Estimates of Dietary Mineral Micronutrient Supply from Staple Cereals in Ethiopia at a District Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Settings
2.2. Crop Production and Cereal-grain Mineral Composition Data
2.3. Estimation of Dietary Mineral Supplies and Contribution to Requirements
3. Results
3.1. District-Level Cereal Production
3.2. Grain Mineral Composition
3.3. Dietary Mineral Supply from Cereals
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Acronyms
References
- Kihara, J.; Bolo, P.; Kinyua, M.; Rurinda, J.; Piikki, K. Micronutrient deficiencies in African soils and the human nutritional nexus: Opportunities with staple crops. Environ. Geochem. Health 2020, 42, 3015–3033. [Google Scholar] [CrossRef] [Green Version]
- Barrett, C.B.; Bevis, L.E. The micronutrient deficiencies challenge in African Food Systems. In The Fight Against Hunger and Malnutrition: The Role of Food, Agriculture, and Targeted Policies; Oxford University Press: Oxford, UK, 2015; pp. 61–88. [Google Scholar]
- Ethiopian Public Health Institute (EPHI). Ethiopian National Micronutrient Survey Report; Ministry of Health (MOH): Addis Ababa, Ethiopia, 2016; pp. 9–13.
- Berhe, K.; Gebrearegay, F.; Gebremariam, H. Prevalence and associated factors of zinc deficiency among pregnant women and children in Ethiopia: A systematic review and meta-analysis. BMC Public Health 2019, 19, 1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belay, A.; Marquis, G.; Desse, G. Effect of Socio-Demographic Factors on Zinc Status of Infants and Preschool Children in East Gojjam, Amhara Region of Ethiopia. J. Food Sci. Eng. 2015, 5, 22–28. [Google Scholar]
- Tessema, M.; De-Groote, H.; Brouwer, I.D.; Fesken, E.J.; Belachew, T.; Zerfu, D.; Belay, A.; Demelash, Y.; Gunaratna, N.S. Soil Zinc Is Associated with Serum Zinc but Not with Linear Growth of Children in Ethiopia. Nutrients 2019, 11, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belay, A.; Joy, E.J.M.; Chagumaira, C.; Zerfu, D.; Ander, E.L.; Young, S.D.; Bailey, E.H.; Lark, R.M.; Broadley, M.R.; Gashu, D. Selenium Deficiency Is Widespread and Spatially Dependent in Ethiopia. Nutrients 2020, 12, 1565. [Google Scholar] [CrossRef] [PubMed]
- Gashu, D.; Marquis, G.S.; Bougma, K.; Stoecker, B.J. Spatial Variation of Human Selenium in Ethiopia. Biol. Trace Elem. Res. 2019, 189, 354–360. [Google Scholar] [CrossRef]
- Ethiopian Public Health Institute (EPHI); Ministry of Health (MOH); Micronutrient Initiative; World Bank; Global Allian for Improved Nutrition (GAIN). Ethiopia National Food Consumption Survey; EPHI: Addis Ababa, Ethiopia, 2013; pp. 20–30.
- Tesfaye, B.; Sinclair, K.; Wuehler, S.E.; Moges, T.; De-Regil, L.M.; Dickin, K.L. Applying international guidelines for calcium supplementation to prevent pre-eclampsia: Simulation of recommended dosages suggests risk of excess intake in Ethiopia. Public Health Nutr. 2019, 22, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Awika, J.M. Major Cereal Grains Production and Use around the World. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; American Chemical Society: Washington, DC, USA, 2011; pp. 1–13. [Google Scholar]
- World Health Organization (WHO). Diet, Nutrition and the Prevention of Chronic Diseases; WHO T.R. Series; WHO: Geneva, Switzerland, 2003; pp. 1–150. [Google Scholar]
- Berhane, G.; Paulos, Z.; Tafere, K.; Tamru, S. Foodgrain Consumption and Calorie Intake Patterns in Ethiopia; IFPRI Ethiopia Strategy Support Program II (ESSP II) Working Paper; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2011; Volume 23. [Google Scholar]
- Gashu, D.; Stoecker, B.J.; Adish, A.; Haki, G.D.; Bougma, K.; Marquis, G.S. Ethiopian pre-school children consuming a predominantly unrefined plant-based diet have low prevalence of iron-deficiency anaemia. Public Health Nutr. 2016, 19, 1834–1841. [Google Scholar] [CrossRef] [Green Version]
- Negassa, A.; Haile, S.; Bane, J.; Olana, G.; Hodjo, M. Final Report: USAID-Ethiopia Bellmon Crop Availability and Market Analysis for 2021/22; Food Security Service Center II; USAID: Washington, DC, USA, 2021; pp. 30–32.
- Gashu, D.; Nalivata, P.C.; Amede, T.; Ander, E.L.; Bailey, E.H.; Botoman, L.; Chagumaira, C.; Gameda, S.; Haefele, S.M.; Hailu, K.; et al. The nutritional quality of cereals varies geospatially in Ethiopia and Malawi. Nature 2021, 594, 71–76. [Google Scholar] [CrossRef]
- Gashu, D.; Lark, R.M.; Milne, A.E.; Amede, T.; Bailey, E.H.; Chagumaira, C.; Dunham, S.J.; Gameda, S.; Kumssa, D.B.; Mossa, A.W.; et al. Spatial prediction of the concentration of selenium (Se) in grain across part of Amhara Region, Ethiopia. Sci. Total Environ. 2020, 733, 139231. [Google Scholar] [CrossRef]
- Gebremedhin, S. Trends in the national food supply of absorbable zinc in Ethiopia: 1990–2017. Public Health Nutr. 2021, 24, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Wessells, K.R.; Singh, G.M.; Brown, K.H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumssa, D.B.; Joy, E.J.; Ander, E.L.; Watts, M.J.; Young, S.D.; Walker, S.; Broadley, M.R. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Sci. Rep. 2015, 5, 10974. [Google Scholar] [CrossRef] [Green Version]
- Joy, E.J.M.; Ander, E.L.; Young, S.D.; Black, C.R.; Watts, M.J.; Chilimba, A.D.; Broadley, M.R. Dietary mineral supplies in Africa. Physiol. Plant. 2014, 151, 208–229. [Google Scholar] [CrossRef] [Green Version]
- Worldmeters. Ethiopia Demographics: Population, Fertility, and Underfive Mortality. Demographics. 2020. Available online: https://www.worldometers.info/demographics/ethiopia-demographics/ (accessed on 10 June 2020).
- Central Statistical Agency. Agricultural Sample Survey: Report on Farm Management Practices (Private Peasant Holdings, Meher Season); CSA: Addis Ababa, Ethiopia, 2021; pp. 11–14.
- Central Statistical Agency (CSA). Central Statistical Agency Agricultural Sample Survey 2019/20 (2012 E.C.): Report on Area and Production of Major Crops (Private Peasant Holdings, Meher Season); The Federal Democratic Republic of Ethiopia Central Statistical Agency: Addis Ababa, Ethiopia, 2019; pp. 12–20.
- International Food Policy Research Institute (IFPRI); International Institute for Applied Systems Analysis (IIASA). Global Spatially-Disaggregated Crop Production Statistics Data for 2005 Version 3.2; [Dataset]; IFPRI: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Gibson, R.S.; King, J.C.; Lowe, N. A Review of dietary Zinc recommendations. Food Nutr. Bull. 2016, 37, 443–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, L.H.; Carriquiry, A.L.; Murphy, S.P. Perspective: Proposed harmonized nutrient reference values for populations. Adv. Nutr. 2020, 11, 469–483. [Google Scholar] [CrossRef]
- Rousseau, S.; Kyomugasho, C.; Celus, M.; Hendrickx, M.E.; Grauwet, T. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Crit. Rev. Food Sci. Nutr. 2020, 60, 826–843. [Google Scholar] [CrossRef]
- Institute of Medicine (US). Dietary Reference Intakes for Calcium and Vitamin D; Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; National Academies Press (US): Washington, DC, USA, 2011. [Google Scholar]
- Zhang, Y.Y.; Stockmann, R.; Ng, K.; Ajlouni, S. Opportunities for plant-derived enhancers for iron, zinc, and calcium bioavailability: A review. Compr. Rev. Food Sci. 2021, 20, 652–685. [Google Scholar] [CrossRef]
- Buchowski, M.S. Calcium in the Context of Dietary Sources and Metabolism. In Calcium: Chemistry, Analysis, Function and Effects; Royal Society of Chemistry: London, UK, 2015; pp. 3–20. [Google Scholar]
- Mwangi, M.N.; Mzembe, G.; Moya, E.; Verhoef, H. Iron deficiency anaemia in sub-Saharan Africa: A review of current evidence and primary care recommendations for high-risk groups. Lancet Haematol. 2021, 8, e732–e743. [Google Scholar] [CrossRef]
- Osungbade, K.O.; Oladunjoye, A.O. Anaemia in developing countries: Burden and prospects of prevention and control. Anemia 2012, 3, 116–129. [Google Scholar]
- Kassebaum, N.J.; Collaborators, G.A. The global burden of anemia. Hematol./Oncol. Clin. N. Am. 2016, 30, 247–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, R.S.; Wawer, A.A.; Fairweather-Tait, S.J.; Hurst, R.; Young, S.D.; Broadley, M.R.; Siyame, E.W. Dietary iron intakes based on food composition data may underestimate the contribution of potentially exchangeable contaminant iron from soil. J. Food Compost. Anal. 2015, 40, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Baye, K.; Mouqet-Rivier, C.; Icard-vernere, C.; Picq, C.; Guyot, J.-P. Change in mineral absorption inhibitors consequent to fermentation of Ethiopian Injera: Implication for predicted iron bioavailiability and bioaccessibility. Int. J. Food Sci. Technol. 2014, 49, 174–180. [Google Scholar] [CrossRef]
- Paul, S.; Ali, N.; Sarkar, S.N.; Datta, S.K.; Datta, K. Loading and bioavailability of iron in cereal grains. Plant Cell Tissue Organ Cult. 2013, 113, 363–373. [Google Scholar] [CrossRef]
- Aslam, M.; Ellis, P.; Berry, S.; Latunde-Dada, G.O.; Sharp, P. Enhancing mineral bioavailability from cereals: Current strategies and future perspectives. Nutr. Bull. 2018, 43, 184–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phiri, F.P.; Ander, E.L.; Bailey, E.H.; Chilima, B.; Chilimba, A.D.C.; Gondwe, J.; Joy, E.J.M.; Kalimbira, A.A.; Kumssa, D.B.; Lark, R.M.; et al. The risk of selenium deficiency in Malawi is large and varies over multiple spatial scales. Sci. Rep. 2019, 9, 6566. [Google Scholar] [CrossRef] [Green Version]
- Ligowe, I.S.; Phiri, F.P.; Ander, E.L.; Bailey, E.H.; Chilimba, A.D.C.; Gashu, D.; Broadley, M.R. Selenium (Se) deficiency risks in sub-Saharan African food systems and their geospatial linkages. Proc. Nutr. Soc. 2020, 79, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ayana, G.; Moges, T.; Samuel, A.; Asefa, T.; Eshetu, S.; Kebede, A. Dietary zinc intake and its determinants among Ethiopian children 6–35 months of age. BMC Nutr. 2018, 4, 30. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agriculture Organization of the United Nations. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; WHO: Geneva, Switzerland; FAO: Rome, Italy, 2004. [Google Scholar]
- Xue, Y.-F.; Yue, S.-C.; Zhang, Y.-Q.; Cui, Z.-L.; Chen, X.-P.; Yang, F.-C.; Cakmak, I.; McGrath, S.P.; Zhang, F.-S.; Zou, C.-Q. Grain and shoot zinc accumulation in winter wheat affected by nitrogen management. Plant Soil 2012, 361, 153–163. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.Á. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Alloway, B.J. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Wessells, K.R.; Singh, G.M.; Brown, K.H. Estimating the Global Prevalence of Inadequate Zinc Intake from National Food Balance Sheets: Effects of Methodological Assumptions. PLoS ONE 2012, 7, e50565. [Google Scholar] [CrossRef] [PubMed]
- Belay, A.; Gashu, D.; Joy, E.J.M.; Lark, R.M.; Chagumaira, C.; Likoswe, B.H.; Zerfu, D.; Ander, E.L.; Young, S.D.; Bailey, E.H.; et al. Zinc deficiency is highly prevalent and spatially dependent over short distances in Ethiopia. Sci. Rep. 2021, 11, 6510. [Google Scholar] [CrossRef] [PubMed]
- Bouis, H.E.; Hotz, C.; McClafferty, B.; Meenakshi, J.; Pfeiffer, W.H. Biofortification: A new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 2011, 32 (Suppl. S1), S31–S40. [Google Scholar] [CrossRef]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef]
- Tegbaru, B. Soil Fertility Mapping and Fertilizer Recommendation in Ethiopia: Update of EthioSIS project and status of fertilizer blending plants. The Role of Potassium in Balanced Fertilization. In Proceedings of the 2nd IPI–MoANR–ATA-Hawassa University Joint Symposium, Hawassa, Ethiopia, 24–26 November 2015; pp. 24–26. [Google Scholar]
- Kempen, B.; Hengl, T.; Heuvelink, G.; Leenaars, J.G.; Walsh, M.G.; MacMillan, R.A.; Tondoh, J.E. Soil property maps of Africa at 250 m resolution. In EGU General Assembly Conference Abstracts; European Geosciences Union: Munich, Germany, 2015. [Google Scholar]
- Joy, E.J.; Broadley, M.R.; Young, S.D.; Black, C.R.; Chilimba, A.D.; Ander, E.L.; Barlow, T.S.; Watts, M.J. Soil type influences crop mineral composition in Malawi. Sci. Total Environ. 2015, 505, 587–595. [Google Scholar] [CrossRef] [Green Version]
Grain Type | Ca | Fe | Se | Zn |
---|---|---|---|---|
Barley | 403.0 (68–437) | 60.0 (51–76) | 25.0 (20–29) | 30.0 (27–34) |
Maize | 77.0 (62–85) | 24.0 (23–25) | 15.0 (8–22) | 20.0 (19–21) |
Sorghum | 191.0 (165–243) | 59.0 (53–72) | 12.0 (8–18) | 20.0 (19–21) |
Teff | 1575.0 (1485–1611) | 270.0 (199–340) | 61.0 (42–93) | 29.0 (28–31) |
Wheat | 427.0 (381–467) | 45.0 (43–48) | 8.0 (6–10) | 28.0 (26–30) |
Grains | Ca | Fe | Se | Zn |
---|---|---|---|---|
Teff | 83.0 (29–144) | 10.9 (4.8–24) | 5.6 (2.0–13.1) | 1.50 (0.54–2.60) |
Wheat | 14.0 (3.0–30.0) | 1.4 (0.3–3.3) | 2.0 (0.5–5.5) | 0.88 (0.19–1.89) |
Maize | 4.5 (1.5–9.8) | 1.4 (0.5–3.4) | 3.4 (1.3–7.4) | 1.20 (0.39–2.66) |
Sorghum | 8.3 (2.1–22.0) | 3.0 (0.7–7.0) | 4.6 (1.2–11.2) | 0.82 (0.23–2.10) |
Barley | 5.0 (1.8–20.7) | 0.8 (0.3–3.7) | 0.3 (0.1–1.3) | 0.36 (0.12–1.51) |
Cereals ‡ | 146.0 (83–201) | 23.0 (16.8–34.1) | 25.1 (18.2–36.4) | 7.1 (6.4–8.0) |
Cereals | Ca | Fe | Se | Zn |
---|---|---|---|---|
Maize | 0.5 (0.2–1.1) | 6.8 (2.1–15.3) | 7.5 (2.8–16.4) | 12.0 (3.8–26.1) |
Wheat | 1.6 (0.3–3.4) | 6.3 (1.5–14.8) | 44.4 (12–123) | 8.6 (1.9–18.5) |
Teff | 9.7 (3.3–16.7) | 48.5 (21.6–107) | 12.3 (4.5–29.1) | 14.7 (5.3–25.5) |
Sorghum | 1.0 (0.2–2.6) | 13.2 (3.2–31.2) | 10.0 (2.7–25.0) | 8.0 (2.2–20.3) |
Barley | 0.6 (0.2–2.4) | 3.6 (1.3–16.6) | 0.7 (0.2–2.9) | 3.6 (1.2–14.8) |
Total † | 17.0 (0.0–23.0) | 103.0 (75.0–152.0) | 56.0 (40.0–81.0) | 69.0 (62.0–78.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdu, A.O.; Kumssa, D.B.; Joy, E.J.M.; Groote, H.D.; Lark, R.M.; Broadley, M.R.; Gashu, D. Estimates of Dietary Mineral Micronutrient Supply from Staple Cereals in Ethiopia at a District Level. Nutrients 2022, 14, 3469. https://doi.org/10.3390/nu14173469
Abdu AO, Kumssa DB, Joy EJM, Groote HD, Lark RM, Broadley MR, Gashu D. Estimates of Dietary Mineral Micronutrient Supply from Staple Cereals in Ethiopia at a District Level. Nutrients. 2022; 14(17):3469. https://doi.org/10.3390/nu14173469
Chicago/Turabian StyleAbdu, Abdu Oumer, Diriba B. Kumssa, Edward J. M. Joy, Hugo De Groote, R. Murray Lark, Martin R. Broadley, and Dawd Gashu. 2022. "Estimates of Dietary Mineral Micronutrient Supply from Staple Cereals in Ethiopia at a District Level" Nutrients 14, no. 17: 3469. https://doi.org/10.3390/nu14173469
APA StyleAbdu, A. O., Kumssa, D. B., Joy, E. J. M., Groote, H. D., Lark, R. M., Broadley, M. R., & Gashu, D. (2022). Estimates of Dietary Mineral Micronutrient Supply from Staple Cereals in Ethiopia at a District Level. Nutrients, 14(17), 3469. https://doi.org/10.3390/nu14173469