Mycotoxin Exposure and Renal Cell Carcinoma Risk: An Association Study in the EPIC European Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Exclusion Criteria
2.3. Assessment of Endpoints
2.4. Dietary Data and Lifestyle Questionnaires
2.4.1. Dietary Questionnaires
2.4.2. Mycotoxin Occurrence Data
2.4.3. Concentration Scenarios Regarding Mycotoxin Concentrations
2.4.4. Mycotoxin Grouping for Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Mycotoxin Exposure Distribution and Association with RCC Risk
4.2. Mycotoxins as Nephrotoxins?
4.3. Strengths and Limitations of the Study
4.4. Suggestions for Future Research, Further Perspectives, and Public Health Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chow, W.H.; Dong, L.M.; Devesa, S.S. Epidemiology and risk factors for kidney cancer. Nat. Rev. Urol. 2010, 7, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Gansler, T.; Fedewa, S.; Amin, M.B.; Lin, C.C.; Jemal, A. Trends in reporting histological subtyping of renal cell carcinoma: Association with cancer center type. Hum. Pathol. 2018, 74, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Hollingsworth, J.M.; Miller, D.C.; Daignault, S.; Hollenbeck, B.K. Rising incidence of small renal masses: A need to reassess treatment effect. J. Natl. Cancer Inst. 2006, 98, 1331–1334. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Znaor, A.; Holcatova, I.; Fabianova, E.; Mates, D.; Wozniak, M.B.; Ferlay, J.; Scelo, G. Regional geographic variations in kidney cancer incidence rates in European countries. Eur. Urol. 2015, 67, 1134–1141. [Google Scholar] [CrossRef]
- Stiborová, M.; Arlt, V.M.; Schmeiser, H.H. Balkan endemic nephropathy: An update on its aetiology. Arch. Toxicol. 2016, 90, 2595–2615. [Google Scholar] [CrossRef]
- Stoev, S.D. Balkan Endemic Nephropathy—Still continuing enigma, risk assessment and underestimated hazard of joint mycotoxin exposure of animals or humans. Chem. Biol. Interact. 2017, 261, 63–79. [Google Scholar] [CrossRef]
- Malir, F.; Louda, M.; Ostry, V.; Toman, J.; Ali, N.; Grosse, Y.; Malirova, E.; Pacovsky, J.; Pickova, D.; Brodak, M.; et al. Analyses of biomarkers of exposure to nephrotoxic mycotoxins in a cohort of patients with renal tumours. Mycotoxin Res. 2019, 35, 391–403. [Google Scholar] [CrossRef]
- Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Moss, M.O. Secondary metabolism and food intoxication-moulds. J. Appl. Bacteriol. 1992, 73, 80s–88s. [Google Scholar] [CrossRef]
- Adam, A.A.M.; Tabana, Y.M.; Musa, K.B.; Sandai, D.A. Effects of different mycotoxins on humans, cell genome and their involvement in cancer (Review). Oncol. Rep. 2017, 37, 1321–1336. [Google Scholar] [CrossRef]
- Mishra, S.; Dixit, S.; Dwivedi, P.D.; Pandey, H.P.; Das, M. Influence of temperature and pH on the degradation of deoxynivalenol (DON) in aqueous medium: Comparative cytotoxicity of DON and degraded product. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2014, 31, 121–131. [Google Scholar] [CrossRef] [PubMed]
- IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans: Chemical Agents and Related Occupations; International Agency for Research on Cancer: Lyon, France, 2012.
- Claeys, L.; Romano, C.; De Ruyck, K.; Wilson, H.; Fervers, B.; Korenjak, M.; Zavadil, J.; Gunter, M.J.; De Saeger, S.; De Boevre, M.; et al. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1449–1464. [Google Scholar] [CrossRef] [PubMed]
- Barnett, L.M.A.; Cummings, B.S. Nephrotoxicity and renal pathophysiology: A contemporary perspective. Toxicol. Sci. 2018, 164, 379–390. [Google Scholar] [CrossRef]
- Dragan, Y.P.; Bidlack, W.R.; Cohen, S.M.; Goldsworthy, T.L.; Hard, G.C.; Howard, P.C.; Riley, R.T.; Voss, K.A. Implications of apoptosis for toxicity, carcinogenicity and risk assessment: Fumonisin B1 as an example. Toxicol. Sci. 2001, 61, 6–17. [Google Scholar] [CrossRef]
- Pinhão, M.; Tavares, A.M.; Loureiro, S.; Louro, H.; Alvito, P.; Silva, M.J. Combined cytotoxic and genotoxic effects of ochratoxin A and fumonisin B1 in human kidney and liver cell models. Toxicol. Vitr. 2020, 68, 104949. [Google Scholar] [CrossRef]
- Rong, X.; Jiang, Y.; Li, F.; Sun-Waterhouse, D.; Zhao, S.; Guan, X.; Li, D. Close association between the synergistic toxicity of zearalenone-deoxynivalenol combination and microRNA221-mediated PTEN/PI3K/AKT signaling in HepG2 cells. Toxicology 2022, 468, 153104. [Google Scholar] [CrossRef]
- Riboli, E.; Hunt, K.; Slimani, N.; Ferrari, P.; Norat, T.; Fahey, M.; Charrondière, U.; Hémon, B.; Casagrande, C.; Vignat, J.; et al. European Prospective Investigation into Cancer and Nutrition (EPIC): Study populations and data collection. Public Health Nutr. 2002, 5, 1113–1124. [Google Scholar] [CrossRef]
- Riboli, E.; Kaaks, R. The EPIC project: Rationale and Study Design. Int. J. Epidemiol. 1997, 26, S6–S14. [Google Scholar] [CrossRef]
- Wirfält, E.; Mattisson, I.; Johansson, U.; Gullberg, B.; Wallström, P.; Berglund, G. A methodological report from the Malmö Diet and Cancer study: Development and evaluation of altered routines in dietary data processing. Nutr. J. 2002, 1, 3. [Google Scholar] [CrossRef] [PubMed]
- Ericson, U.; Brunkwall, L.; Alves Dias, J.; Drake, I.; Hellstrand, S.; Gullberg, B.; Sonestedt, E.; Nilsson, P.M.; Wirfält, E.; Orho-Melander, M. Food patterns in relation to weight change and incidence of type 2 diabetes, coronary events and stroke in the Malmö Diet and Cancer cohort. Eur. J. Nutr. 2019, 58, 1801–1814. [Google Scholar] [CrossRef]
- Slimani, N.; Deharveng, G.; Unwin, I.; Southgate, D.A.T.; Vignat, J.; Skeie, G.; Salvini, S.; Parpinel, M.; Møller, A.; Ireland, J.; et al. The EPIC nutrient database project (ENDB): A first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur. J. Clin. Nutr. 2007, 61, 1037–1056. [Google Scholar] [CrossRef] [PubMed]
- WCRF/AICR. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective; WCRF: London, UK, 2018; ISBN 9781912259465. [Google Scholar]
- EFSA. Deoxynivalenol in food and feed: Occurrence and exposure. EFSA J. 2013, 11, 3379. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA J. 2014, 12, 3916. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the risks for public health related to the presence of zearalenone in food. EFSA J. 2011, 9, 1–124. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on risks for animal and public health related to the presence of nivalenol in food and feed. EFSA J. 2013, 11, 3262. [Google Scholar] [CrossRef]
- EFSA. Human and animal dietary exposure to T-2 and HT-2 toxin. EFSA J. 2017, 15, e04972. [Google Scholar] [CrossRef]
- EFSA. Risk to human and animal health related to the presence of 4,15-diacetoxyscirpenol in food and feed. EFSA J. 2018, 16, e05367. [Google Scholar] [CrossRef]
- EFSA. Dietary exposure assessment to Alternaria toxins in the European population. EFSA J. 2016, 14, e04654. [Google Scholar] [CrossRef]
- Carballo, D.; Tolosa, J.; Ferrer, E.; Berrada, H. Dietary exposure assessment to mycotoxins through total diet studies. A review. Food Chem. Toxicol. 2019, 128, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Matumba, L.; Namaumbo, S.; Ngoma, T.; Meleke, N.; De Boevre, M.; Logrieco, A.F.; De Saeger, S. Five keys to prevention and control of mycotoxins in grains: A proposal. Glob. Food Sec. 2021, 30, 100562. [Google Scholar] [CrossRef]
- Lee, H.J.; Ryu, D. Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef] [PubMed]
- Peraica, M.; Domijan, A.M.; Miletić-Medved, M.; Fuchs, R. The involvement of mycotoxins in the development of endemic nephropathy. Wiener Klin. Wochenschr. 2008, 120, 402–407. [Google Scholar] [CrossRef]
- EFSA. Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to ochratoxin A in food. EFSA J. 2006, 4, 365. [Google Scholar]
- EFSA. Scientific Opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA J. 2012, 11, 3254. [Google Scholar] [CrossRef]
- Studer, I.; Schlatter, J.; Dietrich, D.R. Kinetic parameters and intraindividual fluctuations of ochratoxin A plasma levels in humans. Arch. Toxicol. 2000, 74, 499–510. [Google Scholar] [CrossRef]
- Mally, A. Ochratoxin a and mitotic disruption: Mode of action analysis of renal tumor formation by ochratoxin A. Toxicol. Sci. 2012, 127, 315–330. [Google Scholar] [CrossRef]
- National Toxicology Program Toxicology and Carcinogenesis Studies of Ochratoxin A in F344/N Rats. Natl. Toxicol. Program Tech. Rep. Ser. 1989, 358, 1–142.
- Marin-Kuan, M.; Nestler, S.; Verguet, C.; Bezençon, C.; Piguet, D.; Mansourian, R.; Holzwarth, J.; Grigorov, M.; Delatour, T.; Mantle, P.; et al. A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin a carcinogenicity in rat. Toxicol. Sci. 2006, 89, 120–134. [Google Scholar] [CrossRef]
- Vrabcheva, T.; Usleber, E.; Dietrich, R.; Märtlbauer, E. Co-occurrence of ochratoxin A and citrinin in cereals from bulgarian villages with a history of Balkan endemic nephropathy. J. Agric. Food Chem. 2000, 48, 2483–2488. [Google Scholar] [CrossRef] [PubMed]
- Pfohl-Leszkowicz, A.; Tozlovanu, M.; Manderville, R.; Peraica, M.; Castegnaro, M.; Stefanovic, V. New molecular and field evidences for the implication of mycotoxins but not aristolochic acid in human nephropathy and urinary tract tumor. Mol. Nutr. Food Res. 2007, 51, 1131–1146. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Ishii, Y.; Takasu, S.; Kijima, A.; Matsushita, K.; Watanabe, M.; Takahashi, H.; Sugita-konishi, Y.; Sakai, H.; Yanai, T.; et al. Cell cycle progression, but not genotoxic activity, mainly contributes to citrinin-induced renal carcinogenesis. Toxicology 2013, 311, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Hard, G.C.; Howard, P.C.; Kovatch, R.M.; Bucci, T.J. Environmental Pathology Rat Kidney Pathology Induced by Chronic Exposure to Fumonisin B1 Includes Rare Variants of Renal Tubule Tumor. Toxicol. Pathol. 2001, 29, 379–386. [Google Scholar] [CrossRef]
- Müller, S.; Dekant, W.; Mally, A. Fumonisin B1 and the kidney: Modes of action for renal tumor formation by fumonisin B1 in rodents. Food Chem. Toxicol. 2012, 50, 3833–3846. [Google Scholar] [CrossRef]
- Speijers, G.J.A.; Speijers, M.H.M. Combined toxic effects of mycotoxins. Toxicol. Lett. 2004, 153, 91–98. [Google Scholar] [CrossRef]
- Sansing, G.A.; Lillehoj, E.B.; Detroy, R.W.; Miller, M.A. Synergistic toxic effects of citrinin, ochratoxin A and penicillic acid in mice. Toxicon 1976, 14, 213–220. [Google Scholar] [CrossRef]
- Kitchen, D.N.; Carlton, W.W.; Tuite, J. Ochratoxin A and Citrinin Induced Nephrosis in Beagle Dogs II. Pathology. Vet. Pathol. 1977, 14, 261–272. [Google Scholar] [CrossRef]
- Scelo, G.; Larose, T.L. Epidemiology and risk factors for kidney cancer. J. Clin. Oncol. 2018, 36, 3574–3581. [Google Scholar] [CrossRef]
- Willett, W. Nutritional Epidemiology; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Huybrechts, I.; De Boevre, M.; Claeys, L.; Korenjak, M.; Arcella, D.; Casagrande, C.; Nicolas, G.; Altieri, A.; Scelo, G.; Fervers, B.; et al. Chronic Multi-Mycotoxin Exposure and Colorectal Cancer Risk in a Multi-National European Cohort. 2022; not submitted. [Google Scholar]
- Huybrechts, I.; Biessy, C.; Agloga, E.; Jenab, M.; Claeys, L.; Zavadil, J.; Korenjak, M.; Casagrande, C.; Nicolas, G.; Scelo, G.; et al. Chronic Low Cumulative Mycotoxin Exposure is Associated with an Increased Liver Cancer Risk in Europe; 2022; not submitted. [Google Scholar]
- Arce-López, B.; Lizarraga, E.; Vettorazzi, A.; González-Peñas, E. Human biomonitoring of mycotoxins in blood, plasma and serum in recent years: A review. Toxins 2020, 12, 147. [Google Scholar] [CrossRef] [PubMed]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- IARC. Monographs on the Identification of Carcinogenic Hazards to Humans Questions and Answers; IARC: Lyon, France, 2019.
- IARC. Report of the Advisory Group to Recommend Priorities for IARC Monographs during 2020–2024. 2020. Available online: https://monographs.iarc.who.int/wp-content/uploads/2019/10/IARCMonographs-AGReport-Priorities_2020-2024.pdf (accessed on 25 July 2022).
- Glahn, R.P.; Wideman, R.F.; Evangelisti, J.W.; Huff, W.E. Effects of Ochratoxin A Alone and in Combination with Citrinin on Kidney Function of Single Comb White Leghorn Pullets. Poult. Sci. 1988, 67, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Grenier, B.; Oswald, I.P. Mycotoxin co-contamination of food and feed: Meta-analysis of publications describing toxicological interactions. World Mycotoxin J. 2011, 4, 285–313. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Bray, F.; Forman, D.; O’Brien, M.; Ferlay, J.; Center, M.; Parkin, D.M. Cancer Burden in Africa and Opportunities for Prevention. Cancer 2012, 118, 4372–4384. [Google Scholar] [CrossRef]
- Hamdi, Y.; Abdeljaoued-Tej, I.; Zatchi, A.A.; Abdelhak, S.; Boubaker, S.; Brown, J.S.; Benkahla, A. Cancer in Africa: The Untold Story. Front. Oncol. 2021, 11, 1011. [Google Scholar] [CrossRef]
- Kagot, V.O. Beyond Aflatoxins: Unravelling the Hidden Mycotoxins in Kenyan Maize; Ghent University, Faculty of Pharmaceutical Sciences: Ghent, Belgium, 2021. [Google Scholar]
- Scelo, G.; Riazalhosseini, Y.; Greger, L.; Letourneau, L.; Gonzàlez-Porta, M.; Wozniak, M.B.; Bourgey, M.; Harnden, P.; Egevad, L.; Jackson, S.M.; et al. Variation in genomic landscape of clear cell renal cell carcinoma across Europe. Nat. Commun. 2014, 5, 5135. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Stratton, M.R. Mutational signatures: The patterns of somatic mutations hidden in cancer genomes. Curr. Opin. Genet. Dev. 2014, 24, 52–60. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on Ergot Alkaloids in Food and Feed. EFSA J. 2012, 10, 2798. [Google Scholar] [CrossRef]
- EFSA. Risk assessment of aflatoxins in food. EFSA J. 2020, 18, 6040. [Google Scholar] [CrossRef]
- SCF. Minute Statement on Patulin. Available online: https://food.ec.europa.eu/system/files/2020-12/sci-com_scf_out55_en.pdf (accessed on 25 July 2022).
- EFSA. Evaluation of the increase of risk for public health related to a possible temporary derogation from the maximum level of deoxynivalenol, zearalenone and fumonisins for maize and maize products. EFSA J. 2014, 12, 3699. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J. 2011, 9, 2481. [Google Scholar] [CrossRef]
- EFSA. Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA J. 2016, 14, e04425. [Google Scholar] [CrossRef]
RCC in EPIC | ||||
---|---|---|---|---|
Non-Cases | RCC Cases | |||
Total sample after exclusions = 450,112 | 449,201 | 911 | ||
Mean | SD | Mean | SD | |
Body mass index (kg/m2) | 25.3 | 4.2 | 27.0 | 4.3 |
Age at recruitment (years) | 51.1 | 9.8 | 55.5 | 7.7 |
Energy intake USDA (kcal/day) | 2076.3 | 618.7 | 2150.7 | 672.6 |
Alcohol at recruitment (g/day) | 11.7 | 16.8 | 14.6 | 20.6 |
n | % | n | % | |
Sex | ||||
Male | 130,931 | 29.1 | 495 | 54.3 |
Female | 318,270 | 70.9 | 416 | 45.7 |
Education | ||||
None | 15,519 | 3.5 | 32 | 3.5 |
Primary school completed | 110,722 | 24.6 | 342 | 37.5 |
Technical/professional school | 103,564 | 23.1 | 219 | 24.0 |
Secondary school | 93,787 | 20.9 | 123 | 13.5 |
Longer education (including university degree) | 108,767 | 24.2 | 164 | 18.0 |
Not specified | 16,842 | 3.7 | 31 | 3.4 |
Physical activity | ||||
Inactive | 87,829 | 19.6 | 203 | 22.3 |
Moderately inactive | 149,613 | 33.3 | 328 | 36.0 |
Moderately active | 120,001 | 26.7 | 198 | 21.7 |
Active | 82,952 | 18.5 | 164 | 18.0 |
Missing | 8806 | 2.0 | 18 | 2.0 |
Diabetes | ||||
No | 399,684 | 89.0 | 768 | 84.3 |
Yes | 10,703 | 2.4 | 35 | 3.8 |
Do not know | 38,814 | 8.6 | 108 | 11.9 |
Hypertension | ||||
No | 297,754 | 77.0 | 460 | 61.4 |
Yes | 80,223 | 20.7 | 266 | 35.5 |
Do not know | 8708 | 2.3 | 23 | 3.1 |
Smoking status | ||||
Never | 218,958 | 48.7 | 336 | 36.9 |
Former | 122,399 | 27.2 | 281 | 30.8 |
Current | 99,430 | 22.1 | 285 | 31.3 |
Unknown | 8414 | 1.9 | 9 | 1.0 |
Middle Bound (MB)—µg/kg Body Weight per Day | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
LABEL (Expressed in µg/kg Body Weight/day) | Case Status | Mean | SD | Min | P05 | P25 | P50 | P75 | P95 | Max |
Ergot alkaloids (Middle bound-body weight-computed) | Non-case | 0.07 | 0.07 | 0.00 | 0.01 | 0.03 | 0.05 | 0.09 | 0.19 | 1.73 |
RCC case | 0.07 | 0.06 | 0.00 | 0.01 | 0.03 | 0.06 | 0.10 | 0.20 | 0.43 | |
Ochratoxins (Middle bound-body weight-computed) | Non-case | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 |
RCC case | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | |
Aflatoxins (Middle bound-body weight-computed) | Non-case | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 |
RCC case | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | |
Patulin (Middle bound-body weight) | Non-case | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.04 | 0.29 |
RCC case | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.03 | 0.09 | |
Deoxynivalenol and derivatives (Middle bound-body weight-computed) | Non-case | 0.24 | 0.13 | 0.00 | 0.09 | 0.15 | 0.22 | 0.30 | 0.48 | 3.09 |
RCC case | 0.22 | 0.12 | 0.02 | 0.08 | 0.14 | 0.20 | 0.28 | 0.43 | 0.82 | |
T-2/HT-2 toxins (Middle bound-body weight-computed) | Non-case | 0.02 | 0.01 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.04 | 0.21 |
RCC case | 0.02 | 0.01 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.04 | 0.09 | |
Nivalenol (Middle bound-body weight) | Non-case | 0.03 | 0.02 | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.07 | 0.35 |
RCC case | 0.03 | 0.02 | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.06 | 0.13 | |
Fumonisins (Middle bound-body weight-computed) | Non-case | 0.24 | 0.13 | 0.00 | 0.09 | 0.15 | 0.21 | 0.30 | 0.48 | 2.71 |
RCC case | 0.21 | 0.12 | 0.02 | 0.08 | 0.14 | 0.19 | 0.26 | 0.44 | 1.49 | |
Diacetoxyscirpenol (Middle bound -body weight) | Non-case | 0.03 | 0.02 | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.06 | 0.56 |
RCC case | 0.03 | 0.02 | 0.01 | 0.01 | 0.02 | 0.03 | 0.04 | 0.06 | 0.14 | |
Zearalenone and derivatives (Middle bound-body weight-computed) | Non-case | 0.04 | 0.02 | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.08 | 0.71 |
RCC case | 0.03 | 0.03 | 0.01 | 0.01 | 0.02 | 0.03 | 0.04 | 0.07 | 0.42 | |
Fusarium Toxins (Middle bound-body weight-computed) | Non-case | 0.60 | 0.28 | 0.03 | 0.24 | 0.40 | 0.55 | 0.74 | 1.12 | 5.71 |
RCC case | 0.55 | 0.26 | 0.08 | 0.23 | 0.37 | 0.50 | 0.68 | 1.04 | 2.02 | |
Fusarenon X (Middle bound-body weight) | Non-case | 0.02 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.04 | 0.16 |
RCC case | 0.02 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.04 | 0.07 | |
Sterigmatocystins (Middle bound-body weight) | Non-case | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 |
RCC case | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | |
Moniliformine (Middle bound-body weight) | Non-case | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.44 |
RCC case | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.10 | |
Alternaria toxins (Middle bound-body weight-computed) | Non-case | 0.19 | 0.10 | 0.00 | 0.05 | 0.12 | 0.18 | 0.25 | 0.39 | 1.36 |
RCC case | 0.19 | 0.10 | 0.02 | 0.05 | 0.12 | 0.18 | 0.25 | 0.36 | 0.78 | |
Citrinin (Middle bound-body weight) | Non-case | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
RCC case | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Beauvericin (Middle bound-body weight) | Non-case | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
RCC case | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Enniatins (Middle bound-body weight-computed) | Non-case | 0.05 | 0.05 | 0.00 | 0.00 | 0.01 | 0.03 | 0.06 | 0.15 | 0.97 |
RCC case | 0.05 | 0.05 | 0.00 | 0.00 | 0.01 | 0.03 | 0.07 | 0.14 | 0.38 | |
Total mycotoxins (Middle bound-body weight-computed) | Non-case | 0.93 | 0.43 | 0.06 | 0.38 | 0.62 | 0.86 | 1.16 | 1.74 | 6.55 |
RCC case | 0.89 | 0.42 | 0.14 | 0.37 | 0.60 | 0.82 | 1.09 | 1.67 | 2.96 |
Middle-Bound Scenario (MB) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mycotoxins (µg/kg bw/day) | Cases N = 911 | Hazard Ratio | 95% Confidence Interval | ProbChiSq (P) | TrendTest | Mycotoxins (µg/kg bw/day) | Cases N = 911 | Hazard Ratio | 95% Confidence Interval | ProbChiSq (P) | TrendTest |
15-Acetyl-deoxynivalenol | 911 | 0.94 | 0.81–1.10 | 0.4309 | 3-Acetyl-deoxynivalenol | 911 | 0.94 | 0.81–1.09 | 0.4031 | ||
T1 | 334 | 1 | Ref. | T1 | 326 | 1 | Ref. | ||||
T2 | 308 | 1.05 | 0.86–1.29 | 0.6254 | 0.6169 | T2 | 314 | 1.06 | 0.86–1.29 | 0.6000 | 0.5004 |
T3 | 269 | 1.06 | 0.84–1.35 | 0.6147 | T3 | 271 | 1.09 | 0.85–1.38 | 0.4974 | ||
Aflatoxin B1 | 911 | 0.96 | 0.82–1.14 | 0.6590 | Aflatoxin B2 | 911 | 0.97 | 0.83–1.12 | 0.6484 | ||
T1 | 404 | 1 | Ref. | . | T1 | 391 | 1 | Ref. | |||
T2 | 278 | 0.88 | 0.72–1.07 | 0.1949 | 0.1473 | T2 | 298 | 0.97 | 0.80–1.17 | 0.7336 | 0.1735 |
T3 | 229 | 0.84 | 0.65–1.07 | 0.1615 | T3 | 222 | 0.84 | 0.65–1.07 | 0.1579 | ||
Aflatoxin G1 | 911 | 0.97 | 0.83–1.13 | 0.6962 | Aflatoxin G2 | 911 | 0.95 | 0.82–1.11 | 0.5270 | ||
T1 | 395 | 1 | Ref. | T1 | 394 | 1 | Ref. | ||||
T2 | 295 | 0.96 | 0.79–1.16 | 0.6727 | 0.1979 | T2 | 301 | 0.96 | 0.79–1.16 | 0.6841 | 0.1370 |
T3 | 221 | 0.85 | 0.66–1.08 | 0.1849 | T3 | 216 | 0.82 | 0.64–1.05 | 0.1207 | ||
Aflatoxin M1 | 911 | 0.98 | 0.93–1.03 | 0.4426 | Aflatoxin (sum of B1. B2. G1. G2) | 911 | 1.08 | 0.94–1.24 | 0.2913 | ||
T1 | 351 | 1 | Ref. | T1 | 378 | 1 | Ref. | ||||
T2 | 311 | 1.02 | 0.84–1.23 | 0.8588 | 0.5349 | T2 | 284 | 1.01 | 0.83–1.23 | 0.9086 | 0.2293 |
T3 | 249 | 0.93 | 0.74–1.16 | 0.5034 | T3 | 249 | 1.16 | 0.91–1.48 | 0.2176 | ||
Altenuene | 911 | 1.06 | 0.92–1.22 | 0.4326 | Alternaria alternata F. sp. lycopersici toxins | 911 | 0.98 | 0.88–1.08 | 0.6385 | ||
T1 | 320 | 1 | Ref. | T1 | 320 | 1 | Ref. | ||||
T2 | 318 | 1.06 | 0.87–1.31 | 0.5514 | 0.7268 | T2 | 318 | 1.01 | 0.82–1.23 | 0.9440 | 0.8915 |
T3 | 273 | 0.96 | 0.75–1.24 | 0.7591 | T3 | 273 | 0.98 | 0.77–1.25 | 0.8919 | ||
Altertoxin I | 911 | 1.00 | 0.90–1.13 | 0.9427 | Alternariol monomethyl ether | 911 | 1.01 | 0.94–1.09 | 0.8195 | ||
T1 | 314 | 1 | Ref. | T1 | 306 | 1 | Ref. | ||||
T2 | 305 | 1.01 | 0.82–1.24 | 0.9257 | 0.6751 | T2 | 309 | 1.12 | 0.91–1.37 | 0.2909 | 0.4432 |
T3 | 292 | 0.95 | 0.76–1.21 | 0.6984 | T3 | 296 | 1.10 | 0.86–1.42 | 0.4417 | ||
Alternariol | 911 | 1.03 | 0.91–1.17 | 0.6629 | Deoxynivalenol-3-glucoside | 911 | 1.01 | 0.97–1.05 | 0.6683 | ||
T1 | 312 | 1 | Ref. | T1 | 344 | 1 | Ref. | ||||
T2 | 311 | 1.00 | 0.81–1.24 | 0.9919 | 0.9257 | T2 | 298 | 1.06 | 0.89–1.28 | 0.5060 | 0.5181 |
T3 | 288 | 1.01 | 0.78–1.32 | 0.9269 | T3 | 269 | 1.07 | 0.85–1.34 | 0.5836 | ||
Deoxynivalenol | 911 | 0.97 | 0.84–1.14 | 0.7357 | Enniatin A1 | 911 | 1.04 | 0.97–1.10 | 0.2474 | ||
T1 | 360 | 1 | Ref. | T1 | 316 | 1 | Ref. | ||||
T2 | 307 | 0.93 | 0.76–1.14 | 0.4626 | 0.5667 | T2 | 294 | 0.96 | 0.77–1.20 | 0.7215 | 0.6437 |
T3 | 244 | 0.93 | 0.71–1.21 | 0.5820 | T3 | 301 | 0.93 | 0.70–1.25 | 0.6437 | ||
Enniatin A | 911 | 1.00 | 0.96–1.04 | 0.9364 | Enniatin B1 | 911 | 1.03 | 0.98–1.10 | 0.2441 | ||
T1 | 307 | 1 | Ref. | T1 | 318 | 1 | Ref. | ||||
T2 | 325 | 1.02 | 0.84–1.23 | 0.8748 | 0.1160 | T2 | 293 | 1.00 | 0.80–1.25 | 0.9799 | 0.9896 |
T3 | 279 | 0.82 | 0.64–1.04 | 0.0947 | T3 | 300 | 1.00 | 0.75–1.34 | 0.9905 | ||
Enniatin B | 911 | 1.02 | 0.97–1.07 | 0.4636 | Ergocorninine | 911 | 1.03 | 0.96–1.11 | 0.4088 | ||
T1 | 322 | 1 | Ref. | T1 | 307 | 1 | Ref. | ||||
T2 | 284 | 0.98 | 0.78–1.23 | 0.8910 | 0.8307 | T2 | 285 | 0.87 | 0.69–1.09 | 0.2194 | 0.8448 |
T3 | 305 | 0.97 | 0.72–1.30 | 0.8309 | T3 | 319 | 1.00 | 0.77–1.31 | 0.9880 | ||
Ergocornine | 911 | 1.03 | 0.95–1.11 | 0.4684 | Ergocristinine | 911 | 1.03 | 0.96–1.11 | 0.4098 | ||
T1 | 305 | 1 | Ref. | T1 | 305 | 1 | Ref. | ||||
T2 | 283 | 0.88 | 0.70–1.11 | 0.2828 | 0.4757 | T2 | 278 | 0.85 | 0.68–1.06 | 0.1560 | 0.3873 |
T3 | 323 | 1.08 | 0.82–1.41 | 0.5947 | T3 | 328 | 1.09 | 0.84–1.42 | 0.5301 | ||
Ergocristine | 911 | 1.04 | 0.97–1.11 | 0.2354 | alpha-Ergocryptinine | 911 | 1.01 | 0.94–1.08 | 0.7996 | ||
T1 | 297 | 1 | Ref. | T1 | 293 | 1 | Ref. | ||||
T2 | 307 | 1.08 | 0.85–1.38 | 0.5228 | 0.1475 | T2 | 289 | 0.94 | 0.75–1.18 | 0.6148 | 0.2091 |
T3 | 307 | 1.22 | 0.92–1.62 | 0.1675 | T3 | 329 | 1.16 | 0.89–1.52 | 0.2680 | ||
alpha-Ergocryptine | 911 | 1.01 | 0.94–1.08 | 0.8209 | beta-Ergocryptine | 911 | 0.99 | 0.97–1.02 | 0.6153 | ||
T1 | 304 | 1 | Ref. | T1 | 287 | 1 | Ref. | ||||
T2 | 279 | 0.87 | 0.70–1.09 | 0.2316 | 0.6508 | T2 | 279 | 1.04 | 0.78–1.38 | 0.8019 | 0.0298 |
T3 | 328 | 1.06 | 0.81–1.40 | 0.6611 | T3 | 345 | 1.34 | 0.98–1.82 | 0.0657 | ||
Ergocryptine (alpha + beta epimers) | 911 | 0.98 | 0.96–1.01 | 0.1971 | Ergometrinine | 911 | 1.01 | 0.94–1.07 | 0.8427 | ||
T1 | 272 | 1 | Ref. | T1 | 300 | 1 | Ref. | ||||
T2 | 282 | 1.01 | 0.78–1.31 | 0.9214 | 0.6220 | T2 | 293 | 0.92 | 0.74–1.15 | 0.4681 | 0.3190 |
T3 | 357 | 1.07 | 0.79–1.46 | 0.6531 | T3 | 318 | 1.14 | 0.87–1.48 | 0.3370 | ||
Ergometrine | 911 | 1.03 | 0.97–1.10 | 0.3151 | Ergosine | 911 | 1.02 | 0.95–1.10 | 0.5265 | ||
T1 | 295 | 1 | Ref. | T1 | 305 | 1 | Ref. | ||||
T2 | 302 | 0.99 | 0.79–1.24 | 0.9372 | 0.5369 | T2 | 296 | 0.96 | 0.77–1.20 | 0.7302 | 0.8886 |
T3 | 314 | 1.08 | 0.83–1.40 | 0.5762 | T3 | 310 | 1.02 | 0.77–1.35 | 0.8739 | ||
Ergosinine | 911 | 1.01 | 0.95–1.06 | 0.8357 | Ergotaminine | 911 | 1.01 | 0.94–1.08 | 0.7761 | ||
T1 | 286 | 1 | Ref. | T1 | 301 | 1 | Ref. | ||||
T2 | 297 | 1.00 | 0.80–1.25 | 0.9787 | 0.1321 | T2 | 277 | 0.89 | 0.71–1.12 | 0.3207 | 0.5503 |
T3 | 328 | 1.21 | 0.93–1.58 | 0.1616 | T3 | 333 | 1.07 | 0.82–1.41 | 0.6168 | ||
Ergotamine | 911 | 1.02 | 0.96–1.08 | 0.4818 | Fumonisin B1 | 911 | 0.98 | 0.86–1.12 | 0.7649 | ||
T1 | 297 | 1 | Ref. | T1 | 397 | 1 | Ref. | ||||
T2 | 292 | 0.88 | 0.70–1.12 | 0.3072 | 0.9440 | T2 | 298 | 0.88 | 0.72–1.08 | 0.2155 | 0.1050 |
T3 | 322 | 1.02 | 0.76–1.37 | 0.9034 | T3 | 216 | 0.81 | 0.63–1.05 | 0.1083 | ||
Fumonisin B2 | 911 | 0.90 | 0.76–1.07 | 0.2239 | Fumonisin B3 | 911 | 0.99 | 0.93–1.07 | 0.8851 | ||
T1 | 393 | 1 | Ref. | T1 | 356 | 1 | Ref. | ||||
T2 | 290 | 0.81 | 0.67–0.99 | 0.0443 | 0.0577 | T2 | 303 | 1.05 | 0.86–1.27 | 0.6473 | 0.2159 |
T3 | 228 | 0.78 | 0.60–1.02 | 0.0647 | T3 | 252 | 1.15 | 0.92–1.44 | 0.2098 | ||
Fumonisins | 911 | 0.95 | 0.87–1.03 | 0.2415 | HT-2 toxin | 911 | 0.94 | 0.85–1.03 | 0.1996 | ||
T1 | 361 | 1 | Ref. | T1 | 339 | 1 | Ref. | ||||
T2 | 287 | 0.95 | 0.78–1.15 | 0.5829 | 0.3191 | T2 | 301 | 0.95 | 0.78–1.15 | 0.6069 | 0.8375 |
T3 | 263 | 0.89 | 0.71–1.12 | 0.3189 | T3 | 271 | 0.98 | 0.79–1.21 | 0.8392 | ||
Ochratoxin A | 911 | 1.05 | 0.91–1.21 | 0.5121 | Sum T-2 and HT-2 | 911 | 0.94 | 0.82–1.07 | 0.3462 | ||
T1 | 335 | 1 | Ref. | T1 | 357 | 1 | Ref. | ||||
T2 | 316 | 1.12 | 0.92–1.37 | 0.2532 | 0.3719 | T2 | 281 | 0.89 | 0.73–1.09 | 0.2760 | 0.3180 |
T3 | 260 | 1.12 | 0.88–1.42 | 0.3617 | T3 | 273 | 0.89 | 0.70–1.12 | 0.3074 | ||
Tentoxin | 911 | 1.04 | 0.92–1.17 | 0.5588 | Tenuazonic acid | 911 | 0.98 | 0.85–1.12 | 0.7559 | ||
T1 | 304 | 1 | Ref. | T1 | 320 | 1 | Ref. | ||||
T2 | 308 | 1.03 | 0.84–1.26 | 0.7930 | 0.6612 | T2 | 302 | 0.94 | 0.77–1.14 | 0.5244 | 0.3046 |
T3 | 299 | 0.95 | 0.75–1.21 | 0.7000 | T3 | 289 | 0.89 | 0.70–1.12 | 0.3039 | ||
T-2 toxin | 911 | 0.93 | 0.84–1.04 | 0.2288 | Zearalanone | 911 | 0.99 | 0.96–1.02 | 0.5669 | ||
T1 | 351 | 1 | Ref. | T1 | 289 | 1 | Ref. | ||||
T2 | 287 | 0.89 | 0.73–1.09 | 0.2771 | 0.9064 | T2 | 331 | 1.04 | 0.85–1.27 | 0.7089 | 0.6126 |
T3 | 273 | 0.98 | 0.78–1.24 | 0.8935 | T3 | 291 | 0.95 | 0.77–1.18 | 0.6585 | ||
alpha-Zearalenol | 911 | 1.02 | 0.96–1.08 | 0.4780 | beta-Zearalenol | 911 | 1.02 | 0.96–1.09 | 0.5133 | ||
T1 | 356 | 1 | Ref. | T1 | 362 | 1 | Ref. | ||||
T2 | 274 | 0.96 | 0.80–1.15 | 0.6592 | 0.5857 | T2 | 281 | 0.96 | 0.80–1.16 | 0.6861 | 0.8140 |
T3 | 281 | 1.09 | 0.87–1.37 | 0.4523 | T3 | 268 | 0.98 | 0.78–1.23 | 0.8751 | ||
Zearalenol | 911 | 0.96 | 0.89–1.03 | 0.2565 | Zearalenone | 911 | 0.98 | 0.86–1.11 | 0.7149 | ||
T1 | 338 | 1 | Ref. | T1 | 408 | 1 | Ref. | ||||
T2 | 317 | 0.90 | 0.74–1.10 | 0.3135 | 0.2477 | T2 | 257 | 0.92 | 0.75–1.12 | 0.3968 | 0.6439 |
T3 | 256 | 0.88 | 0.70–1.09 | 0.2428 | T3 | 246 | 0.95 | 0.74–1.22 | 0.6863 | ||
Ergot alkaloids | 911 | 1.04 | 0.97–1.11 | 0.2728 | Ochratoxins | 911 | 1.05 | 0.91–1.22 | 0.4987 | ||
T1 | 298 | 1 | Ref. | T1 | 336 | 1 | Ref. | ||||
T2 | 283 | 0.87 | 0.68–1.10 | 0.2413 | 0.4738 | T2 | 309 | 1.11 | 0.91–1.35 | 0.3177 | 0.3153 |
T3 | 330 | 1.08 | 0.82–1.42 | 0.6033 | T3 | 266 | 1.13 | 0.89–1.43 | 0.3092 | ||
Aflatoxins | 911 | 1.00 | 0.84–1.19 | 0.9790 | Patulin | 911 | 0.99 | 0.92–1.06 | 0.7407 | ||
T1 | 383 | 1 | Ref. | T1 | 354 | 1 | Ref. | ||||
T2 | 287 | 0.96 | 0.78–1.16 | 0.6485 | 0.7878 | T2 | 288 | 0.94 | 0.78–1.13 | 0.5041 | 0.9347 |
T3 | 241 | 0.97 | 0.75–1.24 | 0.8041 | T3 | 269 | 1.00 | 0.81–1.22 | 0.9628 | ||
Deoxynivalenol and derivatives | 911 | 0.96 | 0.81–1.14 | 0.6726 | T-2/HT-2 toxins | 911 | 0.94 | 0.85–1.04 | 0.2117 | ||
T1 | 364 | 1 | Ref. | T1 | 350 | 1 | Ref. | ||||
T2 | 308 | 0.99 | 0.80–1.21 | 0.8913 | 0.4282 | T2 | 297 | 0.92 | 0.75–1.11 | 0.3720 | 0.4750 |
T3 | 239 | 0.89 | 0.68–1.17 | 0.4169 | T3 | 264 | 0.92 | 0.74–1.15 | 0.4750 | ||
Nivalenol | 911 | 0.96 | 0.86–1.08 | 0.5140 | Fumonisins | 911 | 0.95 | 0.82–1.11 | 0.5282 | ||
T1 | 335 | 1 | Ref. | T1 | 382 | 1 | Ref. | ||||
T2 | 304 | 0.97 | 0.79–1.19 | 0.7938 | 0.5432 | T2 | 305 | 1.02 | 0.84–1.24 | 0.8419 | 0.4525 |
T3 | 272 | 0.92 | 0.72–1.19 | 0.5425 | T3 | 224 | 0.91 | 0.71–1.16 | 0.4338 | ||
Diacetoxyscirpenol | 911 | 0.96 | 0.82–1.12 | 0.5779 | Zearalenone and derivatives | 911 | 0.94 | 0.82–1.09 | 0.4176 | ||
T1 | 373 | 1 | Ref. | T1 | 403 | 1 | Ref. | ||||
T2 | 304 | 0.91 | 0.75–1.11 | 0.3767 | 0.3009 | T2 | 271 | 0.96 | 0.79–1.17 | 0.7036 | 0.2206 |
T3 | 234 | 0.88 | 0.68–1.13 | 0.3123 | T3 | 237 | 0.85 | 0.66–1.09 | 0.2071 | ||
Fusarium toxins | 911 | 0.93 | 0.77–1.13 | 0.4961 | Fusarenon X | 911 | 1.04 | 0.94–1.14 | 0.4467 | ||
T1 | 382 | 1 | Ref. | T1 | 322 | 1 | Ref. | ||||
T2 | 291 | 0.94 | 0.77–1.15 | 0.5631 | 0.5219 | T2 | 318 | 1.08 | 0.88–1.32 | 0.4499 | 0.6512 |
T3 | 238 | 0.92 | 0.71–1.20 | 0.5288 | T3 | 271 | 1.06 | 0.82–1.36 | 0.6659 | ||
Sterigmatocystins | 911 | 0.98 | 0.94–1.02 | 0.3215 | Moniliformine | 911 | 1.00 | 0.95–1.02 | 0.7841 | ||
T1 | 386 | 1 | Ref. | T1 | 332 | 1 | Ref. | ||||
T2 | 297 | 0.94 | 0.79–1.12 | 0.4939 | 0.0907 | T2 | 302 | 0.96 | 0.80–1.17 | 0.7097 | 0.8612 |
T3 | 228 | 0.82 | 0.66–1.03 | 0.0829 | T3 | 277 | 1.02 | 0.83–1.26 | 0.8238 | ||
Alternaria toxins | 911 | 1.05 | 0.89–1.25 | 0.5417 | Citrinin | 911 | 1.00 | 0.96–1.03 | 0.8126 | ||
T1 | 310 | 1 | Ref. | T1 | 327 | 1 | Ref. | ||||
T2 | 313 | 1.12 | 0.90–1.38 | 0.3119 | 0.7951 | T2 | 316 | 1.06 | 0.87–1.28 | 0.5694 | 0.9187 |
T3 | 288 | 1.04 | 0.80–1.37 | 0.7497 | T3 | 268 | 0.99 | 0.80–1.21 | 0.8992 | ||
Enniatins | 911 | 1.02 | 0.97–1.08 | 0.4021 | All Mycotoxins | 911 | 0.99 | 0.81–1.22 | 0.9424 | ||
T1 | 307 | 1 | Ref. | T1 | 370 | 1 | Ref. | ||||
T2 | 305 | 0.92 | 0.74–1.13 | 0.4071 | 0.3679 | T2 | 290 | 0.85 | 0.69–1.05 | 0.1375 | 0.1313 |
T3 | 299 | 0.88 | 0.67–1.16 | 0.3813 | T3 | 251 | 0.81 | 0.62–1.07 | 0.1366 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Claeys, L.; De Saeger, S.; Scelo, G.; Biessy, C.; Casagrande, C.; Nicolas, G.; Korenjak, M.; Fervers, B.; Heath, A.K.; Krogh, V.; et al. Mycotoxin Exposure and Renal Cell Carcinoma Risk: An Association Study in the EPIC European Cohort. Nutrients 2022, 14, 3581. https://doi.org/10.3390/nu14173581
Claeys L, De Saeger S, Scelo G, Biessy C, Casagrande C, Nicolas G, Korenjak M, Fervers B, Heath AK, Krogh V, et al. Mycotoxin Exposure and Renal Cell Carcinoma Risk: An Association Study in the EPIC European Cohort. Nutrients. 2022; 14(17):3581. https://doi.org/10.3390/nu14173581
Chicago/Turabian StyleClaeys, Liesel, Sarah De Saeger, Ghislaine Scelo, Carine Biessy, Corinne Casagrande, Genevieve Nicolas, Michael Korenjak, Beatrice Fervers, Alicia K. Heath, Vittorio Krogh, and et al. 2022. "Mycotoxin Exposure and Renal Cell Carcinoma Risk: An Association Study in the EPIC European Cohort" Nutrients 14, no. 17: 3581. https://doi.org/10.3390/nu14173581
APA StyleClaeys, L., De Saeger, S., Scelo, G., Biessy, C., Casagrande, C., Nicolas, G., Korenjak, M., Fervers, B., Heath, A. K., Krogh, V., Luján-Barroso, L., Castilla, J., Ljungberg, B., Rodriguez-Barranco, M., Ericson, U., Santiuste, C., Catalano, A., Overvad, K., Brustad, M., ... Huybrechts, I. (2022). Mycotoxin Exposure and Renal Cell Carcinoma Risk: An Association Study in the EPIC European Cohort. Nutrients, 14(17), 3581. https://doi.org/10.3390/nu14173581