Ketogenic Diet: A Dietary Intervention via Gut Microbiome Modulation for the Treatment of Neurological and Nutritional Disorders (a Narrative Review)
Abstract
:1. Introduction
2. Therapeutic Application of Ketogenic Diet in Different Diseases and Its Association with Gut Microbiome Modulation
2.1. Epilepsy
2.2. Alzheimer’s Disease
2.3. Autism Spectrum Disorder
2.4. Obesity
Author | Subjects (n) | Age (Years Old) | Baseline Gut Microbiome of Patients (Compared to Control Group) | Ketogenic Diet Intervention Period | Key Findings of the Study | Reference | |
---|---|---|---|---|---|---|---|
Clinical Symptoms | Gut Microbiome Alterations | ||||||
Epilepsy | |||||||
Safak et al. (2020) | Idiopathic focal epilepsy (n = 30); Healthy control (n = 10) | Adult patients (41.3 ± 12.2); Healthy control (31.7 ± 6.8) | Higher proportion of Proteobacteria. Lower proportion of Firmicutes. Fusobacteria (Leptotrichia and Fusobacterium) only found in epilepsy group. | N.A. 1 | N.A. | A significant difference in the gut microbiome composition of idiopathic focal epilepsy patients compared to healthy controls. | [21] |
Huang et al. (2019) | Cerebral palsy + Epilepsy children (n = 25); Healthy control (n= 21) | 3 to 18 | Higher gut microbial diversity. | N.A. | N.A. | A significant difference in the gut microbiome composition of cerebral palsy and epilepsy children compared to healthy control. | [24] |
Peng et al. (2018) | Drug resistant epilepsy (n = 42); Drug sensitive epilepsy (n = 49); Healthy control (n = 65) | Adult patients 28.4 ± 12.4; Adults patients 25.1 ± 14.6; Healthy control 29.4 ± 13.8 years | Higher gut microbial diversity. Higher proportion of Firmicutes and Verrucomicrobia. Lower proportion of Bacteroidetes. Participants with ≥4 seizure in a year have lowered Bifidobacteria and Lactobacillus. | N.A. | N.A. | A significant difference in the gut microbiome composition of drug resistant epilepsy compared to drug sensitive patients and healthy controls. | [23] |
Lindefeldt et al. (2019) | Children with epilepsy (n = 12); Healthy parents not starting ketogenic diet as control (n = 11) | 7.7 ± 4.5 | Lower gut microbial diversity. | 3 months | 5 patients have >50% of seizure reduction (responders); 3 patients had shorter seizures, less postictal tiredness (non-responders); 2 patients did not improve; total 10 patients have improved cognition and motor function. | No significant difference in gut microbial alpha diversity compared to before KD. Increase in Proteobacteria (E. Coli). Decrease in Actinobacteria (Bifidobacterium). | [26] |
Zhang et al. (2018) | Children with drug resistant epilepsy (n = 20) | Children patients 4.2 (range: 1.2 to 10.3) | N.A. | 6 months | 2 patients with drug resistant epilepsy were seizure free; 3 patients had 90%; 5 patients had ≥50 but less than 90%; 10 patients had <50% decrease in seizure frequency. | No significant difference in gut microbial alpha diversity compared to before KD. Increase in Bacteroidetes. Decrease in Actinobacteria and Firmicutes. | [25] |
Xie et al. (2017) | Refractory epilepsy infants (n = 14); Healthy control (n = 30) | Infant patients 1.95 ± 3.10; Healthy control ≤ 3 | Lower gut microbial diversity. Higher proportion of Proteobacteria and Firmicutes. Lower proportion of Bacteroidetes and Actinobacteria. | 1 week | 64% of refractory epilepsy infants showed improvement (21% were seizure free, 43% had 50–90% decrease in seizure frequency). | No significant difference in gut microbial diversity as healthy control. Decrease in Proteobacteria Increase in Bacteroidetes and Actinobacteria. | [22] |
Alzheimer’s disease | |||||||
Vogt et al. (2017) | Dementia due to Alzheimer’s disease (n = 25); Healthy control (n = 25) | Adult patients 71.3 ± 7.3; Healthy control 69.3 ± 7.5 | Lower gut microbial alpha diversity. Higher proportion of Bacteroidetes. Lower proportion of Firmicutes and Actinobacteria. | N.A. | N.A. | A significant difference in the gut microbiome composition of dementia due to Alzheimer’s disease compared to healthy controls. | [33] |
Cattaneo et al. (2017) | Cognitively impaired amyloid-positive patients (Amy+) (n = 40); Cognitively impaired amyloid-negative controls (Amy-) (n = 33); Cognitively healthy amyloid-negative controls (HC) (n = 10) | Adult patients 71 ± 7 years; Adult patients 70 ± 7 years; Healthy controls 68 ± 8 years | Higher proportion of Escherichia/Shigella. Lower proportion of Eubacterium rectale and Bacillus fragilis | N.A. | N.A. | A significant difference in the gut microbiome composition of cognitively impaired amyloid-positive patients compared to cognitively impaired amyloid-negative and cognitively healthy amyloid-negative controls. | [34] |
Nagpal et al. (2019) | Mild cognitive impaired subject (n = 11); cognitive normal subject (n = 6) | 64.6 ± 6.4 | No significant difference in gut microbial diversity. Higher proportion of Firmicutes, Proteobacteria, and Tenericutes. Lower proportion of Bacteroidetes and Verrucomicrobia. | Modified Mediterrenean-Ketogenic diet (MMKD) for 6 weeks. Note: Only the data related to KD were included for this review purpose | N.A. | No significant difference in gut microbial alpha and beta diversity between two groups after MMKD. No significant difference in abundance of Firmicutes, Bacteroidetes, and Proteobacteria between two groups after MMKD. A significant reduction in abundance of Bifidobacterium after MMKD, prominently in mild cognitive impaired participants. | [38] |
Autism spectrum disorder | |||||||
Kandeel et al. (2020) | Autism spectrum disorder (ASD) (n = 30); Neurotypical controls (n = 30) | 4.4 ± 2.1 | Higher proportion of Clostridium spp. (Clostridium paraputrificum and Clostridium bolteae). Two different Clostridium spp. (Clostridium difficile and Clostridium clostridioforme) only found in ASD children. Clostridium tertium only found in neurotypical children. | N.A. | N.A. | A significant difference in the microbiome composition of autism children compared to neurotypical controls. | [43] |
Ahmed et al. (2020) | Autism Spectrum Disorder (ASD) (n = 41); Non autistic sibling group (n = 45); Healthy controls (n = 45) | Children patients 5.55 ± 1.9 years; Children siblings 4.31 ± 3.23 years; Healthy controls 5.36 ± 2.61 years | No significant difference in gut microbial diversity. Lower proportion of Firmicutes/Bacteroidetes (F/B ratio) in both ASD and siblings groups. Lower proportion of Prevotella to Bacteroides ratio (P/B ratio) in both ASD and siblings groups. | N.A. | N.A. | A significant difference in the gut microbiome composition between groups. | [45] |
De Angelis et al. (2013) | Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS) (n = 10); Autism (AD) (n = 10) Healthy controls (HC) (n = 10) | 4 to 10 | Higher gut microbial diversity in autism children. Higher proportion of Bacteroidetes. Lower proportion of Firmicutes. | N.A. | N.A. | A significant difference in the gut microbiome composition of autism children compared to PDD-NOS and healthy controls. | [42] |
Kang et al. (2013) | Autism Spectrum Disorder (n = 20); Neurotypical controls (n = 20) | Children patients 6.7 ± 2.7; Healthy controls 8.3 ± 4.4 | Lower gut microbial alpha diversity (Phylogenetic Diversity index). Lower proportion of Prevotella, Coprococcus, and Veillonellaceae. | N.A. | N.A. | A significant difference in the microbiome composition of autism children compared to neurotypical controls. | [44] |
Obesity | |||||||
Meijnikman et al. (2020) | Obesity (n = 95); Non-obesity control (n = 82) | Adult patients 47.1 ± 10.8; Non-obesity control 24.7 ± 2.9 | Lower gut microbial diversity in obese individuals. Top 10 bacterial taxa as predictors of obesity: Higher abundance in obese individuals (BMI > 30 kg m−2)
Overall, higher proportion of Firmicutes and lower proportion of Bacteroidetes in obese individuals. | N.A. | N.A. | A significant difference in the gut microbiome composition of obese individuals compared to non-obese control. | [53] |
Ang et al. (2020) | Over-weight / class I obese non-diabetic men (n = 17) | Adult patients | N.A. | Baseline diet (4 weeks) followed by KD (4 weeks) | N.A. | Increase in abundance of Bacteroidetes. Decrease in abundance of Actinobacteria, Firmicutes. Greatest decrease in abundance of Bifidobacterium. | [61] |
Basciani et al. (2020) | Obese patients (n = 48) | Adult patients 56.2 ± 6.1 | N.A. | Very-low-calorie ketogenic diets (VLCKDs), incorporated whey protein, plant protein, and animal protein (for 45 days). | Obese and insulin resistance patients in all KD groups showed reduction in BMI, body weight, waist circumference, blood pressure, HOMA index, insulin, and total LDL cholesterol. | No significant difference in the gut microbiome composition with different types of protein. Increase in Bacteroidetes. Decrease in Firmicutes. | [60] |
Gutiérrez-Repiso et al. (2019) | Obese patients (n = 33) | Adult patients 48.67 ± 9.16 years; Adult patients 47.00 ± 8.97 years; Adult patients 38.22 ± 11.27 years | N.A. | Very low calory KD and symbiotic (Bifidobacterium animalis subsp. Lactis and prebiotics fiber), 3 groups: Synbiotic1 + Synbiotic2; Placebo + Synbiotic2; Placebo only (4 months) | KD (placebo + Synbiotic 2) showed a significantly highest percentage of weight loss, −14.10 ± 3.89 (%). Overall, KD caused a reduction in weight, waist circumference, and BMI. | Symbiotic did not affect gut microbial diversity, but increased the abundance of Odoribacter and Lachnospira. KD increased gut microbial diversity. Decrease in abundance of Proteobacteria. Increase in abundance of Firmicutes. Bacteroidetes/Firmicutes ratio increases with the higher percentage of weight loss after KD. | [59] |
Turnbaugh, et al., 2009 | Participants (n = 154) | Adults between 21–32 years | Lower gut microbial diversity in obesity participants. Higher proportion of Actinobacteria. Lower proportion of Bacteroidetes. | Significant differences in the gut microbiome composition of obesity patients compared to non-obesity controls. | [54] |
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sampaio, L.P.d.B. Ketogenic diet for epilepsy treatment. Arq. De Neuro-Psiquiatr. 2016, 74, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Hang, H.J.; Battousse, O.; Ramadas, A. Modulation of gut microbiota by dietary macronutrients in type 2 diabetes: A review. Prog. Microbes Mol. Biol. 2021, 4, a0000182. [Google Scholar] [CrossRef]
- The Original Ketogenic Diet. Available online: https://charliefoundation.org/diet-plans/classic-keto/ (accessed on 1 July 2022).
- Miranda, M.J.; Turner, Z.; Magrath, G. Alternative diets to the classical ketogenic diet—Can we be more liberal? Epilepsy Res. 2012, 100, 278–285. [Google Scholar] [CrossRef]
- Rui, L. Energy metabolism in the liver. Compr. Physiol. 2014, 4, 177–197. [Google Scholar]
- Bough, K.J.; Wetherington, J.; Hassel, B.; Pare, J.F.; Gawryluk, J.W.; Greene, J.G.; Shaw, R.; Smith, Y.; Geiger, J.D.; Dingledine, R.J. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann. Neurol. 2006, 60, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Bough, K.J.; Rho, J.M. Anticonvulsant Mechanisms of the Ketogenic Diet. Epilepsia 2007, 48, 43–58. [Google Scholar] [CrossRef]
- Olson, C.A.; Vuong, H.E.; Yano, J.M.; Liang, Q.Y.; Nusbaum, D.J.; Hsiao, E.Y. The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell 2018, 173, 1728–1741.e13. [Google Scholar] [CrossRef]
- Thye, A.Y.-K.; Bah, Y.-R.; Law, J.W.-F.; Tan, L.T.-H.; He, Y.-W.; Wong, S.-H.; Thurairajasingam, S.; Chan, K.-G.; Lee, L.-H.; Letchumanan, V. Gut–Skin Axis: Unravelling the Connection between the Gut Microbiome and Psoriasis. Biomedicines 2022, 10, 1037. [Google Scholar] [CrossRef]
- Thye, A.Y.-K.; Law, J.W.-F.; Tan, L.T.-H.; Thurairajasingam, S.; Chan, K.-G.; Letchumanan, V.; Lee, L.-H. Exploring the Gut Microbiome in Myasthenia Gravis. Nutrients 2022, 14, 1647. [Google Scholar] [CrossRef]
- Tan, L.T.-H.; Letchumanan, V.; Law, J.W.-F.; Ser, H.-L.; Goh, B.-H.; Lee, L.-H. IDDF2021-ABS-0099 Exploring the Effects of Acupuncture Therapy in Restoring Health via Modulation of Intestinal Microbiota. Gut 2021, 70, A37. [Google Scholar]
- Lee, L.-H.; Letchumanan, V.; Tan, L.T.-H.; Ser, H.-L.; Law, J.W.-F. IDDF2020-ABS-0112 Gut-Skin Axis: Decoding the Link between the Gut Microbiome and Hives. Gut 2020, 69, A16–A17. [Google Scholar]
- Selvaraj, S.M.; Wong, S.H.; Ser, H.-L.; Lee, L.-H. Role of low FODMAP diet and probiotics on gut microbiome in irritable bowel syndrome (IBS). Prog. Microbes Mol. Biol. 2020, 3, a0000069. [Google Scholar] [CrossRef]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015, 277, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Bueno, N.B.; de Melo, I.S.V.; de Oliveira, S.L.; da Rocha Ataide, T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: A meta-analysis of randomised controlled trials. Br. J. Nutr. 2013, 110, 1178–1187. [Google Scholar] [CrossRef] [PubMed]
- Barañano, K.W.; Hartman, A.L. The ketogenic diet: Uses in epilepsy and other neurologic illnesses. Curr. Treat. Options Neurol. 2008, 10, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.W.Y.; Tan, L.T.-H.; Ab Mutalib, N.-S.; Wong, S.H.; Letchumanan, V.; Lee, L.-H. The chemistry of gut microbiome in health and diseases. Prog. Microbes Mol. Biol. 2021, 4, a0000175. [Google Scholar] [CrossRef]
- Neal, E.G.; Chaffe, H.; Schwartz, R.H.; Lawson, M.S.; Edwards, N.; Fitzsimmons, G.; Whitney, A.; Cross, J.H. The ketogenic diet for the treatment of childhood epilepsy: A randomised controlled trial. Lancet Neurol. 2008, 7, 500–506. [Google Scholar] [CrossRef]
- Schoeler, N.E.; Wood, S.; Aldridge, V.; Sander, J.W.; Cross, J.H.; Sisodiya, S.M. Ketogenic dietary therapies for adults with epilepsy: Feasibility and classification of response. Epilepsy Behav. 2014, 37, 77–81. [Google Scholar] [CrossRef]
- Reed, C.A.L. The Bacillus Epilepticus: Third Report. J. Am. Med. Assoc. 1916, 66, 1607–1611. [Google Scholar] [CrossRef]
- Şafak, B.; Altunan, B.; Topçu, B.; Eren Topkaya, A. The gut microbiome in epilepsy. Microb. Pathog. 2020, 139, 103853. [Google Scholar] [CrossRef]
- Xie, G.; Zhou, Q.; Qiu, C.-Z.; Dai, W.-K.; Wang, H.-P.; Li, Y.-H.; Liao, J.-X.; Lu, X.-G.; Lin, S.-F.; Ye, J.-H.; et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J. Gastroenterol. 2017, 23, 6164–6171. [Google Scholar] [CrossRef] [PubMed]
- Peng, A.; Qiu, X.; Lai, W.; Li, W.; Zhang, L.; Zhu, X.; He, S.; Duan, J.; Chen, L. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res. 2018, 147, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Li, Y.; Feng, X.; Li, D.; Li, X.; Ouyang, Q.; Dai, W.; Wu, G.; Zhou, Q.; Wang, P.; et al. Distinct Gut Microbiota Composition and Functional Category in Children With Cerebral Palsy and Epilepsy. Front. Pediatrics 2019, 7, 394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, S.; Zhou, Y.; Yu, L.; Zhang, L.; Wang, Y. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 2018, 145, 163–168. [Google Scholar] [CrossRef]
- Lindefeldt, M.; Eng, A.; Darban, H.; Bjerkner, A.; Zetterström, C.K.; Allander, T.; Andersson, B.; Borenstein, E.; Dahlin, M.; Prast-Nielsen, S. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. Npj Biofilms Microbiomes 2019, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Osborn, G.G.; Saunders, A.V. Current treatments for patients with Alzheimer disease. J. Osteopath. Med. 2010, 110, 16–26. [Google Scholar]
- DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar] [CrossRef]
- Graff-Radford, N.R.; Crook, J.E.; Lucas, J.; Boeve, B.F.; Knopman, D.S.; Ivnik, R.J.; Smith, G.E.; Younkin, L.H.; Petersen, R.C.; Younkin, S.G. Association of low plasma Aβ42/Aβ40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch. Neurol. 2007, 64, 354–362. [Google Scholar] [CrossRef]
- Rusek, M.; Pluta, R.; Ułamek-Kozioł, M.; Czuczwar, S.J. Ketogenic diet in Alzheimer’s disease. Int. J. Mol. Sci. 2019, 20, 3892. [Google Scholar] [CrossRef]
- Lee, L.-H.; Ser, H.-L.; Khan, T.M.; Long, M.; Chan, K.-G.; Goh, B.-H.; Mutalib, N.-S.A. IDDF2018-ABS-0239 Dissecting the gut and brain: Potential links between gut microbiota in development of alzheimer’s disease? Gut 2018, 67, A18. [Google Scholar]
- Abraham, D.; Feher, J.; Scuderi, G.L.; Szabo, D.; Dobolyi, A.; Cservenak, M.; Juhasz, J.; Ligeti, B.; Pongor, S.; Gomez-Cabrera, M.C. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: Role of microbiome. Exp. Gerontol. 2019, 115, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, A.; Cattane, N.; Galluzzi, S.; Provasi, S.; Lopizzo, N.; Festari, C.; Ferrari, C.; Guerra, U.P.; Paghera, B.; Muscio, C.; et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging 2017, 49, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Ota, M.; Matsuo, J.; Ishida, I.; Takano, H.; Yokoi, Y.; Hori, H.; Yoshida, S.; Ashida, K.; Nakamura, K.; Takahashi, T.; et al. Effects of a medium-chain triglyceride-based ketogenic formula on cognitive function in patients with mild-to-moderate Alzheimer’s disease. Neurosci. Lett. 2019, 690, 232–236. [Google Scholar] [CrossRef]
- Taylor, M.K.; Sullivan, D.K.; Mahnken, J.D.; Burns, J.M.; Swerdlow, R.H. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2018, 4, 28–36. [Google Scholar] [CrossRef]
- Neth, B.J.; Mintz, A.; Whitlow, C.; Jung, Y.; Solingapuram Sai, K.; Register, T.C.; Kellar, D.; Lockhart, S.N.; Hoscheidt, S.; Maldjian, J.; et al. Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer’s disease: A pilot study. Neurobiol. Aging 2020, 86, 54–63. [Google Scholar] [CrossRef]
- Nagpal, R.; Neth, B.J.; Wang, S.; Craft, S.; Yadav, H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 2019, 47, 529–542. [Google Scholar] [CrossRef]
- Johnson, D.; Letchumanan, V.; Thurairajasingam, S.; Lee, L.H. A Revolutionizing Approach to Autism Spectrum Disorder Using the Microbiome. Nutrients 2020, 12, 1983. [Google Scholar] [CrossRef]
- Mu, C.; Corley, M.J.; Lee, R.W.Y.; Wong, M.; Pang, A.; Arakaki, G.; Miyamoto, R.; Rho, J.M.; Mickiewicz, B.; Dowlatabadi, R.; et al. Metabolic Framework for the Improvement of Autism Spectrum Disorders by a Modified Ketogenic Diet: A Pilot Study. J. Proteome Res. 2020, 19, 382–390. [Google Scholar] [CrossRef]
- Davies, C.; Mishra, D.; Eshraghi, R.S.; Mittal, J.; Sinha, R.; Bulut, E.; Mittal, R.; Eshraghi, A.A. Altering the gut microbiome to potentially modulate behavioral manifestations in autism spectrum disorders: A systematic review. Neurosci. Biobehav. Rev. 2021, 128, 549–557. [Google Scholar] [CrossRef]
- De Angelis, M.; Piccolo, M.; Vannini, L.; Siragusa, S.; De Giacomo, A.; Serrazzanetti, D.I.; Cristofori, F.; Guerzoni, M.E.; Gobbetti, M.; Francavilla, R. Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified. PLoS ONE 2013, 8, e76993. [Google Scholar]
- Kandeel, W.A.; Meguid, N.A.; Bjørklund, G.; Eid, E.M.; Farid, M.; Mohamed, S.K.; Wakeel, K.E.; Chirumbolo, S.; Elsaeid, A.; Hammad, D.Y. Impact of Clostridium Bacteria in Children with Autism Spectrum Disorder and Their Anthropometric Measurements. J. Mol. Neurosci. 2020, 70, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.-W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; LaBaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children. PLoS ONE 2013, 8, e68322. [Google Scholar]
- Ahmed, S.A.; Elhefnawy, A.M.; Azouz, H.G.; Roshdy, Y.S.; Ashry, M.H.; Ibrahim, A.E.; Meheissen, M.A. Study of the gut Microbiome Profile in Children with Autism Spectrum Disorder: A Single Tertiary Hospital Experience. J. Mol. Neurosci. 2020, 70, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Evangeliou, A.; Vlachonikolis, I.; Mihailidou, H.; Spilioti, M.; Skarpalezou, A.; Makaronas, N.; Prokopiou, A.; Christodoulou, P.; Liapi-Adamidou, G.; Helidonis, E.; et al. Application of a Ketogenic Diet in Children With Autistic Behavior: Pilot Study. J. Child Neurol. 2003, 18, 113–118. [Google Scholar] [CrossRef]
- El-Rashidy, O.; El-Baz, F.; El-Gendy, Y.; Khalaf, R.; Reda, D.; Saad, K. Ketogenic diet versus gluten free casein free diet in autistic children: A case-control study. Metab. Brain Dis. 2017, 32, 1935–1941. [Google Scholar] [CrossRef]
- Newell, C.; Bomhof, M.R.; Reimer, R.A.; Hittel, D.S.; Rho, J.M.; Shearer, J. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol. Autism 2016, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Ruskin, D.N.; Svedova, J.; Cote, J.L.; Sandau, U.; Rho, J.M.; Kawamura, M., Jr.; Boison, D.; Masino, S.A. Ketogenic diet improves core symptoms of autism in BTBR mice. PLoS ONE 2013, 8, e65021. [Google Scholar]
- Tanaka, M.; Itoh, H. Hypertension as a metabolic disorder and the novel role of the gut. Curr. Hypertens. Rep. 2019, 21, 63. [Google Scholar] [CrossRef]
- Bouchard, C. The magnitude of the energy imbalance in obesity is generally underestimated. Int. J. Obes. 2008, 32, 879–880. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Gordon, J.I. The core gut microbiome, energy balance and obesity. J. Physiol. 2009, 587, 4153–4158. [Google Scholar] [CrossRef] [PubMed]
- Meijnikman, A.S.; Aydin, O.; Prodan, A.; Tremaroli, V.; Herrema, H.; Levin, E.; Acherman, Y.; Bruin, S.; Gerdes, V.E.; Backhed, F.; et al. Distinct differences in gut microbial composition and functional potential from lean to morbidly obese subjects. J. Intern. Med. 2020, 288, 699–710. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef]
- Crovesy, L.; Masterson, D.; Rosado, E.L. Profile of the gut microbiota of adults with obesity: A systematic review. Eur. J. Clin. Nutr. 2020, 74, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Yancy, W.S., Jr.; Westman, E.C.; McDuffie, J.R.; Grambow, S.C.; Jeffreys, A.S.; Bolton, J.; Chalecki, A.; Oddone, E.Z. A Randomized Trial of a Low-Carbohydrate Diet vs Orlistat Plus a Low-Fat Diet for Weight Loss. Arch. Intern. Med. 2010, 170, 136–145. [Google Scholar] [CrossRef]
- Ginsberg, H.N.; MacCallum, P.R. The obesity, metabolic syndrome, and type 2 diabetes mellitus pandemic: Part I. Increased cardiovascular disease risk and the importance of atherogenic dyslipidemia in persons with the metabolic syndrome and type 2 diabetes mellitus. J. Cardiometabolic Syndr. 2009, 4, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Repiso, C.; Hernández-García, C.; García-Almeida, J.M.; Bellido, D.; Martín-Núñez, G.M.; Sánchez-Alcoholado, L.; Alcaide-Torres, J.; Sajoux, I.; Tinahones, F.J.; Moreno-Indias, I. Effect of Synbiotic Supplementation in a Very-Low-Calorie Ketogenic Diet on Weight Loss Achievement and Gut Microbiota: A Randomized Controlled Pilot Study. Mol. Nutr. Food Res. 2019, 63, 1900167. [Google Scholar] [CrossRef]
- Basciani, S.; Camajani, E.; Contini, S.; Persichetti, A.; Risi, R.; Bertoldi, L.; Strigari, L.; Prossomariti, G.; Watanabe, M.; Mariani, S.; et al. Very-Low-Calorie Ketogenic Diets With Whey, Vegetable, or Animal Protein in Patients With Obesity: A Randomized Pilot Study. J. Clin. Endocrinol. Metab. 2020, 105, 2939–2949. [Google Scholar] [CrossRef]
- Ang, Q.Y.; Alexander, M.; Newman, J.C.; Tian, Y.; Cai, J.; Upadhyay, V.; Turnbaugh, J.A.; Verdin, E.; Hall, K.D.; Leibel, R.L.; et al. Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells. Cell 2020, 181, 1263–1275.e1216. [Google Scholar] [CrossRef]
- Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.; Tkach, S. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017, 17, 120. [Google Scholar] [CrossRef] [PubMed]
- Kraeuter, A.-K.; Guest, P.C.; Sarnyai, Z. Protocol for the Use of the Ketogenic Diet in Preclinical and Clinical Practice. In Clinical and Preclinical Models for Maximizing Healthspan: Methods and Protocols; Guest, P.C., Ed.; Springer: New York, NY, USA, 2020; pp. 83–98. [Google Scholar]
- Pilla, R. Clinical Applications of Ketogenic Diet-Induced Ketosis in Neurodegenerative and Metabolism-Related Pathologies. Proceedings 2020, 61, 29. [Google Scholar]
- Boison, D. New insights into the mechanisms of the ketogenic diet. Curr. Opin. Neurol. 2017, 30, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Nie, P.; Li, Z.; Wang, Y.; Zhang, Y.; Zhao, M.; Luo, J.; Du, S.; Deng, Z.; Chen, J.; Wang, Y.; et al. Gut microbiome interventions in human health and diseases. Med. Res. Rev. 2019, 39, 2286–2313. [Google Scholar] [CrossRef]
- He, Z.; Gharaibeh, R.Z.; Newsome, R.C.; Pope, J.L.; Dougherty, M.W.; Tomkovich, S.; Pons, B.; Mirey, G.; Vignard, J.; Hendrixson, D.R.; et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 2019, 68, 289–300. [Google Scholar] [CrossRef]
- Brusaferro, A.; Cavalli, E.; Farinelli, E.; Cozzali, R.; Principi, N.; Esposito, S. Gut dysbiosis and paediatric Crohn’s disease. J. Infect. 2019, 78, 1–7. [Google Scholar] [CrossRef]
- Mao, L.Y.; Ding, J.; Peng, W.F.; Ma, Y.; Zhang, Y.H.; Fan, W.; Wang, X. Interictal interleukin-17 A levels are elevated and correlate with seizure severity of epilepsy patients. Epilepsia 2013, 54, e142–e145. [Google Scholar] [CrossRef]
- Chang, P.; Terbach, N.; Plant, N.; Chen, P.E.; Walker, M.C.; Williams, R.S.B. Seizure control by ketogenic diet-associated medium chain fatty acids. Neuropharmacology 2013, 69, 105–114. [Google Scholar] [CrossRef]
- Machate, D.J.; Figueiredo, P.S.; Marcelino, G.; Guimarães, R.d.C.A.; Hiane, P.A.; Bogo, D.; Pinheiro, V.A.Z.; Oliveira, L.C.S.d.; Pott, A. Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. Int. J. Mol. Sci. 2020, 21, 4093. [Google Scholar] [CrossRef]
- Li, X.; Shimizu, Y.; Kimura, I. Gut microbial metabolite short-chain fatty acids and obesity. Biosci. Microbiota Food Health 2017, 36, 135–140. [Google Scholar] [CrossRef]
- Sabui, S.; Romero, J.M.; Said, H.M. Developmental maturation of the colonic uptake process of the microbiota-generated thiamin pyrophosphate. Am. J. Physiol.-Gastrointest. Liver Physiol. 2021, 320, G829–G835. [Google Scholar] [CrossRef]
- Bjørklund, G.; Waly, M.I.; Al-Farsi, Y.; Saad, K.; Dadar, M.; Rahman, M.; Elhoufey, A.; Chirumbolo, S.; Jóźwik-Pruska, J.; Kałużna-Czaplińska, J. The role of vitamins in autism spectrum disorder: What do we know? J. Mol. Neurosci. 2019, 67, 373–387. [Google Scholar] [PubMed]
- O’Callaghan, A.; van Sinderen, D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front. Microbiol. 2016, 7, 925. [Google Scholar] [CrossRef] [PubMed]
- Mathew, J.; Balakrishnan, S.; Antony, S.; Abraham, P.M.; Paulose, C. Decreased GABA receptor in the cerebral cortex of epileptic rats: Effect of Bacopa monnieri and Bacoside-A. J. Biomed. Sci. 2012, 19, 25. [Google Scholar] [CrossRef]
- Endo, Y.; Yokote, K.; Nakayama, T. The obesity-related pathology and Th17 cells. Cell. Mol. Life Sci. 2017, 74, 1231–1245. [Google Scholar] [CrossRef]
- Sharp, W.G.; Jaquess, D.L.; Lukens, C.T. Multi-method assessment of feeding problems among children with autism spectrum disorders. Res. Autism Spectr. Disord. 2013, 7, 56–65. [Google Scholar] [CrossRef]
- McDonald, T.J.W.; Cervenka, M.C. Ketogenic Diets for Adult Neurological Disorders. Neurotherapeutics 2018, 15, 1018–1031. [Google Scholar] [CrossRef]
- Włodarek, D. Role of Ketogenic Diets in Neurodegenerative Diseases (Alzheimer’s Disease and Parkinson’s Disease). Nutrients 2019, 11, 169. [Google Scholar] [CrossRef] [PubMed]
- Tagliabue, A.; Ferraris, C.; Uggeri, F.; Trentani, C.; Bertoli, S.; de Giorgis, V.; Veggiotti, P.; Elli, M. Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 Deficiency Syndrome: A 3-month prospective observational study. Clin. Nutr. ESPEN 2017, 17, 33–37. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.-M.; Letchumanan, V.; Tan, L.T.-H.; Hong, K.-W.; Wong, S.-H.; Ab Mutalib, N.-S.; Lee, L.-H.; Law, J.W.-F. Ketogenic Diet: A Dietary Intervention via Gut Microbiome Modulation for the Treatment of Neurological and Nutritional Disorders (a Narrative Review). Nutrients 2022, 14, 3566. https://doi.org/10.3390/nu14173566
Lim J-M, Letchumanan V, Tan LT-H, Hong K-W, Wong S-H, Ab Mutalib N-S, Lee L-H, Law JW-F. Ketogenic Diet: A Dietary Intervention via Gut Microbiome Modulation for the Treatment of Neurological and Nutritional Disorders (a Narrative Review). Nutrients. 2022; 14(17):3566. https://doi.org/10.3390/nu14173566
Chicago/Turabian StyleLim, Jun-Ming, Vengadesh Letchumanan, Loh Teng-Hern Tan, Kar-Wai Hong, Sunny-Hei Wong, Nurul-Syakima Ab Mutalib, Learn-Han Lee, and Jodi Woan-Fei Law. 2022. "Ketogenic Diet: A Dietary Intervention via Gut Microbiome Modulation for the Treatment of Neurological and Nutritional Disorders (a Narrative Review)" Nutrients 14, no. 17: 3566. https://doi.org/10.3390/nu14173566
APA StyleLim, J. -M., Letchumanan, V., Tan, L. T. -H., Hong, K. -W., Wong, S. -H., Ab Mutalib, N. -S., Lee, L. -H., & Law, J. W. -F. (2022). Ketogenic Diet: A Dietary Intervention via Gut Microbiome Modulation for the Treatment of Neurological and Nutritional Disorders (a Narrative Review). Nutrients, 14(17), 3566. https://doi.org/10.3390/nu14173566