The Effect of Personality on Chrononutrition during the COVID-19 Lockdown in Qatar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Questionnaire
2.2.1. Socio-Demographic Data
2.2.2. Personality
2.2.3. Chrononutrition
2.3. Statistical Analysis
3. Results
3.1. Participants’ Sociodemographic Characteristics
3.2. Personality and Chrononutrition during the COVID-19 Lockdown
3.3. Personality and Eating Misalignment during the COVID-19 Lockdown
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kekäläinen, T.; Hietavala, E.-M.; Hakamäki, M.; Sipilä, S.; Laakkonen, E.K.; Kokko, K. Personality Traits and Changes in Health Behaviors and Depressive Symptoms during the COVID-19 Pandemic: A Longitudinal Analysis from Pre-pandemic to Onset and End of the Initial Emergency Conditions in Finland. Int. J. Environ. Res. Public Health 2021, 18, 7732. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.F.; Pianowski, G.; Gonçalves, A.P. Personality differences and COVID-19: Are extroversion and conscientiousness personality traits associated with engagement with containment measures? Trends Psychiatry Psychother. 2020, 42, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Aschwanden, D.; Strickhouser, J.E.; Sesker, A.A.; Lee, J.H.; Luchetti, M.; Stephan, Y.; Sutin, A.R.; Terracciano, A. Psychological and behavioural responses to Coronavirus disease 2019: The role of personality. Eur. J. Personal. 2021, 35, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Soto, C.J.; John, O.P. Ten facet scales for the Big Five Inventory: Convergence with NEO PI-R facets, self-peer agreement, and discriminant validity. J. Res. Personal. 2009, 43, 84–90. [Google Scholar] [CrossRef]
- McCrae, R.R. The Place of the FFM in Personality Psychology. Psychol. Inq. 2010, 21, 57–64. [Google Scholar] [CrossRef]
- Stadler, M.; Niepel, C.; Botes, E.; Dörendahl, J.; Krieger, F.; Greiff, S. Individual Psychological Responses to the SARS-CoV-2 Pandemic: Different Clusters and Their Relation to Risk-Reducing Behavior (preprint). PsyArXiv 2020. [Google Scholar] [CrossRef]
- Bogg, T.; Milad, E. Demographic, personality, and social cognition correlates of coronavirus guideline adherence in a U.S. sample. Health Psychol. 2020, 39, 1026–1036. [Google Scholar] [CrossRef]
- Abdelrahman, M. Personality Traits, Risk Perception, and Protective Behaviors of Arab Residents of Qatar During the COVID-19 Pandemic. Int. J. Ment. Health Addict. 2020, 20, 237–248. [Google Scholar] [CrossRef]
- Stephan, Y.; Terracciano, A.; Luchetti, M.; Aschwanden, D.; Lee, J.H.; Sesker, A.A.; Strickhouser, J.E.; Sutin, A.R. Physical Activity and Sedentary Behavior during COVID-19: Trajectory and Moderation by Personality. Soc. Psychol. Personal. Sci. 2021, 12, 1103–1109. [Google Scholar] [CrossRef]
- Okely, J.A.; Corley, J.; Welstead, M.; Taylor, A.M.; Page, D.; Skarabela, B.; Redmond, P.; Cox, S.R.; Russ, T.C. Change in Physical Activity, Sleep Quality, and Psychosocial Variables during COVID-19 Lockdown: Evidence from the Lothian Birth Cohort 1936. Int. J. Environ. Res. Public Health 2020, 18, 210. [Google Scholar] [CrossRef]
- Rhodes, R.E.; Liu, S.; Lithopoulos, A.; Zhang, C.-Q.; Garcia-Barrera, M.A. Correlates of Perceived Physical Activity Transitions during the COVID-19 Pandemic among Canadian Adults. Appl. Psychol. Health Well-Being 2020, 12, 1157–1182. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.R.D.; Guerreiro, R.C.; Andrade, H.A.; Stieler, E.; Silva, A.; de Mello, M.T. Does the compromised sleep and circadian disruption of night and shiftworkers make them highly vulnerable to 2019 coronavirus disease (COVID-19)? Chronobiol. Int. 2020, 37, 607–617. [Google Scholar] [CrossRef] [PubMed]
- da Silva, F.R.; Junior, A.H.L.; Brant, V.M.; Lôbo, I.L.B.; Lancha, L.O.P.; Silva, A.; de Mello, M.T. The effects of COVID-19 quarantine on eating and sleeping behaviors. Nutrire 2020, 45, 25. [Google Scholar] [CrossRef]
- Gnocchi, D.; Bruscalupi, G. Circadian Rhythms and Hormonal Homeostasis: Pathophysiological Implications. Biology 2017, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Ruddick-Collins, L.C.; Johnston, J.D.; Morgan, P.J.; Johnstone, A.M. The Big Breakfast Study: Chrono-nutrition influence on energy expenditure and bodyweight. Nutr. Bull. 2018, 43, 174–183. [Google Scholar] [CrossRef]
- Di Stefano, A.; Scatà, M.; Vijayakumar, S.; Angione, C.; La Corte, A.; Liò, P. Social dynamics modeling of chrono-nutrition. PLoS Comput. Biol. 2019, 15, e1006714. [Google Scholar] [CrossRef]
- Asher, G.; Sassone-Corsi, P. Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015, 161, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Oike, H.; Oishi, K.; Kobori, M. Nutrients, Clock Genes, and Chrononutrition. Curr. Nutr. Rep. 2014, 3, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Pot, G.K.; Almoosawi, S.; Stephen, A.M. Meal irregularity and cardiometabolic consequences: Results from observational and intervention studies. Proc. Nutr. Soc. 2016, 75, 475–486. [Google Scholar] [CrossRef] [Green Version]
- Pot, G.K.; Hardy, R.; Stephen, A.M. Irregular consumption of energy intake in meals is associated with a higher cardiometabolic risk in adults of a British birth cohort. Int. J. Obes. 2014, 38, 1518–1524. [Google Scholar] [CrossRef] [Green Version]
- Cisse, Y.; Nelson, R. Consequences of circadian dysregulation on metabolism. ChronoPhysiology Ther. 2016, 6, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, M.; Boss, M.; Smits, M.; Pot, G.K. Chrono-Nutrition and Diet Quality in Adolescents with Delayed Sleep-Wake Phase Disorder. Nutrients 2020, 12, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garaulet, M.; Gómez-Abellán, P.; Alburquerque-Béjar, J.J.; Lee, Y.C.; Ordovás, J.M.; Scheer, F.A. Timing of food intake predicts weight loss effectiveness. Int. J. Obes. 2013, 37, 604–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez-Monreal, M.A.; Harmsen, J.-F.; Schrauwen, P.; Esser, K.A. Ticking for Metabolic Health: The Skeletal-Muscle Clocks. Obesity 2020, 28, S46–S54. [Google Scholar] [CrossRef]
- Boege, H.L.; Bhatti, M.Z.; St-Onge, M.-P. Circadian rhythms and meal timing: Impact on energy balance and body weight. Curr. Opin. Biotechnol. 2021, 70, 1–6. [Google Scholar] [CrossRef]
- Hutchison, A.T.; Heilbronn, L.K. Metabolic impacts of altering meal frequency and timing—Does when we eat matter? Biochimie 2016, 124, 187–197. [Google Scholar] [CrossRef]
- Henry, C.J.; Kaur, B.; Quek, R.Y.C. Chrononutrition in the management of diabetes. Nutr. Diabetes 2020, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Esser, K.A.; Young, M.E. The role of clock genes in cardiometabolic disease. J. Appl. Physiol. 2009, 107, 1316–1317. [Google Scholar] [CrossRef] [Green Version]
- Mohd Azmi, N.A.S.; Juliana, N.; Mohd Fahmi Teng, N.I.; Azmani, S.; Das, S.; Effendy, N. Consequences of Circadian Disruption in Shift Workers on Chrononutrition and their Psychosocial Well-Being. Int. J. Environ. Res. Public Health 2020, 17, 2043. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.S.; Armstrong, M.E.; Cairns, B.J.; Key, T.J.; Travis, R.C. Shift work and chronic disease: The epidemiological evidence. Occup. Med. 2011, 61, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Hemmer, A.; Mareschal, J.; Dibner, C.; Pralong, J.A.; Dorribo, V.; Perrig, S.; Genton, L.; Pichard, C.; Collet, T.H. The Effects of Shift Work on Cardio-Metabolic Diseases and Eating Patterns. Nutrients 2021, 13, 4178. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chen, Q.; Pu, Y.; Guo, M.; Jiang, Z.; Huang, W.; Long, Y.; Xu, Y. Skipping breakfast is associated with overweight and obesity: A systematic review and meta-analysis. Obes. Res. Clin. Pract. 2020, 14, 1–8. [Google Scholar] [CrossRef]
- Chow, L.S.; Manoogian, E.N.C.; Alvear, A.; Fleischer, J.G.; Thor, H.; Dietsche, K.; Wang, Q.; Hodges, J.S.; Esch, N.; Malaeb, S.; et al. Time-Restricted Eating Effects on Body Composition and Metabolic Measures in Humans who are Overweight: A Feasibility Study. Obesity 2020, 28, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2020, 31, 92–104.e105. [Google Scholar] [CrossRef] [PubMed]
- Al Abdi, T.; Andreou, E.; Papageorgiou, A.; Heraclides, A.; Philippou, E. Personality, Chrono-nutrition and Cardiometabolic Health: A Narrative Review of the Evidence. Adv. Nutr. 2020, 11, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Almoosawi, S.; Vingeliene, S.; Gachon, F.; Voortman, T.; Palla, L.; Johnston, J.D.; Van Dam, R.M.; Darimont, C.; Karagounis, L.G. Chronotype: Implications for Epidemiologic Studies on Chrono-Nutrition and Cardiometabolic Health. Adv. Nutr. 2019, 10, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Mazri, F.H.; Manaf, Z.A.; Shahar, S.; Mat Ludin, A.F. The Association between Chronotype and Dietary Pattern among Adults: A Scoping Review. Int. J. Environ. Res. Public Health 2019, 17, 68. [Google Scholar] [CrossRef] [Green Version]
- Randler, C. Morningness–eveningness, sleep–wake variables and big five personality factors. Personal. Individ. Differ. 2008, 45, 191–196. [Google Scholar] [CrossRef]
- Tsaousis, I. Circadian preferences and personality traits: A meta-analysis. Eur. J. Personal. 2010, 24, 356–373. [Google Scholar] [CrossRef]
- Lenneis, A.; Vainik, U.; Teder-Laving, M.; Ausmees, L.; Lemola, S.; Allik, J.; Realo, A. Personality traits relate to chronotype at both the phenotypic and genetic level. J. Pers. 2021, 89, 1206–1222. [Google Scholar] [CrossRef]
- Beşoluk, Ş. Association of dietary patterns with circadian preference, sleep and personality in high school students. Biol. Rhythm Res. 2018, 49, 883–895. [Google Scholar] [CrossRef]
- Adan, A.; Archer, S.N.; Hidalgo, M.P.; Di Milia, L.; Natale, V.; Randler, C. Circadian typology: A comprehensive review. Chronobiol. Int. 2012, 29, 1153–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonetti, L.; Fabbri, M.; Natale, V. Relationship between circadian typology and big five personality domains. Chronobiol. Int. 2009, 26, 337–347. [Google Scholar] [CrossRef]
- DeYoung, C.G.; Hasher, L.; Djikic, M.; Criger, B.; Peterson, J.B. Morning people are stable people: Circadian rhythm and the higher-order factors of the Big Five. Personal. Individ. Differ. 2007, 43, 267–276. [Google Scholar] [CrossRef]
- Dashti, H.S.; Scheer, F.; Saxena, R.; Garaulet, M. Timing of Food Intake: Identifying Contributing Factors to Design Effective Interventions. Adv. Nutr. 2019, 10, 606–620. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.J.; Christopher, A.N.; Wieth, M.B.; Buchanan, J. Personality, time-of-day preference, and eating behavior: The mediational role of morning-eveningness. Personal. Individ. Differ. 2015, 77, 13–17. [Google Scholar] [CrossRef]
- Lipnevich, A.A.; Credè, M.; Hahn, E.; Spinath, F.M.; Roberts, R.D.; Preckel, F. How distinctive are morningness and eveningness from the Big Five factors of personality? A meta-analytic investigation. J. Pers. Soc. Psychol. 2017, 112, 491–509. [Google Scholar] [CrossRef]
- McCrae, R.R.; Terracciano, A. Universal features of personality traits from the observer’s perspective: Data from 50 cultures. J. Pers. Soc. Psychol. 2005, 88, 547–561. [Google Scholar] [CrossRef] [Green Version]
- Salehinejad, M.A.; Azarkolah, A.; Ghanavati, E.; Nitsche, M.A. Circadian disturbances, sleep difficulties and the COVID-19 pandemic. Sleep Med. 2021, 91, 246–252. [Google Scholar] [CrossRef]
- Tao, S.; Wu, X.; Li, S.; Ma, L.; Yu, Y.; Sun, G.; Zhang, Y.; Li, T.; Tao, F. Circadian rhythm abnormalities during the COVID-19 outbreak related to mental health in China: A nationwide university-based survey. Sleep Med. 2021, 84, 165–172. [Google Scholar] [CrossRef]
- John, O.P.D.; Donahue, E.M.; Kentle, R.L. The Big Five Inventory-Versions 4a and 54; Institute of Personality and Social Research, University of Calfornia: Berkeley, CA, USA, 1991. [Google Scholar]
- Schmitt, D.P.; Allik, J.; McCrae, R.R.; Benet-Martínez, V. The Geographic Distribution of Big Five Personality Traits:Patterns and Profiles of Human Self-Description Across 56 Nations. J. Cross-Cult. Psychol. 2007, 38, 173–212. [Google Scholar] [CrossRef] [Green Version]
- Veronda, A.C.; Allison, K.C.; Crosby, R.D.; Irish, L.A. Development, validation and reliability of the Chrononutrition Profile—Questionnaire. Chronobiol. Int. 2020, 37, 375–394. [Google Scholar] [CrossRef] [PubMed]
- Phoi, Y.Y.; Rogers, M.; Bonham, M.P.; Dorrian, J.; Coates, A.M. A scoping review of chronotype and temporal patterns of eating of adults: Tools used, findings, and future directions. Nutr. Res. Rev. 2021, 35, 112–135. [Google Scholar] [CrossRef] [PubMed]
- Reid, K.J.; Baron, K.G.; Zee, P.C. Meal timing influences daily caloric intake in healthy adults. Nutr. Res. 2014, 34, 930–935. [Google Scholar] [CrossRef] [Green Version]
- Baron, K.G.; Reid, K.J.; Kern, A.S.; Zee, P.C. Role of sleep timing in caloric intake and BMI. Obesity 2011, 19, 1374–1381. [Google Scholar] [CrossRef]
- McHill, A.W.; Phillips, A.J.K.; Czeisler, C.A.; Keating, L.; Yee, K.; Barger, L.K.; Garaulet, M.; Scheer, F.; Klerman, E.B. Later circadian timing of food intake is associated with increased body fat. Am. J. Clin. Nutr. 2017, 106, 1213–1219. [Google Scholar] [CrossRef]
- Xiao, Q.; Garaulet, M.; Scheer, F. Meal timing and obesity: Interactions with macronutrient intake and chronotype. Int. J. Obes. 2019, 43, 1701–1711. [Google Scholar] [CrossRef]
- Adafer, R.; Messaadi, W.; Meddahi, M.; Patey, A.; Haderbache, A.; Bayen, S.; Messaadi, N. Food Timing, Circadian Rhythm and Chrononutrition: A Systematic Review of Time-Restricted Eating’s Effects on Human Health. Nutrients 2020, 12, 3770. [Google Scholar] [CrossRef]
- Longo, V.D.; Panda, S. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metab. 2016, 23, 1048–1059. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Minguez, J.; Gómez-Abellán, P.; Garaulet, M. Timing of Breakfast, Lunch, and Dinner. Effects on Obesity and Metabolic Risk. Nutrients 2019, 11, 2624. [Google Scholar] [CrossRef] [Green Version]
- Aguiar, S.O.; Auad, S.M.; Silveira, K.S.R.; Hermont, A.P.; Prado, I.M.; Vitória Diniz Reis, T.; Serra-Negra, J.M. The impact of social distancing caused by the COVID-19 pandemic in dietary and sleep features of graduate and postgraduate university students with different chronotype profiles. Biol. Rhythm. Res. 2021, 53, 1244–1260. [Google Scholar] [CrossRef]
- Kohút, M.; Kohútová, V.; Halama, P. Big Five predictors of pandemic-related behavior and emotions in the first and second COVID-19 pandemic wave in Slovakia. Pers. Individ Dif. 2021, 180, 110934. [Google Scholar] [CrossRef] [PubMed]
- Schmeisser, Y.; Renström, E.A.; Bäck, H. Who Follows the Rules During a Crisis?—Personality Traits and Trust as Predictors of Compliance With Containment Recommendations During the COVID-19 Pandemic. Front. Political Sci. 2021, 3, 135. [Google Scholar] [CrossRef]
- Jeronimus, B.; Ormel, J.; Aleman, A.; Penninx, B.W.; Riese, H. Negative and positive life events are associated with small but lasting change in neuroticism. Psychol. Med. 2013, 43, 2403–2415. [Google Scholar] [CrossRef] [Green Version]
- Löckenhoff, C.E.; Terracciano, A.; Patriciu, N.S.; Eaton, W.W.; Costa Jr., P.T. Self-reported extremely adverse life events and longitudinal changes in five-factor model personality traits in an urban sample. J. Trauma. Stress 2009, 22, 53–59. [Google Scholar] [CrossRef]
- Sutin, A.; Luchetti, M.; Aschwanden, D.; Lee, J.H.; Sesker, A.; Strickhouser, J.; Stephan, Y.; Terracciano, A. Change in five-factor model personality traits during the acute phase of the coronavirus pandemic. PLoS ONE 2020, 15, e0237056. [Google Scholar] [CrossRef]
- Hampson, S.E.; Edmonds, G.W.; Barckley, M.; Goldberg, L.R.; Dubanoski, J.P.; Hillier, T.A. A Big Five approach to self-regulation: Personality traits and health trajectories in the Hawaii longitudinal study of personality and health. Psychol. Health Med. 2016, 21, 152–162. [Google Scholar] [CrossRef] [Green Version]
- Kammoun, I.; Ben Saâda, W.; Sifaou, A.; Haouat, E.; Kandara, H.; Ben Salem, L.; Ben Slama, C. Change in women’s eating habits during the menstrual cycle. Ann. Endocrinol. 2017, 78, 33–37. [Google Scholar] [CrossRef]
- Nowak, J.; Spalik-Bytomska, A.; Hudzik, B.; Jagielski, P.; Grochowska-Niedworok, E.; Gasior, M.; Zubelewicz-Szkodzińska, B. Food intake changes across the menstrual cycle: A preliminary study. Nurs. Public Health 2020, 10, 5–11. [Google Scholar] [CrossRef]
Personality Traits | ||||||||
---|---|---|---|---|---|---|---|---|
All | Extraversion | Agreeableness | Conscientiousness | Neuroticism | Openness | p-Value | ||
Variables | (n = 543) | (n = 19) | (n = 179) | (n = 105) | (n = 15) | (n = 225) | ||
Gender | Female | 480 (88.4) | 16 (84.2) | 171 (95.5) | 75 (71.4) | 13 (86.7) | 205 (91.1) | ˂0.001 |
Male | 63 (11.6) | 3 (15.8) | 8 (4.5) | 30 (28.6) | 2 (13.3) | 20 (8.9) | ||
Age (years) | ≤20 | 113 (20.8) | 3 (15.8) | 51 (28.5) | 13 (12.4) | 1 (6.7) | 45 (20.0) | ˂0.001 |
21–29 | 243 (44.8) | 10 (52.6) | 86 (48.0) | 33 (31.4) | 8 (53.3) | 106 (47.1) | ||
30–39 | 99 (18.2) | 2 (10.5) | 22 (12.3) | 28 (26.7) | 2 (13.3) | 45 (20.0) | ||
≥40 | 88 (16.2) | 4 (21.1) | 20 (11.2) | 31 (29.5) | 4 (26.7) | 29 (12.9) | ||
Nationality | Non-Arab | 143 (26.3) | 6 (31.6) | 41 (22.9) | 41 (39.1) | 3 (20.0) | 52 (23.1) | 0.020 |
Arab | 400 (73.7) | 13 (68.4) | 138 (77.1) | 64 (61.0) | 12 (80.0) | 173 (76.9) | ||
Education | Secondary | 28 (5.2) | 1 (5.2) | 10 (5.6) | 2 (1.9) | 0 (0.0) | 15 (6.7) | 0.004 |
Undergraduate | 422 (77.7) | 15 (79) | 155 (86.6) | 77 (73.3) | 13 (86.7) | 162 (72.0) | ||
Postgraduate | 93 (17.1) | 3 (15.8) | 14 (7.8) | 26 (24.8) | 2 (13.3) | 48 (21.3) | ||
Marital Status | Single | 344 (63.4) | 13 (86.4) | 129 (72.1) | 41 (39.0) | 7 (46.7) | 154 (68.4) | ˂0.001 |
Married | 199 (36.7) | 6 (31.6) | 50 (27.9) | 64 (61.0) | 8 (53.3) | 71 (31.6) | ||
Work Status | Student | 250 (46.0) | 9 (47.4) | 108 (60.3) | 24 (22.9) | 4 (26.7) | 105 (46.7) | ˂0.001 |
Employed | 76 (14.0) | 3 (15.8) | 24 (13.4) | 11 (10.5) | 4 (26.7) | 34 (15.1) | ||
Unemployed | 217 (40.0) | 7 (36.8) | 47 (26.3) | 70 (66.7) | 7 (46.7) | 86 (38.2) | ||
Smoker | No | 499 (91.9) | 17 (89.5) | 174 (97.2) | 93 (88.6) | 14 (93.3) | 201 (89.3) | 0.033 |
Yes | 44 (8.1) | 2 (10.5) | 5 (2.8) | 12 (11.4) | 1 (6.7) | 24 (10.7) | ||
BMI | Underweight | 44 (8.1) | 4 (21.0) | 15 (8.4) | 8 (7.6) | 1 (6.7) | 16 (7.1) | ˂0.001 |
Normal | 257 (47.3) | 12 (63.2) | 111 (62.0) | 39 (37.2) | 8 (53.3) | 87 (38.7) | ||
Overweight | 170 (31.3) | 3 (15.8) | 39 (21.8) | 50 (47.6) | 6 (40.0) | 72 (32.0) | ||
Obese | 72 (13.3) | 0 (0.0) | 14 (7.8) | 8 (7.6) | 0 (0.0) | 50 (22.2) |
Chrononutrition Behaviors | |||
---|---|---|---|
Variables | Format | Mean (SD) | Range |
Breakfast skipping | Days | 2.20 (2.40) | 0.00–7.00 |
Night eating | Days | 0.50 (1.30) | 0.00–7.00 |
Eating window aggregate | Mins | 727.3 (129.5) | 240.0–1114.0 |
Evening latency aggregate | Mins | 177.9 (82.2) | 0.0–477.0 |
Evening eating aggregate | HH:MM | 20:36 (3:15) | 18:00–2:17 |
Largest Meal | n (%) | ||
Breakfast | 31 (5.7%) | ||
Lunch | 420 (47.3%) | ||
Dinner | 92 (17%) |
Personality Traits | |||||
---|---|---|---|---|---|
Chrononutrition Variables | Agreeableness | Extraversion | Conscientiousness | Neuroticism | Openness |
Breakfast Skipping (Days) | Ref (1.40) a | −0.29 (−1.48, 0.89) | −0.01 (−0.65, 0.63) | −0.70 (−1.78, 0.37) | 0.38 (−0.13, 0.89) |
Night Eating (Days) | Ref (0.33) a | −0.23 (−0.58, 0.13) | −0.15 (−0.41, 0.11) | −0.18 (−0.58, 0.21) | 0.41 * (0.10, 0.72) |
Eating Window (Mins) | Ref (776.6) a | −76.6 * (−146.3, −6.93) | −14.1 (−47.5, 19.4) | 12.3 (−44.9, 69.5) | −29.8 * (−56.5, −3.01) |
Evening Latency (Mins) | Ref (138.0) a | 66.3 * (25.4, 107.3) | −5.29 (−25.9, 15.4) | −16.1 (−60.1, 27.8) | −6.69 (−24.0, 10.7) |
Evening Eating (Mins) | Ref (588.0) a | −62.0 * (−114.0, −9.0) | −33.0 (−77.0, 10.0) | 18.0 (−28.0, 65.0) | −35.0 (−81.0, 10.0) |
Personality Traits | |||||
---|---|---|---|---|---|
Chrononutrition Variables | Agreeableness | Extraversion | Conscientiousness | Neuroticism | Openness |
Largest meal (Lunch) | Ref a | 0.49 (0.16, 1.52) | 0.66 (0.36, 1.22) | 2.28 (0.37, 14.2) | 1.29 (0.74, 2.25) |
Personality Traits | |||||
---|---|---|---|---|---|
Chrononutrition Alignment Variables | Agreeableness | Extraversion | Conscientiousness | Neuroticism | Openness |
First Eating Event Weekday (Mins) | Ref (153.8) a | −35.6 (−72.6, 1.30) | −18.2 (−49.4, 13.0) | 0.61 (−48.6, 49.8) | −16.8 (−43.9, 10.3) |
Weekend (Mins) | Ref (112.9) a | −10.1 (−48.3, 28.1) | 22.0 * (0.15, 43.9) | −12.0 (−55.0, 31.0) | 10.0 (−7.55, 27.6) |
Last Eating Event Weekday (Mins) | Ref (86.1) a | 10.3 (−33.0, 53.6) | −27.8 * (−47.3, −8.41) | 0.10 (−36.6, 36.7) | 0.73 (−15.9, 17.4) |
Weekend (Mins) | Ref (80.1) a | −13.6 (−46.3, 19.1) | −13.2 (−36.2, 9.80) | 28.5 (−6.64, 63.6) | 9.58 (−9.33, 28.5) |
Morning Latency Weekday (Mins) | Ref (14.3) a | 15.5 (−27.2, 58.3) | 14.4 (−4.81, 33.6) | 3.72 (−28.6, 36.0) | 6.25 (−10.4, 22.9) |
Weekend (Mins) | Ref (29.8) a | 8.18 (−21.5, 37.9) | 10.3 (−5.12, 25.8) | 19.1 (−12.0, 50.2) | 2.39 (−8.32, 13.1) |
Evening Latency Weekday (Mins) | Ref (37.8) a | 21.0 (−26.8, 68.8) | 1.49 (−18.0, 21.0) | 25.9 (−19.2, 71.0) | 12.4 (−2.90, 27.7) |
Weekend (Mins) | Ref (54.0) a | 22.1 (−26.9, 71.0) | −3.34 (−22.2, 15.5) | 20.4 (−19.6, 60.4) | 10.4 (−5.92, 26.6) |
Eating Window Weekday (Mins) | Ref (147.9) a | −9.41 (−61.6, 42.8) | −12.1 (−41.5, 17.3) | 17.3 (−42.3, 76.8) | 7.94 (−20.1, 36.0) |
Weekend (Mins) | Ref (109.5) a | 24.6 (−20.0, 69.2) | 13.7 (−12.5, 39.9) | 7.80 (−29.0, 44.6) | 30.6 * (5.01, 56.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Abdi, T.; Heraclides, A.; Papageorgiou, A.; Philippou, E. The Effect of Personality on Chrononutrition during the COVID-19 Lockdown in Qatar. Nutrients 2022, 14, 2725. https://doi.org/10.3390/nu14132725
Al-Abdi T, Heraclides A, Papageorgiou A, Philippou E. The Effect of Personality on Chrononutrition during the COVID-19 Lockdown in Qatar. Nutrients. 2022; 14(13):2725. https://doi.org/10.3390/nu14132725
Chicago/Turabian StyleAl-Abdi, Tamara, Alexandros Heraclides, Alexia Papageorgiou, and Elena Philippou. 2022. "The Effect of Personality on Chrononutrition during the COVID-19 Lockdown in Qatar" Nutrients 14, no. 13: 2725. https://doi.org/10.3390/nu14132725
APA StyleAl-Abdi, T., Heraclides, A., Papageorgiou, A., & Philippou, E. (2022). The Effect of Personality on Chrononutrition during the COVID-19 Lockdown in Qatar. Nutrients, 14(13), 2725. https://doi.org/10.3390/nu14132725