Household Income Is Related to Dietary Fiber Intake and Dietary Acid Load in People with Type 2 Diabetes: A Cross-Sectional Study
Abstract
:1. Introduction
2. Method
2.1. Study Design, Setting and Participants
2.2. Questionnaire Regarding Lifestyle Characteristics and Household Income
2.3. Participant Data
2.4. Estimation and Assessment of Habitual Food and Nutrient Intake
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charvat, H.; Goto, A.; Goto, M.; Inoue, M.; Heianza, Y.; Arase, Y.; Sone, H.; Nakagami, T.; Song, X.; Qiao, Q.; et al. Impact of population aging on trends in diabetes prevalence: A meta-regression analysis of 160,000 Japanese adults. J. Diabetes Investig. 2015, 6, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Connolly, V.; Unwin, N.; Sherriff, P.; Bilous, R.; Kelly, W. Diabetes prevalence and socioeconomic status: A population based study showing increased prevalence of type 2 diabetes mellitus in deprived areas. J. Epidemiol. Community Health 2000, 54, 173–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagamine, Y.; Kondo, N.; Yokobayashi, K.; Ota, A.; Miyaguni, Y.; Sasaki, Y.; Tani, Y.; Kondo, K. Socioeconomic Disparity in the Prevalence of Objectively Evaluated Diabetes Among Older Japanese Adults: JAGES Cross-Sectional Data in 2010. J. Epidemiol. 2019, 29, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Adams, P.F.; Benson, V. Current estimates from the National Health interview survey, 1989. Vital Health Stat. 1990, 10, 1–221. [Google Scholar]
- Branfield Day, L.; Austin, P.C.; Shah, B.R. Universal drug coverage and income-related disparities in glycaemic control. Diabet. Med. 2020, 37, 822–827. [Google Scholar] [CrossRef]
- Kondo, N.; Saito, M.; Hikichi, H.; Aida, J.; Ojima, T.; Kondo, K.; Kawachi, I. Relative deprivation in income and mortality by leading causes among older Japanese men and women: AGES cohort study. J. Epidemiol. Community Health 2015, 69, 680–685. [Google Scholar] [CrossRef]
- Japan Ministry of Health, Labour and Welfare. The National Nutrition Survey in Japan. 2012. Available online: https://www.mhlw.go.jp/bunya/kenkou/eiyou/h26-houkoku.html (accessed on 24 April 2021). (In Japanese).
- Storey, M.; Anderson, P. Income and race/ethnicity influence dietary fiber intake and vegetable consumption. Nutr. Res. 2014, 34, 844–850. [Google Scholar] [CrossRef] [Green Version]
- Chandalia, M.; Garg, A.; Lutjohann, D.; von Bergmann, K.; Grundy, S.M.; Brinkley, L.J. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N. Engl J. Med. 2000, 342, 1392–1398. [Google Scholar] [CrossRef]
- Kim, Y.; Je, Y. Dietary fiber intake and total mortality: A meta-analysis of prospective cohort studies. Am. J. Epidemiol. 2014, 180, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Katagiri, R.; Goto, A.; Sawada, N.; Yamaji, T.; Iwasaki, M.; Noda, M.; Iso, H.; Tsugane, S. Dietary fiber intake and total and cause-specific mortality: The Japan Public Health Center-based prospective study. Am. J. Clin. Nutr. 2020, 111, 1027–1035. [Google Scholar] [CrossRef]
- Iwase, H.; Tanaka, M.; Kobayashi, Y.; Wada, S.; Kuwahata, M.; Kido, Y.; Hamaguchi, M.; Asano, M.; Yamazaki, M.; Hasegawa, G.; et al. Lower vegetable protein intake and higher dietary acid load associated with lower carbohydrate intake are risk factors for metabolic syndrome in patients with type 2 diabetes: Post-hoc analysis of a cross-sectional study. J. Diabetes Investig. 2015, 6, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Fagherazzi, G.; Vilier, A.; Bonnet, F.; Lajous, M.; Balkau, B.; Boutron-Rualt, M.C.; Clavel-Chapelon, F. Dietary acid load and risk of type 2 diabetes: The E3N-EPIC cohort study. Diabetologia 2014, 57, 313–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akter, S.; Kurotani, K.; Kashino, I.; Goto, A.; Mizoue, T.; Noda, M.; Sawada, N.; Tsugane, S.; Japan Public Health Center–based Prospective Study Group. High Dietary Acid Load Score Is Associated with Increased Risk of Type 2 Diabetes in Japanese Men: The Japan Public Health Center-based Prospective Study. J. Nutr. 2016, 146, 1076–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Curhan, G.C.; Forman, J.P. Diet-dependent net acid load and risk of incident hypertension in United States women. Hypertension 2009, 54, 751–755. [Google Scholar] [CrossRef]
- Kurotani, K.; Akter, S.; Kashino, I.; Goto, A.; Mizoue, T.; Noda, M.; Sasazuki, S.; Sawada, N.; Tsugane, S.; Japan Public Health Center based Prospective Study Group. Quality of diet and mortality among Japanese men and women: Japan Public Health Center based prospective study. BMJ 2016, 352, i1209. [Google Scholar] [CrossRef] [Green Version]
- Remer, T.; Manz, F. Potential renal acid load of foods and its influence on urine pH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef]
- Toba, K.; Hosojima, M.; Kabasawa, H.; Kuwahara, S.; Murayama, T.; Yamamoto-Kabasawa, K.; Kaseda, R.; Wada, E.; Watanabe, R.; Tanabe, N.; et al. Higher estimated net endogenous acid production with lower intake of fruits and vegetables based on a dietary survey is associated with the progression of chronic kidney disease. BMC Nephrol. 2019, 20, 421. [Google Scholar] [CrossRef] [Green Version]
- Sakai, R.; Hashimoto, Y.; Ushigome, E.; Miki, A.; Okamura, T.; Matsugasumi, M.; Fukuda, T.; Majima, S.; Matsumoto, S.; Senmaru, T.; et al. Late-night-dinner is associated with poor glycemic control in people with type 2 diabetes: The KAMOGAWA-DM cohort study. Endocr. J. 2018, 65, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Sasaki, S.; Takahashi, Y.; Okubo, H.; Hosoi, Y.; Horiguchi, H.; Oguma, E.; Kayama, F. Dietary glycemic index and load in relation to metabolic risk factors in Japanese female farmers with traditional dietary habits. Am. J. Clin. Nutr. 2006, 83, 1161–1169. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, M.; Nakagawa, H.; Kadota, A.; Yoshita, K.; Nakamura, Y.; Okuda, N.; Nishi, N.; Miyamoto, Y.; Arima, H.; Ohkubo, T.; et al. Macronutrient Intake and Socioeconomic Status: NIPPON DATA2010. J. Epidemiol. 2018, 28, S17–S22. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, Y.; Sakai, R.; Ikeda, K.; Fukui, M. Association between sleep disorder and quality of life in patients with type 2 diabetes: A cross-sectional study. BMC Endocr. Disord. 2020, 20, 98. [Google Scholar] [CrossRef]
- National Tax Agency. Statistical Survey of Actual Status for Salary in the Private Sector in Japan. 2020. Available online: https://www.nta.go.jp/publication/statistics/kokuzeicho/minkan/gaiyou/2019.htm (accessed on 6 May 2021). (In Japanese).
- Lemmens, H.J.; Brodsky, J.B.; Bernstein, D.P. Estimating ideal body weight—A new formula. Obes. Surg. 2005, 15, 1082–1083. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Haneda, M.; Utsunomiya, K.; Koya, D.; Babazono, T.; Moriya, T.; Makino, H.; Kimura, K.; Suzuki, Y.; Wada, T.; Ogawa, S.; et al. A New Classification of Diabetic Nephropathy 2014: A Report from Joint Committee on Diabetic Nephropathy. J. Diabetes Investig. 2015, 6, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both Comprehensive and Brief Self-Administered Diet History Questionnaires Satisfactorily Rank Nutrient Intakes in Japanese Adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, Y.; Tanaka, M.; Miki, A.; Kobayashi, Y.; Wada, S.; Kuwahata, M.; Kido, Y.; Yamazaki, M.; Fukui, M. Intake of Carbohydrate to Fiber Ratio Is a Useful Marker for Metabolic Syndrome in Patients with Type 2 Diabetes: A Cross-Sectional Study. Ann. Nutr. Metab. 2018, 72, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Kaji, A.; Hashimoto, Y.; Sakai, R.; Okada, H.; Hamaguchi, M.; Ushigome, E.; Majima, S.; Yamazaki, M.; Fukui, M. Frequent Usage of Convenience Stores is Associated with Low Diet Quality. Nutrients 2019, 11, 1212. [Google Scholar] [CrossRef] [Green Version]
- Remer, T.; Dimitriou, T.; Manz, F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am. J. Clin. Nutr. 2003, 77, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Frassetto, L.A.; Todd, K.M.; Morris, R.C.; Sebastian, A., Jr. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 1998, 68, 576–583. [Google Scholar] [CrossRef] [Green Version]
- Roberts, S.B.; Rosenberg, I. Nutrition and Aging: Changes in the Regulation of Energy Metabolism with Aging. Physiol. Rev. 2006, 86, 651–667. [Google Scholar] [CrossRef]
- Mottalib, A.; Salsberg, V.; Mohd-Yusof, B.N.; Mohamed, W.; Carolan, P.; Pober, D.M.; Mitri, J.; Hamdy, O. Effects of Nutrition Therapy on HbA1c and Cardiovascular Disease Risk Factors in Overweight and Obese Patients with Type 2 Diabetes. Nutr. J. 2018, 17, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preuss, H.G.; Gondal, J.A.; Lieberman, S. Association of Macronutrients and Energy Intake with Hypertension. J. Am. Coll. Nutr. 2013, 15, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, G.; Rivellese, A.A. Effects of Dietary Fiber and Carbohydrate on Glucose and Lipoprotein Metabolism in Diabetic Patients. Diabetes Care 1991, 14, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Tsukui, S.; Kanda, T.; Nara, M.; Nishino, M.; Kondo, T.; Kobayashi, I. Moderate-Intensity Regular Exercise Decreases Serum Tumor Necrosis Factor-α and HbA1c Levels in Healthy Women. Int. J. Obes. 2000, 24, 1207–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, P.M.; Gudbjörnsdottir, S.; Eliasson, B.; Cederholm, J. Smoking Is Associated with Increased HbA1c Values and Microalbuminuria in Patients with Diabetes—Data from the National Diabetes Register in Sweden. Diabetes Metab. 2004, 30, 261–268. [Google Scholar] [CrossRef]
- Hirakawa, M.; Arase, Y.; Amakawa, K.; Ohmoto-Sekine, Y.; Ishihara, M.; Shiba, M.; Ogawa, K.; Okuda, C.; Jinno, T.; Kato, H.; et al. Relationship between Alcohol Intake and Risk Factors for Metabolic Syndrome in Men. Intern. Med. 2015, 54, 2139–2145. [Google Scholar] [CrossRef] [Green Version]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Nishi, N.; Horikawa, C.; Murayama, N. Characteristics of food group intake by household income in the National Health and Nutrition Survey, Japan. Asia Pac. J. Clin. Nutr. 2017, 26, 156–159. [Google Scholar] [CrossRef]
- Produce for Better Health Foundation. Moms’ Attitudes and Beliefs Related to Fruit and Vegetable Consumption; 2007–2014 [P. 5, 16, 19, 20, 21]. Available online: https://fruitsandveggies.org/wp-content/uploads/2020/08/MomReport2014_WEB.pdf (accessed on 8 September 2021).
- Whelton, S.P.; Hyre, A.D.; Pedersen, B.; Yi, Y.; Whelton, P.K.; He, J. Effect of dietary fiber intake on blood pressure: A meta-analysis of randomized, controlled clinical trials. J. Hypertens. 2005, 23, 475–481. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, L.G.; Wu, Q.J.; Ma, X.; Xiang, Y.B. Association between dietary fiber and lower risk of all-cause mortality: A meta-analysis of cohort studies. Am. J. Epidemiol. 2015, 181, 83–91. [Google Scholar] [CrossRef]
- Adeva, M.M.; Souto, G. Diet-induced metabolic acidosis. Clin. Nutr. 2011, 30, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Livingstone, M.; Okubo, H.; Sasaki, S. Higher dietary acid load is weakly associated with higher adiposity measures and blood pressure in Japanese adults: The National Health and Nutrition Survey. Nutr. Res. 2017, 44, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, P.; Abbasalizad Farhangi, M. Dietary acid load, blood pressure, fasting blood sugar and biomarkers of insulin resistance among adults: Findings from an updated systematic review and meta-analysis. Int. J. Clin. Pract. 2020, 74, e13471. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.W.; Chen, Z.H.; Liang, Y.H.; Wang, P.; Peng, J.W. Elevated hypertension risk associated with higher dietary acid load: A systematic review and meta-analysis. Clin. Nutr. ESPEN. 2019, 33, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, C.M.; Dwyer, J.T.; Jacques, P.F.; Chuang, L.M.; Haas, C.F.; Weinger, K. Determinants of dietary self-care behaviours among Taiwanese patients with type 2 diabetes. Asia Pac. J. Clin. Nutr. 2015, 24, 430–437. [Google Scholar] [CrossRef]
All N = 201 | Men N = 128 | Women N = 73 | p | |
---|---|---|---|---|
Age (years) | 69.0 (8.8) | 68.3 (9.5) | 70.4 (7.2) | 0.097 |
Duration of diabetes (years) | 17.7 (11.0) | 17.4 (10.8) | 18.2 (11.4) | 0.651 |
Family history of diabetes (+) | 40.8 (82) | 32.8 (42) | 54.8 (40) | 0.004 |
Height (cm) | 162.2 (9.3) | 167.6 (6.2) | 152.8 (5.6) | <0.001 |
Body weight (kg) | 62.8 (12.2) | 67.3 (11.0) | 55.1 (10.1) | <0.001 |
Body mass index (kg/m2) | 23.8 (3.5) | 23.9 (3.3) | 23.5 (3.9) | 0.462 |
SBP (mmHg) | 130.4 (16.2) | 130.7 (16.2) | 129.9 (16.4) | 0.737 |
DBP (mmHg) | 74.1 (11.5) | 75.4 (11.8) | 71.8 (10.7) | 0.028 |
Antihypertensive drugs (+) | 61.2 (123) | 61.7 (79) | 60.3 (44) | 0.959 |
Presence of hypertension (+) | 68.2 (137) | 68.0 (87) | 68.5 (50) | 1.000 |
Insulin (+) | 23.9 (48) | 21.9 (28) | 27.4 (20) | 0.477 |
Smoking (+) | 14.9 (30) | 19.5 (25) | 6.8 (5) | 0.026 |
Habit of exercise (+) | 57.7 (116) | 54.7 (70) | 63.0 (46) | 0.317 |
Education level (<12 years) | 12.4 (25) (no data 4.0 [8]) | 12.2 (15) | 14.3 (10) | 0.847 |
Married status (married/divorce/not married/bereavement) | 74.6 (150)/ 11.0 (22)/ 6.5 (13)/ 4.5 (9) (no data 3.5 [7]) | 78.0 (96)/ 10.6 (13)/ 8.1 (10)/ 3.3 (4) | 76.1 (54)/ 12.7 (9)/ 4.2 (3)/ 7.0 (5) | 0.454 |
HbA1c (mmol/mol) | 55.9 (9.9) | 56.2 (10.7) | 55.5 (8.5) | 0.667 |
HbA1c (%) | 7.3 (0.9) | 7.3 (1.0) | 7.2 (0.8) | 0.667 |
Plasma glucose (mmol/L) | 8.0 (2.1) | 8.2 (2.3) | 7.7 (1.7) | 0.113 |
Creatinine (umol/L) | 75.7 (36.4) | 83.1 (39.1) | 62.7 (26.8) | <0.001 |
eGFR (mL/min/1.73 m2) | 69.7 (21.2) | 69.7 (21.6) | 69.6 (20.7) | 0.973 |
Renal failure (+) | 5.0 (10) | 4.7 (6) | 5.5 (4) | 1.000 |
Uric acid (umol/L) | 301.2 (90.0) | 316.6 (93.5) | 274.3 (77.0) | <0.001 |
Triglycerides (mmol/L) | 1.5 (0.9) | 1.6 (1.0) | 1.4 (0.7) | 0.103 |
HDL cholesterol (mmol/L) | 1.5 (0.4) | 1.5 (0.4) | 1.7 (0.4) | <0.001 |
Household income (high) | 26.9(54) | 32.8 (42) | 16.4 (12) | 0.019 |
Total energy intake (kcal/day) | 1727.7 (509.0) | 1841.0 (494.6) | 1529.1 (474.9) | <0.001 |
Energy intake (kcal/IBW kg/day) | 29.8 (8.7) | 29.9 (8.3) | 29.8 (9.3) | 0.924 |
Total protein intake (g/day) | 72.8 (27.6) | 74.7 (27.8) | 69.4 (27.1) | 0.190 |
Protein intake (g/IBW kg/day) | 1.3 (0.5) | 1.2 (0.5) | 1.3 (0.5) | 0.062 |
Protein intake (% Energy) | 16.8 (3.3) | 16.1 (3.3) | 18.0 (3.0) | <0.001 |
Animal protein intake (g/day) | 44.6 (22.3) | 45.5 (22.5) | 43.2 (22.0) | 0.482 |
Animal protein intake (g/IBW kg/day) | 0.8 (0.4) | 0.7 (0.4) | 0.8 (0.4) | 0.081 |
Vegetable protein intake (g/day) | 28.1 (8.7) | 29.2 (8.7) | 26.2 (8.3) | 0.017 |
Vegetable protein intake (g/IBW kg/day) | 0.5 (0.1) | 0.5 (0.1) | 0.5 (0.2) | 0.123 |
Total fat intake (g/day) | 55.7 (21.1) | 57.7 (20.3) | 52.3 (22.3) | 0.082 |
Fat intake (g/IBW kg/day) | 1.0 (0.4) | 0.9 (0.3) | 1.0 (0.4) | 0.130 |
Fat intake (% Energy) | 28.9 (6.5) | 28.1 (6.4) | 30.3 (6.4) | 0.022 |
Total carbohydrate intake (g/day) | 215.4 (68.0) | 229.4 (69.3) | 190.9 (58.6) | <0.001 |
Carbohydrate intake (g/IBW kg/day) | 3.7 (1.1) | 3.7 (1.2) | 3.7 (1.1) | 0.903 |
Carbohydrate intake (% Energy) | 50.4 (8.8) | 50.3 (9.3) | 50.6 (8.1) | 0.833 |
Dietary fiber intake (g/day) | 12.2 (5.0) | 12.1 (5.0) | 12.3 (4.9) | 0.785 |
Carbohydrate/fiber ratio | 19.4 (7.1) | 20.8 (7.6) | 16.8 (5.5) | <0.001 |
Alcohol consumption (g/day) | 7.8 (17.0) | 11.8 (20.1) | 0.6 (3.3) | <0.001 |
PRAL (mEq/day) | 6.2 (12.6) | 7.6 (12.2) | 3.7 (13.1) | 0.036 |
NEAP (mEq/day) | 49.0 (10.7) | 50.1 (10.7) | 47.0 (10.6) | 0.049 |
All | Men | Women | |||||||
---|---|---|---|---|---|---|---|---|---|
Low N = 147 | High N = 54 | p | Low N = 86 | High N = 42 | p | Low N = 61 | High N = 12 | p | |
Age (years) | 70.4 (7.7) | 65.3 (10.4) | <0.001 | 70.4 (8.3) | 63.9 (10.4) | <0.001 | 70.5 (6.8) | 70.0 (9.4) | 0.831 |
Sex (men) | 58.5 (86) | 77.8 (42) | 0.019 | - | - | - | - | - | - |
Duration of diabetes (years) | 19.2 (11.6) | 13.6 (7.9) | 0.001 | 19.4 (11.6) | 13.4 (7.6) | 0.003 | 18.9 (11.8) | 14.3 (9.1) | 0.197 |
Family history of diabetes (+) | 42.2 (62) | 37.0 (20) | 0.620 | 34.9 (30) | 28.6 (12) | 0.607 | 52.5 (32) | 66.7 (8) | 0.557 |
Height (cm) | 161.3 (9.5) | 164.7 (8.3) | 0.021 | 167.2 (6.8) | 168.3 (4.8) | 0.372 | 153.0 (5.7) | 152.2 (5.3) | 0.686 |
Body weight (kg) | 61.5 (12.2) | 66.4 (11.6) | 0.012 | 66.0 (11.3) | 69.9 (10.2) | 0.062 | 55.2 (10.6) | 54.2 (7.3) | 0.748 |
Body mass index (kg/m2) | 23.5 (3.6) | 24.4 (3.3) | 0.144 | 23.5 (3.2) | 24.7 (3.4) | 0.071 | 23.6 (4.1) | 23.3 (2.5) | 0.857 |
SBP (mmHg) | 130.9 (17.0) | 129.0 (13.8) | 0.457 | 131.2 (17.6) | 129.8 (13.0) | 0.642 | 130.6 (16.4) | 126.4 (16.6) | 0.423 |
DBP (mmHg) | 73.3 (11.6) | 76.4 (11.0) | 0.085 | 74.4 (11.9) | 77.6 (11.3) | 0.154 | 71.6 (11.0) | 72.3 (9.3) | 0.839 |
Antihypertensive drugs (+) | 66.7 (98) | 46.3 (25) | 0.014 | 69.8 (60) | 45.2 (19) | 0.013 | 62.3 (38) | 50.0 (6) | 0.636 |
Presence of hypertension (+) | 74.1 (109) | 51.9 (28) | 0.005 | 75.6 (65) | 52.4 (22) | 0.015 | 72.1 (44) | 50.0 (6) | 0.243 |
Insulin (+) | 23.8 (35) | 24.1 (13) | 1.000 | 22.1 (19) | 21.4 (9) | 1.000 | 26.2 (16) | 33.3 (4) | 0.880 |
Smoking (+) | 11.6 (17) | 24.1 (13) | 0.048 | 14.0 (12) | 31.0 (13) | 0.041 | 8.2 (5) | 0.0 (0) | 0.687 |
Habit of exercise (+) | 59.2 (87) | 53.7 (29) | 0.592 | 57.0 (49) | 50.0 (21) | 0.579 | 62.3 (38) | 66.7 (8) | 1.000 |
Education level (<12 years) | 14.9 (21) | 7.7 (4) | 0.280 | 14.5 (12) | 7.5 (3) | 0.418 | 15.5 (9) | 8.3 (1) | 0.846 |
Married status (married/divorce/not married/bereavement) | 73.9 (105)/ 13.4 (19)/ 7.7 (11)/ 4.9 (7) | 86.5 (45)/ 5.8 (3)/ 3.8 (2)/ 3.8 (2) | 0.297 | 74.7 (62)/ 12.0 (10)/ 9.6 (8)/ 3.6 (3) | 85.0 (34)/ 7.5 (3)/ 5.0 (2)/ 2.5 (1) | 0.634 | 72.9 (43)/ 15.3 (9)/ 5.1 (3)/ 6.8 (4) | 91.7 (11)/ 0 (0)/ 0 (0)/ 8.3 (1) | 0.401 |
HbA1c (mmol/mol) | 55.7 (9.7) | 56.6 (10.5) | 0.562 | 55.9 (10.5) | 56.8 (11.0) | 0.637 | 55.5 (8.6) | 55.9 (8.8) | 0.866 |
HbA1c (%) | 7.2 (0.9) | 7.3 (1.0) | 0.562 | 7.3 (1.0) | 7.3 (1.0) | 0.637 | 7.2 (0.8) | 7.3 (0.8) | 0.866 |
Plasma glucose (mmol/L) | 8.1 (2.3) | 7.9 (1.8) | 0.598 | 8.4 (2.6) | 7.8 (1.8) | 0.170 | 7.6 (1.7) | 8.2 (1.9) | 0.261 |
Creatinine (umol/L) | 77.1 (39.1) | 71.9 (27.9) | 0.368 | 85.5 (43.4) | 78.2 (28.2) | 0.324 | 65.3 (28.4) | 49.7 (9.7) | 0.066 |
eGFR (mL/min/1.73 m2) | 67.3 (20.7) | 76.3 (21.3) | 0.008 | 67.5 (21.1) | 74.4 (22.1) | 0.088 | 67.1 (20.5) | 82.8 (17.5) | 0.015 |
Renal failure (+) | 5.4 (8) | 3.7 (2) | 0.891 | 4.7 (4) | 4.8 (2) | 1.000 | 6.6 (4) | 0 (0) | 0.827 |
Uric acid (mmol/L) | 299.9 (91.6) | 304.7 (86.3) | 0.743 | 314.4 (101.3) | 321.1 (76.0) | 0.708 | 279.6 (71.8) | 247.3 (98.8) | 0.187 |
Triglycerides (mmol/L) | 1.4 (0.8) | 1.7 (0.9) | 0.103 | 1.5 (1.0) | 1.7 (0.9) | 0.328 | 1.3 (0.6) | 1.6 (1.1) | 0.280 |
HDL cholesterol (mmol/L) | 1.5 (0.5) | 1.5 (0.4) | 0.436 | 1.5 (0.4) | 1.5 (0.4) | 0.928 | 1.7 (0.4) | 1.6 (0.5) | 0.816 |
Total energy intake (kcal/day) | 1679.9 (498.7) | 1857.8 (518.9) | 0.028 | 1782.8 (479.7) | 1960.2 (508.9) | 0.056 | 1534.9 (492.6) | 1499.6 (389.7) | 0.816 |
Energy intake (kcal/IBW kg/day) | 29.4 (8.8) | 31.1 (8.2) | 0.217 | 29.1 (8.2) | 31.5 (8.3) | 0.116 | 29.8 (9.6) | 29.5 (8.1) | 0.922 |
Total protein intake (g/day) | 71.3 (27.1) | 76.7 (29.0) | 0.223 | 72.1 (36.5) | 80.1 (30.0) | 0.129 | 70.3 (28.1) | 64.9 (22.4) | 0.536 |
Protein intake (g/IBW kg/day) | 1.3 (0.5) | 1.3 (0.5) | 0.697 | 1.2 (0.5) | 1.3 (0.5) | 0.199 | 1.4 (0.6) | 1.3 (0.4) | 0.578 |
Protein intake (% Energy) | 16.9 (3.4) | 16.4 (3.1) | 0.292 | 16.0 (3.4) | 16.1 (3.1) | 0.887 | 18.2 (3.0) | 17.2 (3.2) | 0.308 |
Animal protein intake (g/day) | 44.2 (22.2) | 45.9 (22.7) | 0.619 | 44.3 (21.7) | 47.9 (24.3) | 0.405 | 43.9 (23.2) | 39.2 (14.9) | 0.499 |
Animal protein intake (g/IBW kg/day) | 0.8 (0.4) | 0.8 (0.4) | 0.902 | 0.7 (0.4) | 0.8 (0.4) | 0.488 | 0.9 (0.5) | 0.8 (0.3) | 0.512 |
Vegetable protein intake (g/day) | 27.2 (8.1) | 30.8 (9.7) | 0.009 | 27.8 (8.0) | 32.2 (9.3) | 0.006 | 26.3 (8.1) | 25.7 (9.6) | 0.819 |
Vegetable protein intake (g/IBW kg/day) | 0.5 (0.1) | 0.5 (0.2) | 0.094 | 0.5 (0.1) | 0.5 (0.2) | 0.017 | 0.5 (0.1) | 0.5 (0.2) | 0.959 |
Total fat intake (g/day) | 54.7 (21.4) | 58.5 (20.2) | 0.250 | 56.2 (20.0) | 60.8 (20.9) | 0.230 | 52.6 (23.4) | 50.8 (16.2) | 0.802 |
Fat intake (g/IBW kg/day) | 1.0 (0.4) | 1.0 (0.3) | 0.718 | 0.9 (0.3) | 1.0 (0.3) | 0.317 | 1.0 (0.5) | 1.0 (0.3) | 0.849 |
Fat intake (% Energy) | 29.1 (6.7) | 28.4 (5.8) | 0.521 | 28.3 (6.9) | 27.8 (5.5) | 0.663 | 30.2 (6.4) | 30.8 (6.5) | 0.798 |
Total carbohydrate intake (g/day) | 208.3 (66.3) | 234.9 (69.5) | 0.014 | 220.7 (69.1) | 247.2 (67.1) | 0.042 | 190.7 (58.4) | 191.8 (62.2) | 0.955 |
Carbohydrate intake (g/IBW kg/day) | 3.6 (1.1) | 3.9 (1.1) | 0.109 | 3.6 (1.2) | 4.0 (1.1) | 0.094 | 3.7 (1.1) | 3.8 (1.3) | 0.792 |
Carbohydrate intake (% Energy) | 50.2 (9.1) | 50.9 (8.2) | 0.626 | 50.0 (9.7) | 50.9 (8.4) | 0.618 | 50.5 (8.1) | 50.9 (8.1) | 0.859 |
Dietary fiber intake (g/day) | 11.7 (4.5) | 13.5 (5.9) | 0.028 | 11.3 (4.2) | 13.8 (6.0) | 0.006 | 12.4 (4.8) | 12.1 (5.7) | 0.876 |
Carbohydrate/fiber ratio | 19.4 (7.2) | 19.3 (7.1) | 0.899 | 21.4 (7.7) | 19.7 (7.3) | 0.236 | 16.7 (5.3) | 17.8 (6.5) | 0.497 |
Alcohol consumption (g/day) | 7.1 (17.1) | 9.4 (16.7) | 0.398 | 11.8 (21.1) | 12.0 (18.2) | 0.949 | 0.7 (3.6) | 0.5 (0.8) | 0.881 |
PRAL (mEq/day) | 7.1 (12.4) | 3.6 (13.1) | 0.088 | 9.5 (10.7) | 3.7 (14.1) | 0.011 | 3.7 (13.8) | 3.6 (9.2) | 0.989 |
NEAP (mEq/day) | 49.7 (10.9) | 46.9 (10.1) | 0.102 | 51.7 (10.5) | 46.8 (10.4) | 0.014 | 46.9 (11.0) | 47.4 (9.2) | 0.883 |
All | Men | Women | |||||||
---|---|---|---|---|---|---|---|---|---|
Household Income (Low) | Household Income (High) | p | Household Income (Low) | Household Income (High) | p | Household Income (Low) | Household Income (High) | p | |
Model 1 | |||||||||
Log dietary fiber | 2.38 (2.32–2.45) | 2.54 (2.43–2.65) | 0.014 | 2.33 (2.25–2.41) | 2.59 (2.47–2.71) | <0.001 | 2.44 (2.34–2.55) | 2.39 (2.15–2.62) | 0.663 |
NEAP (mEq/day) | 49.6 (47.9–51.4) | 45.4 (42.4–48.4) | 0.017 | 52.3 (50.0–54.5) | 45.7(42.5–49.0) | 0.002 | 46.9 (44.2–49.7) | 47.5 (41.2–53.7) | 0.878 |
Model 2 | |||||||||
Log dietary fiber | 2.37 (2.27–2.47) | 2.51 (2.39–2.64) | 0.035 | 2.31 (2.21–2.42) | 2.57 (2.45–2.70) | 0.001 | 2.52 (2.26–2.77) | 2.36 (2.03–2.69) | 0.245 |
NEAP (mEq/day) | 50.5 (47.9–53.2) | 46.1 (42.7–49.5) | 0.017 | 54.1 (51.1–57.1) | 46.7 (43.2–50.1) | <0.001 | 42.2 (35.1–49.2) | 43.2 (34.0–52.5) | 0.770- |
Model 3 | - | - | |||||||
Dietary fiber (g/day) | 2.40 (2.35–2.45) | 2.50 (2.41–2.59) | 0.070 | 2.35 (2.26–2.44) | 2.52 (2.41–2.62) | 0.009 | 2.44 (2.36–2.52) | 2.39 (2.21–2.58) | 0.626 |
NEAP (mEq/day) | 49.8 (48.1–51.5) | 44.9 (42.0–47.9) | 0.005 | 54.6 (51.7–57.4) | 45.8 (42.5–49.2) | <0.001 | 46.9 (44.2–49.7) | 47.5 (41.3–53.7) | 0.867 |
Model 4 | - | - | - | - | - | - | |||
Log dietary fiber | 2.38 (2.30–2.46) | 2.47 (2.37–2.57) | 0.088 | 2.35 (2.26–2.44) | 2.52 (2.41–2.62) | 0.010 | 2.48 (2.26–2.69) | 2.38 (2.11–2.66) | 0.407 |
NEAP (mEq/day) | 50.6 (48.0–53.3) | 45.7 (42.4–49.0) | 0.007 | 54.6 (51.7–57.4) | 45.8 (42.5–49.2) | <0.001 | 41.7 (34.8–48.7) | 43.5 (34.4–52.5) | 0.634- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, F.; Hashimoto, Y.; Kobayashi, Y.; Kaji, A.; Sakai, R.; Okamura, T.; Nakanishi, N.; Majima, S.; Okada, H.; Senmaru, T.; et al. Household Income Is Related to Dietary Fiber Intake and Dietary Acid Load in People with Type 2 Diabetes: A Cross-Sectional Study. Nutrients 2022, 14, 3229. https://doi.org/10.3390/nu14153229
Takahashi F, Hashimoto Y, Kobayashi Y, Kaji A, Sakai R, Okamura T, Nakanishi N, Majima S, Okada H, Senmaru T, et al. Household Income Is Related to Dietary Fiber Intake and Dietary Acid Load in People with Type 2 Diabetes: A Cross-Sectional Study. Nutrients. 2022; 14(15):3229. https://doi.org/10.3390/nu14153229
Chicago/Turabian StyleTakahashi, Fuyuko, Yoshitaka Hashimoto, Yukiko Kobayashi, Ayumi Kaji, Ryosuke Sakai, Takuro Okamura, Naoko Nakanishi, Saori Majima, Hiroshi Okada, Takafumi Senmaru, and et al. 2022. "Household Income Is Related to Dietary Fiber Intake and Dietary Acid Load in People with Type 2 Diabetes: A Cross-Sectional Study" Nutrients 14, no. 15: 3229. https://doi.org/10.3390/nu14153229
APA StyleTakahashi, F., Hashimoto, Y., Kobayashi, Y., Kaji, A., Sakai, R., Okamura, T., Nakanishi, N., Majima, S., Okada, H., Senmaru, T., Ushigome, E., Asano, M., Hamaguchi, M., Yamazaki, M., Aoi, W., Kuwahata, M., & Fukui, M. (2022). Household Income Is Related to Dietary Fiber Intake and Dietary Acid Load in People with Type 2 Diabetes: A Cross-Sectional Study. Nutrients, 14(15), 3229. https://doi.org/10.3390/nu14153229