Association of Fish and Omega-3 Fatty Acid Intake with Carotid Intima-Media Thickness in Middle-Aged to Elderly Japanese Men and Women: The Toon Health Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurement of Carotid Atherosclerosis
2.3. Dietary Assessment
2.4. Assessment of Confounding Factors
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, B.; Xiong, K.; Cai, J.; Ma, A. Fish Consumption and Coronary Heart Disease: A Meta-Analysis. Nutrients 2020, 12, 2278. [Google Scholar] [CrossRef] [PubMed]
- Frostegård, J. Immunity, Atherosclerosis and Cardiovascular Disease. BMC Med. 2013, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- Glass, C.K.; Witztum, J.L. Atherosclerosis. Cell 2001, 104, 503–516. [Google Scholar] [CrossRef]
- Ross, R. Atherosclerosis—An Inflammatory Disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Blake, G.J.; Ridker, P.M. Novel Clinical Markers of Vascular Wall Inflammation. Circ. Res. 2001, 89, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.K. Inflammation, Atherosclerosis, and Coronary Artery Disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef]
- Hallenbeck, J.; Hansson, G.; Becker, K. Immunology of Ischemic Vascular Disease: Plaque to Attack. Trends Immunol. 2005, 26, 550–556. [Google Scholar] [CrossRef]
- Calder, P.C. Marine Omega-3 Fatty Acids and Inflammatory Processes: Effects, Mechanisms and Clinical Relevance. Biochim. Biophys. Acta 2015, 1851, 469–484. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 Fatty Acids and Cardiovascular Disease. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef]
- Tran, L.T.T.; Park, H.; Kim, H. Is the Carotid Intima-Media Thickness Really a Good Surrogate Marker of Atherosclerosis? J. Atheroscler. Thromb. 2012, 19, 680–690. [Google Scholar] [CrossRef] [Green Version]
- Kokubo, Y.; Watanabe, M.; Higashiyama, A.; Nakao, Y.M.; Nakamura, F.; Miyamoto, Y. Impact of Intima–Media Thickness Progression in the Common Carotid Arteries on the Risk of Incident Cardiovascular Disease in the Suita Study. J. Am. Heart Assoc. 2018, 7, e007720. [Google Scholar] [CrossRef]
- Buscemi, S.; Nicolucci, A.; Lucisano, G.; Galvano, F.; Grosso, G.; Belmonte, S.; Sprini, D.; Migliaccio, S.; Cianferotti, L.; Brandi, M.L.; et al. Habitual Fish Intake and Clinically Silent Carotid Atherosclerosis. Nutr. J. 2014, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- Colussi, G.; Catena, C.; Dialti, V.; Mos, L.; Sechi, L.A. Effects of the Consumption of Fish Meals on the Carotid Intima Media Thickness in Patients with Hypertension: A Prospective Study. J. Atheroscler. Thromb. 2014, 21, 941–956. [Google Scholar] [CrossRef] [PubMed]
- Masley, S.C.; Roetzheim, R.; Masley, L.V.; McNamara, T.; Schocken, D.D. Emerging Risk Factors as Markers for Carotid Intima Media Thickness Scores. J. Am. Coll. Nutr. 2015, 34, 100–107. [Google Scholar] [CrossRef]
- He, K.; Liu, K.; Daviglus, M.L.; Mayer-Davis, E.; Jenny, N.S.; Jiang, R.; Ouyang, P.; Steffen, L.M.; Siscovick, D.; Wu, C.; et al. Intakes of Long-Chain N–3 Polyunsaturated Fatty Acids and Fish in Relation to Measurements of Subclinical Atherosclerosis. Am. J. Clin. Nutr. 2008, 88, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/FBS (accessed on 20 June 2022).
- Iso, H.; Kobayashi, M.; Ishihara, J.; Sasaki, S.; Okada, K.; Kita, Y.; Kokubo, Y.; Tsugane, S. Intake of Fish and N3 Fatty Acids and Risk of Coronary Heart Disease among Japanese. Circulation 2006, 113, 195–202. [Google Scholar] [CrossRef]
- Kubota, I.; Ito, H.; Yokoyama, K.; Yasumura, S.; Tomoike, H. Early Mortality after Acute Myocardial Infarction. Jpn. Circ. J. 1998, 62, 414–418. [Google Scholar] [CrossRef]
- Yokoyama, M.; Saito, I.; Ueno, M.; Kato, H.; Yoshida, A.; Kawamura, R.; Maruyama, K.; Takata, Y.; Osawa, H.; Tanigawa, T.; et al. Low Birthweight Is Associated with Type 2 Diabetes mellitus in Japanese Adults: The Toon Health Study. J. Diabetes Investig. 2020, 11, 1643–1650. [Google Scholar] [CrossRef]
- Ikeda, A.; Steptoe, A.; Brunner, E.J.; Maruyama, K.; Tomooka, K.; Kato, T.; Miyoshi, N.; Nishioka, S.; Saito, I.; Tanigawa, T. Salivary Alpha-Amylase Activity in Relation to Cardiometabolic Status in Japanese Adults without History of Cardiovascular Disease. J. Atheroscler. Thromb. 2021, 28, 852–864. [Google Scholar] [CrossRef]
- Coffey, S.; Lewandowski, A.J.; Garratt, S.; Meijer, R.; Lynum, S.; Bedi, R.; Paterson, J.; Yaqub, M.; Noble, J.A.; Neubauer, S.; et al. Protocol and Quality Assurance for Carotid Imaging in 100,000 Participants of UK Biobank: Development and Assessment. Eur. J. Prev. Cardiol. 2017, 24, 1799–1806. [Google Scholar] [CrossRef]
- Japan Society of Ultrasonics in Medicine Medical Terms and Diagnostic Criteria Committee. Chōonpa Ni Yoru Keidōmyaku Byōhen No Hyōjun-Teki Hyōka-Hō 2017 [Standard Evaluation Method for Carotid Artery Lesions by Ultrasound 2017]. 2018. Available online: https://www.jsum.or.jp/committee/diagnostic/pdf/jsum0515_guideline.pdf (accessed on 20 June 2022).
- Takahashi, K.; Yoshimura, Y.; Kaimoto, T.; Kunii, D.; Komatsu, T.; Yamamoto, S. Validation of a Food Frequency Questionnaire Based on Food Groups for Estimating Individual Nutrient Intake. Jpn. J. Nutr. 2001, 59, 221–232. [Google Scholar] [CrossRef]
- Report of the Subcommittee on Survey of Resources “Standard Tables of Food Composition in Japan 2010”: Ministry of Education, Culture, Sports, Science and Technology. Available online: https://www.mext.go.jp/b_menu/shingi/gijyutu/gijyutu3/houkoku/1298713.htm (accessed on 20 June 2022).
- Ishikawa-Takata, K.; Naito, Y.; Tanaka, S.; Ebine, N.; Tabata, I. Use of Doubly Labeled Water to Validate a Physical Activity Questionnaire Developed for the Japanese Population. J. Epidemiol. 2011, 21, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhang, B.; Wang, P.; Chen, C.; Chen, Y.; Su, Y. Erythrocyte Membrane N-3 Fatty Acid Levels and Carotid Atherosclerosis in Chinese Men and Women. Atherosclerosis 2014, 232, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Sekikawa, A.; Curb, J.D.; Ueshima, H.; El-Saed, A.; Kadowaki, T.; Abbott, R.D.; Evans, R.W.; Rodriguez, B.L.; Okamura, T.; Sutton-Tyrrell, K.; et al. Marine-Derived N-3 Fatty Acids and Atherosclerosis in Japanese, Japanese-American, and White Men. J. Am. Coll. Cardiol. 2008, 52, 417–424. [Google Scholar] [CrossRef]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur. Heart J. 2016, 37, 2999–3058. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Maki, K.C.; Bays, H.E.; Aguilera, F.; Gould, G.; Hegele, R.A.; Moriarty, P.M.; Robinson, J.G.; Shi, P.; Tur, J.F.; et al. Effectiveness of a Novel ω-3 Krill Oil Agent in Patients with Severe Hypertriglyceridemia. JAMA Netw. Open 2022, 5, e2141898. [Google Scholar] [CrossRef]
- Barkas, F.; Nomikos, T.; Liberopoulos, E.; Panagiotakos, D. Diet and Cardiovascular Disease Risk among Individuals with Familial Hypercholesterolemia: Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2436. [Google Scholar] [CrossRef]
- Chan, D.C.; Watts, G.F.; Mori, T.A.; Barrett, P.H.R.; Redgrave, T.G.; Beilin, L.J. Randomized Controlled Trial of the Effect of N–3 Fatty Acid Supplementation on the Metabolism of Apolipoprotein B-100 and Chylomicron Remnants in Men with Visceral Obesity. Am. J. Clin. Nutr. 2003, 77, 300–307. [Google Scholar] [CrossRef]
- Shearer, G.C.; Savinova, O.V.; Harris, W.S. Fish Oil—How Does It Reduce Plasma Triglycerides? Biochim. Biophys. Acta 2012, 1821, 843–851. [Google Scholar] [CrossRef]
- Park, Y.; Harris, W.S. Omega-3 Fatty Acid Supplementation Accelerates Chylomicron Triglyceride Clearance. J. Lipid Res. 2003, 44, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Jones, P.G.; Harris, W.S. Triacylglycerol-Rich Lipoprotein Margination: A Potential Surrogate for Whole-Body Lipoprotein Lipase Activity and Effects of Eicosapentaenoic and Docosahexaenoic Acids. Am. J. Clin. Nutr. 2004, 80, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Caughey, G.E.; Mantzioris, E.; Gibson, R.A.; Cleland, L.G.; James, M.J. The Effect on Human Tumor Necrosis Factor Alpha and Interleukin 1 Beta Production of Diets Enriched in N-3 Fatty Acids from Vegetable Oil or Fish Oil. Am. J. Clin. Nutr. 1996, 63, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving Inflammation: Dual Anti-Inflammatory and Pro-Resolution Lipid Mediators. Nat. Rev. Immunol. 2008, 8, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Novak, T.E.; Babcock, T.A.; Jho, D.H.; Helton, W.S.; Espat, N.J. NF-ΚB Inhibition by ω-3 Fatty Acids Modulates LPS-Stimulated Macrophage TNF-α Transcription. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 284, L84–L89. [Google Scholar] [CrossRef]
- Khalfoun, B.; Thibault, F.; Watier, H.; Bardos, P.; Lebranchu, Y. Docosahexaenoic and Eicosapentaenoic Acids Inhibit In-Vitro Human Endothelial Cell Production of Interleukin-6. Adv. Exp. Med. Biol. 1997, 400B, 589–597. [Google Scholar]
- Baumann, K.H.; Hessel, F.; Larass, I.; Muller, T.; Angerer, P.; Kiefl, R.; von Schacky, C. Dietary ω-3, ω-6, and ω-9 Unsaturated Fatty Acids and Growth Factor and Cytokine Gene Expression in Unstimulated and Stimulated Monocytes. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 59–66. [Google Scholar] [CrossRef] [PubMed]
- De Caterina, R.; Cybulsky, M.I.; Clinton, S.K.; Gimbrone, M.A.; Libby, P. The Omega-3 Fatty Acid Docosahexaenoate Reduces Cytokine-Induced Expression of Proatherogenic and Proinflammatory Proteins in Human Endothelial Cells. Arterioscler. Thromb. 1994, 14, 1829–1836. [Google Scholar] [CrossRef]
- De Caterina, R.; Libby, P. Control of Endothelial Leukocyte Adhesion Molecules by Fatty Acids. Lipids 1996, 31, S57–S63. [Google Scholar] [CrossRef]
- Yates, C.M.; Tull, S.P.; Madden, J.; Calder, P.C.; Grimble, R.F.; Nash, G.B.; Rainger, G.E. Docosahexaenoic Acid Inhibits the Adhesion of Flowing Neutrophils to Cytokine Stimulated Human Umbilical Vein Endothelial Cells. J. Nutr. 2011, 141, 1331–1334. [Google Scholar] [CrossRef]
- Calder, P.C. The Role of Marine Omega-3 (N-3) Fatty Acids in Inflammatory Processes, Atherosclerosis and Plaque Stability. Mol. Nutr. Food Res. 2012, 56, 1073–1080. [Google Scholar] [CrossRef]
- Gregersen, I.; Halvorsen, B. Atherosclerosis—Yesterday, Today and Tomorrow; Gianturco, L., Ed.; InTech Open: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Sekikawa, A.; Cui, C.; Sugiyama, D.; Fabio, A.; Harris, W.S.; Zhang, X. Effect of High-Dose Marine Omega-3 Fatty Acids on Atherosclerosis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2019, 11, 2599. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labor, and Welfare. National Health and Nutrition Survey Report 2019; Ministry of Health, Labor, and Welfare: Tokyo, Japan, 2020. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/r1-houkoku_00002.html (accessed on 20 June 2022).
- Kitamura, A.; Sato, S.; Kiyama, M.; Imano, H.; Iso, H.; Okada, T.; Ohira, T.; Tanigawa, T.; Yamagishi, K.; Nakamura, M.; et al. Trends in the Incidence of Coronary Heart Disease and Stroke and Their Risk Factors in Japan, 1964 to 2003. J. Am. Coll. Cardiol. 2008, 52, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fish Intake | Omega-3 Fatty Acid Intake | |||||||
---|---|---|---|---|---|---|---|---|
T1 (Low) | T2 | T3 (High) | p for Trend | T1 (Low) | T2 | T3 (High) | p for Trend | |
N | 601 | 601 | 601 | 601 | 601 | 601 | ||
Age, year | 55.7 | 63.4 | 67.1 | <0.01 | 58.2 | 62.7 | 65.2 | <0.01 |
Men, % | 202 (33.6%) | 202 (33.6%) | 202 (33.6%) | - | 202 (33.6%) | 202 (33.6%) | 202 (33.6%) | - |
BMI, kg/m2 | 23.4 | 23.2 | 23.3 | 0.73 | 23.3 | 23.3 | 23.3 | 0.96 |
Dyslipidemia, % | 51.3 | 51.4 | 49.0 | 0.31 | 54.2 | 48.8 | 48.7 | 0.05 |
Hypertension, % | 39.6 | 39.7 | 41.5 | 0.43 | 40.8 | 39.4 | 40.5 | 0.90 |
Diabetes mellitus, % | 15.0 | 13.5 | 13.0 | 0.34 | 14.5 | 14.7 | 12.4 | 0.28 |
Current smoker, % | 7.5 | 8.8 | 7.0 | 0.57 | 8.7 | 8.2 | 6.4 | 0.09 |
Current drinker, % | 56.1 | 58.2 | 58.2 | 0.43 | 53.8 | 60.5 | 58.2 | 0.12 |
Physical activity, METs h/day | 35.1 | 35.1 | 35.4 | 0.22 | 35.0 | 35.2 | 35.3 | 0.31 |
Energy intake, kcal | 1870.9 | 1895.5 | 1943.6 | <0.01 | 1836.7 | 1908.5 | 1964.9 | <0.01 |
Total fat, %energy | 29.9 | 29.5 | 29.9 | 0.74 | 27.9 | 29.7 | 31.8 | <0.01 |
Total protein, %energy | 12.8 | 14.1 | 16.0 | <0.01 | 13.1 | 14.1 | 15.6 | <0.01 |
Omega-3 fatty acid, g/day | 2.0 | 2.4 | 2.9 | <0.01 | 1.8 | 2.4 | 3.1 | <0.01 |
Omega-3 fatty acid, %energy | 0.93 | 1.12 | 1.36 | <0.01 | 0.86 | 1.12 | 1.43 | <0.01 |
Saturated fatty acid, %energy | 9.45 | 9.08 | 9.08 | <0.01 | 9.16 | 9.15 | 9.31 | 0.14 |
Fish intake, g/1000 kcal | 17.9 | 34.6 | 59.1 | <0.01 | 23.7 | 35.5 | 52.0 | <0.01 |
Vegetable intake, g/1000 kcal | 111.7 | 127.0 | 138.3 | <0.01 | 110.3 | 126.3 | 140.3 | <0.01 |
Adjusted for age and sex. | ||||||||
Men: Fish T1: <26.7; T2: 26.7–43.2; and T3: 43.2+ g/1000 kcal, omega-3 fat T1: <1.00; T2: 1.00–1.22; and T3: 1.22+ %energy. | ||||||||
Women: Fish T1: <27.6; T2: 27.6–42.7; and T3: 42.8+ g/1000 kcal, omega-3 fat T1: <1.03; T2: 1.03–1.25; and T3: 1.25+ %energy. |
Fish Intake | Omega-3 Fatty Acid Intake | |||||||
---|---|---|---|---|---|---|---|---|
T1 (Low) | T2 | T3 (High) | p for Trend | T1 (Low) | T2 | T3 (High) | p for Trend | |
N | 601 | 601 | 601 | 601 | 601 | 601 | ||
Age- and sex adjusted means, mm | 0.82 | 0.81 | 0.79 | 0.04 | 0.82 | 0.80 | 0.79 | 0.04 |
Multivariable-adjusted means, mm * | 0.88 | 0.87 | 0.85 | 0.048 | 0.88 | 0.86 | 0.85 | 0.054 |
Multivariable-adjusted means, mm † | 0.88 | 0.87 | 0.85 | 0.049 | 0.88 | 0.86 | 0.85 | 0.06 |
All mean values are expressed as geometric means. | ||||||||
* Adjusted for age, sex, physical activity (METs h/day), BMI, current drinking and smoking status, energy, vegetable and saturate fatty acid intakes, hypertension, and diabetes. | ||||||||
† Further adjusted for dyslipidemia. | ||||||||
Men: Fish T1: <26.7; T2: 26.7–43.2; and T3: 43.2+ g/1000 kcal, omega-3 fat T1: <1.00; T2: 1.00–1.22; and T3: 1.22+ %energy. | ||||||||
Women: Fish T1: <27.6; T2: 27.6–42.7; and T3: 42.8+ g/1000 kcal, omega-3 fat T1: <1.03; T2: 1.03–1.25; and T3: 1.25+ %energy. |
Fish Intake | Omega-3 Fatty Acid Intake | |||||||
---|---|---|---|---|---|---|---|---|
T1 (Low) | T2 | T3 (High) | p for Trend | T1 (Low) | T2 | T3 (High) | p for Trend | |
N | 601 | 601 | 601 | 601 | 601 | 601 | ||
Moderately increased C-IMT, n (%) | 26 (4.3%) | 41 (6.8%) | 42 (7.0%) | 30 (5.0%) | 34 (5.7%) | 45 (7.5%) | ||
Age- and sex adjusted OR | 1.00 | 1.04 (0.61–1.76) | 0.86 (0.50–1.46) | 0.48 | 1.00 | 0.87 (0.52–1.46) | 1.02 (0.62–1.67) | 0.88 |
Severely increased C-IMT, n (%) | 27 (4.5%) | 32 (5.3%) | 32 (5.3%) | 31 (5.2%) | 33 (5.4%) | 27 (4.5%) | ||
Age- and sex adjusted OR | 1.00 | 0.75 (0.43–1.31) | 0.59 (0.34–1.03) | 0.07 | 1.00 | 0.79 (0.47–1.33) | 0.56 (0.33–0.98) | 0.04 |
Multivariable-adjusted OR * for moderately increased C-IMT | 1.00 | 1.05 (0.62–1.79) | 0.87 (0.50–1.52) | 0.54 | 1.00 | 0.90 (0.53–1.53) | 1.10 (0.65–1.84) | 0.67 |
Multivariable-adjusted OR * for severely increased C-IMT | 1.00 | 0.73 (0.42–1.29) | 0.59 (0.33–1.05) | 0.08 | 1.00 | 0.78 (0.45–1.33) | 0.55 (0.31–0.97) | 0.04 |
Multivariable-adjusted OR † for moderately increased C-IMT | 1.00 | 1.05 (0.62–1.80) | 0.88 (0.51–1.52) | 0.55 | 1.00 | 0.91 (0.53–1.54) | 1.10 (0.66–1.86) | 0.65 |
Multivariable-adjusted OR † for severely increased C-IMT | 1.00 | 0.74 (0.42–1.29) | 0.59 (0.33–1.05) | 0.09 | 1.00 | 0.78 (0.46–1.34) | 0.55 (0.31–0.98) | 0.045 |
* Adjusted for age, sex, physical activity (METs h/day), BMI, current drinking and smoking status, energy, vegetable and saturated fatty acid intake, hypertension, and diabetes. | ||||||||
† Further adjusted for dyslipidemia. | ||||||||
Men: Fish T1: <26.7; T2: 26.7–43.2; and T3: 43.2+ g/1000 kcal, omega-3 fat T1: <1.00; T2: 1.00–1.22; and T3: 1.22+ %energy. | ||||||||
Women: Fish T1: <27.6; T2: 27.6–42.7; and T3: 42.8+ g/1000 kcal, omega-3 fat T1: <1.03; T2: 1.03–1.25; and T3: 1.25+ %energy. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maruyama, K.; Khairunnisa, S.; Saito, I.; Tanigawa, T.; Tomooka, K.; Minato-Inokawa, S.; Sano, M.; Takakado, M.; Kawamura, R.; Takata, Y.; et al. Association of Fish and Omega-3 Fatty Acid Intake with Carotid Intima-Media Thickness in Middle-Aged to Elderly Japanese Men and Women: The Toon Health Study. Nutrients 2022, 14, 3644. https://doi.org/10.3390/nu14173644
Maruyama K, Khairunnisa S, Saito I, Tanigawa T, Tomooka K, Minato-Inokawa S, Sano M, Takakado M, Kawamura R, Takata Y, et al. Association of Fish and Omega-3 Fatty Acid Intake with Carotid Intima-Media Thickness in Middle-Aged to Elderly Japanese Men and Women: The Toon Health Study. Nutrients. 2022; 14(17):3644. https://doi.org/10.3390/nu14173644
Chicago/Turabian StyleMaruyama, Koutatsu, Salsabila Khairunnisa, Isao Saito, Takeshi Tanigawa, Kiyohide Tomooka, Satomi Minato-Inokawa, Madoka Sano, Misaki Takakado, Ryoichi Kawamura, Yasunori Takata, and et al. 2022. "Association of Fish and Omega-3 Fatty Acid Intake with Carotid Intima-Media Thickness in Middle-Aged to Elderly Japanese Men and Women: The Toon Health Study" Nutrients 14, no. 17: 3644. https://doi.org/10.3390/nu14173644
APA StyleMaruyama, K., Khairunnisa, S., Saito, I., Tanigawa, T., Tomooka, K., Minato-Inokawa, S., Sano, M., Takakado, M., Kawamura, R., Takata, Y., & Osawa, H. (2022). Association of Fish and Omega-3 Fatty Acid Intake with Carotid Intima-Media Thickness in Middle-Aged to Elderly Japanese Men and Women: The Toon Health Study. Nutrients, 14(17), 3644. https://doi.org/10.3390/nu14173644