) b | 42 (35) a | 22 (18) b | 36 (30) a | 38 (32) | 34 (28) | 28 (23) | |||
Average, 2 | 147 (41) | 41 (34) | 54 (45) | 52 (43) | <0.001 | 45 (37) | 56 (47) | 46 (38) | 0.070 | 49 (41) | 44 (37) | 54 (45) | 0.457 |
Lower, 3–6 | 114 (32) | 59 (49) a | 27 (23) b | 28 (23) b | 34 (28) | 42 (35) | 38 (32) | 33 (28) | 42 (35) | 39 (32) |
Variables | Total Sample | Dietary–Physical Activity Patterns (Tertiles) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
‘Pro-Healthy Eating and More-Active’ | ‘Sweets, Fried Foods, Sweetened Beverages’ | ‘Juices, Fish, Sweetened Beverages’ | |||||||||||
Bottom | Middle | Upper | p-Value | Bottom | Middle | Upper | p-Value | Bottom | Middle | Upper | p-Value | ||
Sample size (n) | 361/325 # | 121/107 # | 120/110 # | 120/108 # | 121/105 # | 120/106 # | 120/114 # | 120/103 # | 120/106 # | 121/116 # | |||
Factor scores of dietary patterns | −2.99 to <−0.36 | −0.36 to <0.54 | 0.54 to 1.92 | −2.85 to <−0.40 | −0.40 to <0.44 | 0.44 to 2.98 | −2.19 to <−0.53 | −0.53 to <0.35 | 0.35 to 3.03 | ||||
Malnutrition Indicator Score, points | 25.1 ± 2.9 | 24.2 ± 2.9 a | 25.2 ± 2.4 b | 25.8 ± 3.0 c | <0.001 | 24.8 ± 3.2 | 25.0 ± 2.8 | 25.4 ± 2.5 | 0.443 | 25.6 ± 2.4 a | 24.5 ± 2.9 b | 25.2 ± 3.1 a | 0.014 |
Nutritional status1 | |||||||||||||
Malnourished, <17.0 | 3 (1) | 1 (1) | 0 (0) | 2 (2) | 1 (1) | 1 (1) | 1 (1) | 0 (0) | 0 (0) | 3 (3) | |||
At risk of malnutrition, 17.0–23.5 | 99 (30) | 46 (43) a | 33 (30) ab | 20 (18) b | 0.002 | 41 (39) | 26 (24) | 32 (28) | 0.218 | 23 (22) a | 44 (42) b | 32 (27) a | 0.005 |
Normal nutritional status, 24.0–30.0 | 223 (69) | 60 (56) a | 77 (70) ab | 86 (80) b | 63 (60) | 79 (75) | 81 (71) | 80 (78) a | 62 (58) b | 81 (70) a | |||
Weight change 2 | |||||||||||||
No change | 208 (58) | 70 (58) | 67 (56) | 71 (59) | 65 (54) a | 72 (60) b | 71 (59) b | 74 (62) | 70 (58) | 64 (53) | |||
Decreased by more than 3 kg | 24 (7) | 8 (7) | 7 (6) | 9 (8) | 15 (12) a | 6 (5) b | 3 (3) b | 6 (5) | 11 (9) | 7 (6) | |||
Decreased 1–3 kg | 42 (12) | 17 (14) | 12 (10) | 13 (11) | 0.849 | 18 (15) a | 10 (8) b | 14 (12) b | 0.027 | 11 (9) | 15 (13) | 16 (13) | 0.577 |
Increased | 55 (15) | 15 (12) | 24 (20) | 16 (13) | 11 (9) a | 23 (19) b | 21 (18) b | 20 (17) | 16 (13) | 19 (16) | |||
Does not know | 32 (9) | 11 (9) | 10 (8) | 11 (9) | 12 (10) a | 9 (8) b | 11 (9) b | 9 (8) | 8 (7) | 15 (12) | |||
Self-assessed appetite | |||||||||||||
Very weak | 7 (2) | 4 (3) | 2 (2) | 1 (1) | 2 (2) | 0 (0) | 5 (4) | 2 (2) | 1 (1) | 4 (3) | |||
Weak | 3 (1) | 1 (1) | 1 (1) | 1 (1) | 2 (2) | 1 (1) | 0 (0) | 1 (1) | 1 (1) | 1 (1) | |||
Average | 94 (26) | 42 (35) a | 32 (27) ab | 20 (17) b | 0.030 | 25 (21) a | 39 (33) b | 30 (25) ab | 0.009 | 22 (18) a | 39 (33) b | 33 (27) | 0.267 |
Good | 194 (54) | 61 (50) a | 65 (53) ab | 68 (56) b | 60 (50) a | 67 (56) b | 67 (56) ab | 68 (57) | 63 (53) | 63 (52) | |||
Very good | 63 (17) | 13 (11) a | 20 (17) ab | 30 (25) b | 32 (26) a | 13 (11) b | 18 (15) ab | 27 (23) a | 16 (13) b | 20 (17) | |||
Feeling the taste of food | |||||||||||||
Very weak | 5 (1) | 5 (4) | 0 (0) | 0 (0) | 0 (0) | 3 (3) | 2 (2) | 1 (1) | 3 (3) | 1 (1) | |||
Weak | 3 (1) | 1 (1) | 0 (0) | 2 (2) | 1 (1) | 2 (2) | 0 (0) | 1 (1) | 0 (0) | 2 (2) | |||
Average | 36 (10) | 14 (12) a | 14 (12) ab | 8 (6) b | 0.011 | 15 (12) | 13 (11) | 8 (7) | 0.007 | 10 (8) | 17 (14) | 9 (7) | 0.391 |
Good | 212 (59) | 75 (62) a | 72 (60) ab | 65 (54) b | 59 (49) a | 82 (68) b | 71 (59) a | 68 (57) | 68 (57) | 76 (63) | |||
Very good | 105 (29) | 26 (21) a | 34 (28) ab | 45 (38) b | 46 (38) a | 20 (17) b | 39 (33) a | 40 (33) | 32 (27) | 33 (27) | |||
Decrease in food intake3 | |||||||||||||
Severe decrease in food intake | 13 (4) | 6 (5) | 3 (3) | 4 (3) | 4 (3) | 4 (3) | 5 (4) | 2 (2) ab | 7 (6) a | 4 (3) b | |||
Moderate decrease in food intake | 69 (19) | 31 (26) a | 22 (18) ab | 16 (13) b | 0.114 | 32 (26) a | 22 (18) ab | 15 (13) b | 0.103 | 23 (19) ab | 31 (26) a | 15 (12) b | 0.030 |
No decrease in food intake | 279 (77) | 84 (69) a | 95 (79) ab | 100 (83) b | 85 (70) a | 94 (78) ab | 100 (83) b | 95 (79) ab | 82 (68) a | 102 (84) b | |||
Functional Limitations Score (FLS), points | 2.3 ± 1.5 | 2.5 ± 1.6 | 2.2 ± 1.5 | 2.0 ± 1.5 | 0.054 | 2.5 ± 1.6 | 2.2 ± 1.5 | 2.1 ± 1.5 | 0.056 | 2.1 ± 1.3 | 2.6 ± 1.6 | 2.2 ± 1.6 | 0.051 |
Bottom, 0 | 49 (14) | 16 (13) a | 14 (12) b | 19 (16) b | 13 (11) | 17 (14) | 19 (16) | 16 (13) | 14 (12) | 19 (16) | |||
Middle, 1–2 | 163 (45) | 42 (35) a | 61 (51) b | 60 (50) b | 0.033 | 46 (38) | 59 (49) | 58 (48) | 0.105 | 60 (50) | 47 (39) | 56 (46) | 0.279 |
Upper, 3–9 | 149 (41) | 63 (52) a | 45 (38) b | 41 (34) b | 62 (51) | 44 (37) | 43 (36) | 44 (37) | 59 (49) | 46 (38) | |||
FLS components | |||||||||||||
Lives dependently 4 | 14 (4) | 7 (6) | 3 (3) | 4 (3) | 0.389 | 6 (5) | 4 (3) | 4 (3) | 0.752 | 5 (4) | 5 (4) | 4 (3) | 0.923 |
Limited mobility 5 | 2 (1) | 1 (1) | 1 (1) | 0 (0) | 0.606 | 0 (0) | 1 (1) | 1 (1) | 0.602 | 0 (0) | 1 (1) | 1 (1) | 0.606 |
Medically certified disease | 223 (62) | 73 (60) | 70 (58) | 80 (67) | 0.382 | 89 (74) a | 73 (61) b | 61 (51) b | 0.001 | 76 (63) | 76 (63) | 71 (59) | 0.691 |
Psychological stress or acute disease 1 | 122 (34) | 46 (38) | 38 (32) | 38 (32) | 0.484 | 43 (36) | 41 (34) | 38 (32) | 0.813 | 31 (26) a | 50 (42) b | 41 (34) ab | 0.035 |
Neuropsychological problems | 57 (16) | 23 (19) a | 23 (19) a | 11 (9) b | 0.049 | 19 (16) | 20 (17) | 18 (15) | 0.939 | 17 (14) | 24 (20) | 16 (13) | 0.296 |
Taking more than 3 prescription drugs/day | 160 (44) | 59 (49) | 56 (47) | 45 (38) | 0.174 | 67 (55) a | 47 (39) b | 46 (38) b | 0.011 | 52 (43) | 58 (48) | 50 (41) | 0.530 |
Pressure sores or skin ulcers | 5 (1) | 1 (1) | 3 (3) | 1 (1) | 0.441 | 2 (2) | 1 (1) | 2 (2) | 0.818 | 0 (0) a | 5 (4) b | 0 (0) a | 0.006 |
Self-reported health status 6: | |||||||||||||
Weaker | 57 (16) | 22 (18) | 19 (16) | 16 (13) | 22 (18) | 21 (18) | 14 (12) | 12 (10) | 27 (23) | 18 (15) | |||
Does not know | 97 (27) | 39 (32) | 31 (26) | 27 (23) | 0.311 | 32 (26) | 29 (24) | 36 (30) | 0.139 | 31 (26) | 32 (27) | 34 (28) | 0.097 |
As good | 148 (41) | 45 (37) | 52 (43) | 51 (43) | 41 (34) | 57 (48) | 50 (42) | 50 (42) | 46 (38) | 52 (43) | |||
Better | 59 (16) | 15 (12) | 18 (15) | 26 (22) | 26 (21) | 13 (11) | 20 (17) | 27 (23) | 15 (13) | 17 (14) | |||
Self-reported nutritional status | |||||||||||||
Malnourished/does not know | 81 (22) | 34 (28) | 23 (19) | 24 (20) | 0.185 | 24 (20) | 29 (24) | 28 (23) | 0.693 | 24 (20) | 28 (23) | 29 (24) | 0.731 |
No nutritional problems | 280 (78) | 87 (72) | 97 (81) | 96 (80) | 97 (80) | 91 (76) | 92 (77) | 96 (80) | 92 (77) | 92 (76) |
Health Context | ‘Pro-Healthy Eating and More-Active’ | ‘Sweets, Fried Foods, Sweetened Beverages’ | ‘Juices, Fish, Sweetened Beverages’ | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bottom (n = 121) | Middle (n = 120) | Upper (n = 120) | Bottom (n = 121) | Middle (n = 120) | Upper (n = 120) | Bottom (n = 120) | Middle (n = 120) | Upper (n = 121) | ||
Factor scores of dietary patterns | −2.99 to <−0.36 | −0.36 to <0.54 | 0.54 to 1.92 | −2.85 to <−0.40 | −0.40 to <0.44 | 0.44 to 2.98 | −2.19 to < −0.53 | −0.53 to <0.35 | 0.35 to 3.03 | |
Nutritional status 1 | Malnourished/at risk of malnutrition (ref. normal) | 1 | 0.54 * (0.30; 0.98) | 0.37 ** (0.19; 0.71) | 1 | 0.43 ** (0.23; 0.81) | 0.63 (0.36; 1.13) | 1 | 2.34 ** (1.24; 4.41) | 1.47 (0.79; 2.73) |
Self-assessed appetite | Good/very good (ref. weak/average) | 1 | 1.55 (0.86; 2.79) | 2.56 ** (1.35; 4.87) | 1 | 0.62 (0.34; 1.14) | 0.77 (0.42; 1.39) | 1 | 0.55 (0.29; 1.01) | 0.60 (0.32; 1.11) |
Feeling the taste of food | Good/very good (ref. weak/average) | 1 | 1.47 (0.65; 3.34) | 1.87 (0.75; 4.66) | 1 | 0.84 (0.37; 1.87) | 1.59 (0.67; 3.78) | 1 | 0.52 (0.22; 1.19) | 0.91 (0.37; 2.27) |
Decrease in food intake 2 | Yes (ref. no) | 1 | 0.61 (0.32; 1.14) | 0.46 * (0.24; 0.91) | 1 | 0.60 (0.32; 1.10) | 0.43 ** (0.23; 0.82) | 1 | 1.56 (0.84; 2.89) | 0.58 (0.29; 1.16) |
Weight change 3 | Decreased (ref. no change/does not know) | 1 | 0.74 (0.36; 1.54) | 0.77 (0.38; 1.57) | 1 | 0.47 * (0.24; 0.95) | 0.49 * (0.25; 0.96) | 1 | 1.58 (0.77; 3.24) | 1.33 (0.64; 2.76) |
Increased (ref. no change/does not know) | 1 | 1.94 (0.86; 4.39) | 1.11 (0.45; 2.74) | 1 | 2.39 * (1.01; 5.67) | 2.19 (0.93; 5.20) | 1 | 1.09 (0.50; 2.38) | 1.02 (0.48; 2.16) | |
Functional Limitations Score (tertiles) | Middle (ref. bottom) | 1 | 0.96 (0.40; 2.33) | 0.94 (0.41; 2.14) | 1 | 0.69 (0.30; 1.59) | 0.91 (0.40; 2.08) | 1 | 1.03 (0.45; 2.35) | 0.76 (0.35; 1.63) |
Upper (ref. bottom) | 1 | 0.86 (0.32; 2.34) | 0.56 (0.21; 1.52) | 1 | 0.49 (0.18; 1.32) | 0.34 * (0.12; 0.98) | 1 | 2.42 (0.84; 7.00) | 1.32 (0.47; 3.71) | |
Self-reported health status 4 | As good/better (ref. weaker/does not know) | 1 | 1.32 (0.75; 2.32) | 1.86 * (1.05; 3.30) | 1 | 1.28 (0.73; 2.52) | 0.97 (0.57; 1.66) | 1 | 0.53 * (0.30; 0.93) | 0.68 (0.40; 1.18) |
Medically certified disease | Yes (ref. no) | 1 | 0.75 (0.43; 1.34) | 1.34 (0.75; 2.40) | 1 | 0.56 (0.32; 1.01) | 0.39 *** (0.22; 0.68) | 1 | 0.93 (0.53; 1.64) | 0.82 (0.47; 1.43) |
Psychological stress or acute disease 3 | Yes (ref. no) | 1 | 0.56 (0.31; 1.02) | 0.60 (0.33; 1.07) | 1 | 0.93 (0.53; 1.62) | 0.85 (0.48; 1.49) | 1 | 1.96 * (1.10; 3.50) | 1.38 (0.77; 2.47) |
Neuropsychological problems | Yes (ref. no) | 1 | 1.09 (0.53; 2.23) | 0.58 (0.25; 1.35) | 1 | 0.92 (0.44; 1.93) | 1.03 (0.50; 2.16) | 1 | 1.40 (0.67; 2.93) | 0.90 (0.41; 1.95) |
Taking more than 3 prescription drugs/day | Yes (ref. no) | 1 | 0.82 (0.46; 1.46) | 0.74 (0.41; 1.33) | 1 | 0.50 * (0.29; 0.89) | 0.54 * (0.31; 0.92) | 1 | 1.08 (0.61; 1.91) | 0.85 (0.49; 1.49) |
No. of medically certified diseases | 1 (ref. 0) | 1 | 0.55 (0.28; 1.10) | 1.02 (0.52; 2.01) | 1 | 0.58 (0.29; 1.15) | 0.51 * (0.27; 0.97) | 1 | 0.70 (0.37; 1.34) | 0.56 (0.29; 1.06) |
2–5 (ref. 0) | 1 | 0.99 (0.48; 2.04) | 1.71 (0.84; 3.48) | 1 | 0.72 (0.37; 1.39) | 0.32 ** (0.16; 0.64) | 1 | 1.29 (0.64; 2.61) | 1.14 (0.57; 2.25) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeruszka-Bielak, M.; Hamulka, J.; Czarniecka-Skubina, E.; Hoffmann, M.; Kostyra, E.; Stasiewicz, B.; Jeszka, J.; Wadolowska, L. Dietary–Physical Activity Patterns in the Health Context of Older Polish Adults: The ‘ABC of Healthy Eating’ Project. Nutrients 2022, 14, 3757. https://doi.org/10.3390/nu14183757
Jeruszka-Bielak M, Hamulka J, Czarniecka-Skubina E, Hoffmann M, Kostyra E, Stasiewicz B, Jeszka J, Wadolowska L. Dietary–Physical Activity Patterns in the Health Context of Older Polish Adults: The ‘ABC of Healthy Eating’ Project. Nutrients. 2022; 14(18):3757. https://doi.org/10.3390/nu14183757
Chicago/Turabian StyleJeruszka-Bielak, Marta, Jadwiga Hamulka, Ewa Czarniecka-Skubina, Monika Hoffmann, Eliza Kostyra, Beata Stasiewicz, Jan Jeszka, and Lidia Wadolowska. 2022. "Dietary–Physical Activity Patterns in the Health Context of Older Polish Adults: The ‘ABC of Healthy Eating’ Project" Nutrients 14, no. 18: 3757. https://doi.org/10.3390/nu14183757
APA StyleJeruszka-Bielak, M., Hamulka, J., Czarniecka-Skubina, E., Hoffmann, M., Kostyra, E., Stasiewicz, B., Jeszka, J., & Wadolowska, L. (2022). Dietary–Physical Activity Patterns in the Health Context of Older Polish Adults: The ‘ABC of Healthy Eating’ Project. Nutrients, 14(18), 3757. https://doi.org/10.3390/nu14183757