Vitamin D and Bone Health of Older Adults within Care Homes: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Physical Examination
2.3. Health and Lifestyle Questionnaire
2.4. Biochemical Data Collection
2.4.1. General Clinical Chemistry
2.4.2. Plasma 25-OHD
2.4.3. Bone Turnover Marker Analysis
2.5. Immune Function Analysis
2.6. Statistical Methods
3. Results
3.1. Participant Characteristics
3.2. OHD Concentration
3.3. Predictors of Physical and Biochemical Parameters
3.4. Predictors of 25-OHD Concentration
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Portela, M.L.P.M.; Mónico, A.; Barahona, A.; Dupraz, H.; Sol Gonzales-Chaves, M.M.; Zeni, S.N. Comparative 25-OH-vitamin D level in institutionalized women older than 65 years from two cities in Spain and Argentina having a similar solar radiation index. Nutrition 2010, 26, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, V.; Vanpuyenbroeck, K.; Lopez-Hartmann, M.; Wens, J.; Remmen, R. Walk on the sunny side of life—Epidemiology of hypovitaminosis D and mental health in elderly nursing home residents. J. Nutr. Health Aging 2011, 16, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Trummer, O.; Schwetz, V.; Walter-Finell, D.; Lerchbaum, E.; Renner, W.; Gugatschka, M.; Dobnig, H.; Pieber, T.R.; Obermayer-Pietsch, B. Allelic Determinants of Vitamin D Insufficiency, Bone Mineral Density, and Bone Fractures. J. Clin. Endocrinol. Metab. 2012, 9, 1234–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diekmann, R.; Winning, K.; Bauer, J.M.; Sieber, C.C.; Volkert, D.; Uter, W.; Stehle, P.; Lesser, S.; Bertsch, T. Vitamin D status and physical function in nursing home residents: A 1-year observational study. Z. Fur Gerontol. Und Geriatr. 2013, 46, 403–409. [Google Scholar] [CrossRef]
- Samefors, M.; Ostgren, C.J.; Molstad, S.; Lannering, C.; Midlov, P.; Tengblad, A. Vitamin D deficiency in elderly people in Swedish nursing homes is associated with increased mortality. Eur. J. Endocrinol. 2014, 170, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Pilz, S.; Dobnig, H.; Tomaschitz, A.; Kienreich, K.; Piswanger-Sölkner, C.; Fahrleitner-Pammer, A.; Meinitzer, A.; März, W.; Friedl, C.; Wagner, D. Low 25-hydroxyvitamin D is associated with increased mortality in female nursing home residents. J. Clin. Endocrinol. Metab. 2012, 97, 653–657. [Google Scholar] [CrossRef] [Green Version]
- Peláez, V.C.; Ausín, L.; Mambrilla, M.R.; Gonzalez-Sagrado, M.; Castrillón, J.L.P. Ankle-brachial index, risk of clinical fractures, mortality and low bone mass in nursing home residents. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1577–1582. [Google Scholar]
- Shinkov, A.; Borissova, A.; Dakovska, L.; Vlahov, J.; Kassabova, L.; Svinarov, D.; Krivoshiev, S. Differences in the prevalence of vitamin D deficiency and hip fractures in nursing home residents and independently living elderly. Arch. Endocrinol. Metab. 2016, 60, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Macdonell, S.O.; Miller, J.C.; Harper, M.J.; Houghton, L.A.; Waters, D.L. Vitamin D status and its predictors in New Zealand aged-care residents eligible for a government-funded universal Vitamin D supplementation programme. Public Health Nutr. 2016, 19, 3349–3360. [Google Scholar] [CrossRef] [Green Version]
- Scientific Advisory Committee for Nutrition. Vitamin D and Health Report. Public Health England. 2016. Available online: https://www.gov.uk/government/publications/sacn-vitamin-d-and-health-report (accessed on 15 July 2021).
- Griffin, T.P.; Wall, D.; Blake, L.; Griffin, D.G.; Robinson, S.M.; Bell, M.; Mulkerrin, E.C.; O’Shea, P.M. Vitamin D Status of Adults in the Community, in Outpatient Clinics, in Hospital, and in Nursing Homes in the West of Ireland. J. Gerontology. Ser. A Biol. Sci. Med. Sci. 2020, 75, 2418–2425. [Google Scholar] [CrossRef]
- Hill, T.R.; Aspray, T.J. The role of vitamin D in maintaining bone health in older people. Ther. Adv. Musculoskelet. Dis. 2017, 9, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, J.C. Vitamin D and aging. Endocrinol. Metab. Clin. N. Am. 2013, 42, 319–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meehan, M.; Penckofer, S. The Role of Vitamin D in the Aging Adult. J. Aging Gerontol. 2014, 2, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, E.A.; Barry, S.D.; Cefalu, C.A.; Abdo, A.; Hudson, W.P.; Campbell, J.S.; Reske, T.M.; Bonafede, M.; Wilson, K.; Stolshek, B.S.; et al. Osteoporosis Diagnosis and Management in Long-Term Care Facility. Am. J. Med. Sci. 2015, 350, 357–363. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ (Clin. Res. Ed.) 2017, 356, i6583. [Google Scholar] [CrossRef] [Green Version]
- Laird, E.; Rhodes, J.; Kenny, R.A. Vitamin D and Inflammation: Potential Implications for Severity of Covid-19. Ir. Med. J. 2020, 113, 81. [Google Scholar]
- Laird, E.; McNulty, H.; Ward, M.; Hoey, L.; McSorley, E.M.; Wallace, J.M.W.; Carson, E.; Molloy, A.M.; Healy, M.; Casey, M.C.; et al. Vitamin D deficiency is associated with inflammation in older Irish adults. J. Clin. Endocrinol. Metab. 2014, 99, 1807–1815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C. Nutrition, immunity and COVID-19. BMJ Nutr. Prev. Health 2020, 3, 74–92. [Google Scholar] [CrossRef]
- Yamamoto, E.A.; Jørgensen, T.N. Relationships Between Vitamin D, Gut Microbiome, and Systemic Autoimmunity. Front. Immunol. 2020, 10, 3141. [Google Scholar] [CrossRef]
- Ding, K.; Hua, F.; Ding, W. Gut Microbiome and Osteoporosis. Aging Dis. 2020, 11, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.S.; DeMers, S.M.; Vig, E.K.; Borson, S. The disappearing subject: Exclusion of people with cognitive impairment and dementia from geriatrics research. J. Am. Geriatr Soc. 2012, 60, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.; Hotopf, M.; Dewey, M.; Ballard, C.; Bisla, J.; Calem, M.; Fahmy, V.; Hockley, J.; Kinley, J.; Pearce, H.; et al. Current prevalence of dementia, depression and behavioural problems in the older adult care home sector: The South East London Care Home Survey. Age Ageing 2014, 43, 562–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knapp, M.; Chua, K.C.; Broadbent, M.; Chang, C.K.; Fernandez, J.L.; Milea, D.; Romeo, R.; Lovestone, S.; Spencer, M.; Thompson, G.; et al. Predictors of care home and hospital admissions and their costs for older people with Alzheimer’s disease: Findings from a large London case register. BMJ Open 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BAPEN. The ‘Must’ Explanatory Booklet. A Guide to the ‘Malnutrition Universal Screening Tool’ (‘MUST’) for Adults. 2011. Available online: https://www.bapen.org.uk/pdfs/must/must_explan.pdf (accessed on 15 July 2021).
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Croghan, S.W.; Egeghy, P.P. Methods of Dealing with Values Below the Limit of Detection Using SAS. In Proceedings of the Southeastern SAS User Group, St. Petersburg, FL, USA, 22–24 September 2003; Environmental Protection Agency: Washington, DC, USA, 2003. Available online: https://analytics.ncsu.edu/sesug/2003/SD08-Croghan.pdf (accessed on 22 July 2018).
- Terabe, Y.; Harada, A.; Tokuda, H.; Okuizumi, H.; Nagaya, M.; Shimokata, H. Vitamin D deficiency in elderly women in nursing homes: Investigation with consideration of decreased activation function from the kidneys. J. Am. Geriatr. Soc. 2012, 60, 251–255. [Google Scholar] [CrossRef]
- Kojima, G.; Tamai, A.; Masaki, K.; Gatchell, G.; Epure, J.; China, C.; Ross, G.W.; Petrovitch, H.; Tanabe, M. Prevalence of vitamin D deficiency and association with functional status in newly admitted male veteran nursing home residents. J. Am. Geriatr. Soc. 2013, 61, 1953–1957. [Google Scholar] [CrossRef]
- Kojima, G.; Iliffe, S.; Tanabe, M. Vitamin D supplementation as a potential cause of U-shaped associations between vitamin D levels and negative health outcomes: A decision tree analysis for risk of frailty. BMC Geriatr. 2017, 17, 236. [Google Scholar] [CrossRef] [Green Version]
- Mc Williams, C.; Golestany, K.; Sharma, R.; Nejati, G.; Cyrus-Murden, A.; Kripichnikov, D. Correlation of admitted nursing home residents’ hospital length of stay and vitamin D levels. J. Community Hosp. Intern. Med. Perspect. 2011, 1. [Google Scholar] [CrossRef]
- Törmä, J.; Winblad, U.; Saletti, A.; Cederholm, T. Strategies to implement community guidelines on nutrition and their long-term clinical effects in nursing home residents. J. Nutr. Health Aging 2015, 19, 70–76. [Google Scholar] [CrossRef]
- Navarro-Martínez, R.; Fernández-Garrido, J.; Buigues, C.; Martinez-Martinez, M.; Cantero-Díaz, L.; Santamaría-Carrillo, Y.; Serra-Catalá, N.; Peris, C.; Cauli, O. Serum vitamin D and functional impairment in octogenarian women. Appl. Nurs. Res. 2016, 30, 10–14. [Google Scholar] [CrossRef]
- Kruavit, A.; Chailurkit, L.; Thakkinstian, A.; Sriphrapradang, C.; Rajatanavin, R. Prevalence of vitamin D insufficiency and low bone mineral density in elderly Thai nursing home residents. BMC Geriatr. 2012, 12, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, S.S.; Saraiva, G.L.; Kunii, I.S.; Hayashi, L.F.; Cendoroglo, M.S.; Ramos, L.R.; Lazaretti-Castro, M. Factors affecting vitamin D status in different populations in the city of São Paulo, Brazil: The São PAulo vitamin D Evaluation Study (SPADES). BMC Endocr. Disord. 2013, 13, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, S.E.S.; Sales, M.C.; Araújo, J.R.T.; Sena-Evangelista, K.C.M.; Lima, K.C.; Pedrosa, L.F.C. High Prevalence of Hypovitaminosis D in Institutionalized Elderly Individuals is Associated with Summer in a Region with High Ultraviolet Radiation Levels. Nutrients 2019, 11, 1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucukler, F.K.; Simsek, Y.; Turk, A.C.; Arduc, A.; Guler, S. Osteoporosis and Silent Vertebral Fractures in Nursing Home Resident Elderly Men in Turkey. J. Clin. Densitom. Off. J. Int. Soc. Clin. Densitom. 2017, 20, 188–195. [Google Scholar] [CrossRef]
- Okan, F.; Okan, S.; Zincir, H. Effect of Sunlight Exposure on Vitamin D Status of Individuals Living in a Nursing Home and Their Own Homes. J. Clin. Densitom. Off. J. Int. Soc. Clin. Densitom. 2020, 23, 21–28. [Google Scholar] [CrossRef]
- Schwartz, J.B.; Gallagher, J.C.; Jorde, R.; Berg, V.; Walsh, J.; Eastell, R.; Evans, A.L.; Bowles, S.; Naylor, K.E.; Jones, K.S.; et al. Determination of Free 25(OH)D Concentrations and Their Relationships to Total 25(OH)D in Multiple Clinical Populations. J. Clin. Endocrinol. Metab. 2018, 103, 3278–3288. [Google Scholar] [CrossRef] [Green Version]
Descriptive | n Frequency (%) |
---|---|
Vitamin D/calcium use | n 87 |
Vitamin D + calcium | 40 (46.0) |
No supplementation | 43 (49.4) |
Calcium alone | 3 (3.4) |
Vitamin D alone | 1 (1.2) |
Vitamin D dose | |
No Supplementation | 46 (52.9) |
200 IU | 1 (1.15) |
400 IU | 2 (2.3) |
500 IU | 1 (1.15) |
800 IU | 37 (42.5) |
T Score Category ¥ | n 78 |
Normal | 11 (14.1) |
Osteopenia | 17 (21.8) |
Osteoporosis | 50 (64.1) |
Known Osteoporosis ¤ | |
Yes | 28 (32.2) |
No | 59 (67.8) |
History of Low Trauma Fracture | n 87 |
Yes | 39 (44.8) |
No | 48 (55.2) |
No of Low Trauma Fractures | |
1 | 25 (28.7) |
2 | 7 (8.1) |
3 | 4 (4.6) |
>3 | 3 (3.4) |
No history of fracture | 48 (55.2) |
Dementia/Cognitive Impairment | |
Yes | 30 (34.5) |
No | 57 (65.5) |
BMI Category | n 86 |
<18.5 kg/m2 | 2 (2.3) |
18.5–24.9 kg/m2 | 38 (44.2) |
25–29.9 kg/m2 | 17 (19.8) |
>30 kg/m2 | 29 (33.7) |
Descriptives | Total Cohort | Males | Females | 25-OHD <50 nmol/L | 25-OHD >50 nmol/L |
---|---|---|---|---|---|
n 87 | n 35 | n 52 | n 36 | n 33 | |
Age (years) | 83.21 ± 7.9 | 81.29 ± 8.57 | 84.5 ± 7.2 | 83.89 ± 7.13 | 84.52 ± 7.56 |
Height (m) | 1.65 ± 0.11 | 1.72 ± 0.09 | 1.6 ± 0.08 ** | 1.64 ± 0.10 | 1.65 ± 0.11 |
n 86 | n 34 | n 52 | n 35 | n 33 | |
Weight (kg) | 75.94 ± 21.4 | 81.45 ± 20.66 | 72.33 ± 21.3 * | 78.81 ± 19.81 | 73.56 ± 21.95 |
Body Mass Index (kg/m2) | 27.87 ± 7.42 | 27.46 ± 6.32 | 28.3 ± 8.1 | 29.51 ± 7.6 | 26.88 ± 6.6 |
n 78 | n 30 | n 48 | n 32 | n 31 | |
T Score ¥ | −2.8 ± 1.61 | −1.89 ± 1.68 | −3.4 ± 1.25 ** | −2.7 ± 1.53 | −2.76 ± 1.83 |
n 76 | n 31 | n 45 | n 32 | n 30 | |
Muscle strength (kg) | 12.37 ± 5.88 | 16.49 ± 6.38 | 9.52 ± 3.3 ** | 13.6 ± 5.99 | 11.92 ± 6.43 |
n 22 | n 11 | n 11 | n 9 | n 11 | |
TUG (seconds) | 39.17 ± 14.24 | 37.32 ± 16.04 | 41.03 ± 12.7 | 39.02 ± 12.85 | 39.15 ± 15.13 |
Biochemical analysis | n 69 | n 27 | n 42 | n 36 | n 33 |
25-OHD (nmol/L) | 49.52 ± 35.58 | 45.21 ± 35.03 | 52.29 ± 36.07 | 19.8 ± 11.7 | 81.94 ± 21.5 ** |
Alkaline Phosphatase (U/L) | 103.42 ± 58.4 | 98.85 ± 29.11 | 106.36 ± 71.39 | 115.69 ± 73.36 | 90.03 ± 31.73 * |
AST (U/L) | 19.35 ± 10.39 | 19.3 ± 9.28 | 19.38 ± 11.15 | 17.92 ± 9.9 | 20.91 ± 10.82 |
ALT (U/L) | 15.09 ± 9.39 | 17.67 ± 9.34 | 13.43 ± 9.15 * | 15.69 ± 11.46 | 14.42 ± 6.54 |
GGT (U/L) | 47.23 ± 57.81 | 37.78 ± 32.33 | 53.31 ± 69.16 | 54.36 ± 53.34 | 49.27 ± 63.12 |
Urea (mmol/L) | 8.4 ± 3.33 | 8.08 ± 2.97 | 8.6 ± 3.56 | 8.39 ± 2.92 | 8.39 ± 3.77 |
Creatinine (mmol/L) | 99.28 ± 37.7 | 104.07 ± 31.91 | 96.19 ± 41.06 | 97.31 ± 34.72 | 101.42 ± 41.13 |
Est GFR (mL/min) | 51 ± 11.18 | 53.26 ± 9.10 | 49.55 ± 12.22 | 51.44 ± 11.28 | 50.52 ± 11.23 |
Adjusted Calcium (mmol/L) | 2.26 ± 0.15 | 2.24 ± 0.10 | 2.27 ± 0.17 * | 2.26 ± 0.08 | 2.26 ± 0.20 |
n 68 | n 27 | n 41 | n 36 | n 32 | |
PTH (ng/L) | 76.62 ± 56.86 | 65.05 ± 45.62 | 84.24 ± 62.56 | 101.47 ± 65.48 | 48.66 ± 24.96 ** |
Phosphate (mmol/L) | 1.16 ± 0.17 | 1.13 ± 0.21 | 1.17 ± 0.13 | 1.15 ± 0.20 | 1.16 ± 0.12 |
Markers of inflammation | n 69 | n 27 | n 42 | n 36 | n 33 |
TNF-α (pg/mL) | 4.87 ± 2.03 | 4.69 ± 1.99 | 4.98 ± 2.07 | 4.84 ± 1.82 | 4.89 ± 2.26 |
IFN-γ (pg/mL) | 31.95 ± 106.86 | 12.01 ± 15.16 | 44.78 ± 135.51 | 29.72 ± 85.81 | 34.39 ± 127.28 |
IL-1B (pg/mL) | 0.21 ± 0.22 | 0.24 ± 0.24 | 0.19 ± 0.21 | 0.22 ± 0.22 | 0.19 ± 0.23 |
IL-2 (pg/mL) | 0.73 ± 1.63 | 0.49 ± 0.55 | 0.89 ± 2.04 | 0.7 ± 1.78 | 0.77 ± 1.48 |
IL-4 (pg/mL) | 0.02 ± 0.02 | 0.02 ± 0.02 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.02 |
IL-6 (pg/mL) | 3.36 ± 3.77 | 3.95 ± 5.17 | 2.98 ± 2.49 | 3.06 ± 2.98 | 3.69 ± 4.5 |
IL-8 (pg/mL) | 36.27 ± 33.89 | 29.56 ± 29.36 | 40.58 ± 36.2 | 38.87 ± 36.69 | 33.43 ± 30.86 |
IL-10 (pg/mL) | 0.88 ± 2.58 | 1.18 ± 3.89 | 0.69 ± 1.17 | 1.21 ± 3.51 | 0.53 ± 0.62 |
IL-12p70 (pg/mL) | 0.21 ± 0.24 | 0.12 ± 0.07 | 0.27 ± 0.29 * | 0.21 ± 0.2 | 0.20 ± 0.27 |
IL-13 (pg/mL) | 0.51 ± 0.35 | 0.5 ± 0.42 | 0.52 ± 0.30 | 0.54 ± 0.39 | 0.48 ± 0.31 |
n 68 | n 27 | n 41 | n 35 | n 33 | |
CRP (mg/L) | 24.85 ± 37.66 | 26.87 ± 43.44 | 23.51 ± 33.84 | 22.98 ± 30.8 | 26.83 ± 44.21 |
Bone Turnover Markers | n 68 | n 26 | n 42 | n 35 | n 32 |
Osteocalcin (ng/mL) | 28.16 ± 20.18 | 24.05 ± 14.17 | 35.7 ± 22.93 | 35.05 ± 23.52 | 19.48 ± 9.98 ** |
P1NP (ng/mL) | 62.63 ± 45.63 | 56.75 ± 29.32 | 66.27 ± 53.32 | 75.76 ± 54.42 | 47.17 ± 27.74 * |
CTX (ng/mL) | 0.45 ± 0.27 | 0.41 ± 0.22 | 0.47 ± 0.30 | 0.53 ± 0.29 | 0.34 ± 0.18 ** |
Dependant | Model 1 | Predictor Variables | R2 | Standardized β | p Value |
---|---|---|---|---|---|
T-score | 1 | BMI | −0.102 | 0.332 | |
Sex | −0.439 | <0.001 * | |||
Age | 0.246 | −0.152 | 0.150 | ||
2 | 25-OHD | 0.299 | 0.023 | 0.840 | |
Muscle strength (kg) | 1 | BMI | 0.190 | 0.054 | |
Sex | −0.582 | <0.001 * | |||
Age | 0.380 | −0.061 | 0.539 | ||
2 | 25-OHD | 0.475 | −0.073 | 0.475 | |
TUG (seconds) | 1 | BMI | 0.497 | 0.030 * | |
Sex | 0.058 | 0.778 | |||
Age | 0.270 | 0.283 | 0.190 | ||
2 | 25-OHD | 0.277 | 0.066 | 0.785 | |
Osteocalcin (ng/mL) | 1 | BMI | 0.090 | 0.477 | |
Sex | 0.150 | 0.238 | |||
Age | 0.038 | 0.082 | 0.523 | ||
2 | 25-OHD | 0.202 | −0.395 | 0.001 * | |
P1NP (ng/mL) | 1 | BMI | 0.127 | 0.317 | |
Sex | 0.103 | 0.420 | |||
Age | 0.026 | −0.021 | 0.870 | ||
2 | 25-OHD | 0.123 | −0.320 | 0.012 * | |
CTX (ng/mL) | 1 | BMI | 0.022 | 0.865 | |
Sex | 0.106 | 0.408 | |||
Age | 0.015 | 0.045 | 0.730 | ||
2 | 25-OHD | 0.171 | −0.377 | 0.003 * | |
25-OHD (nmol/L) ¥ | 1 | BMI | −0.228 | 0.067 | |
Sex | 0.083 | 0.508 | |||
Age | 0.058 | −0.044 | 0.730 | ||
2 | Vitamin D ± calcium supplement use | 0.413 | 0.610 | <0.001 * |
Dependant | Model 1 | Predictor Variables | R2 | Standardized β | p Value |
---|---|---|---|---|---|
TNF-α (pg/mL) | 1 | BMI | 0.065 | 0.597 | |
Sex | 0.072 | 0.568 | |||
Age | 0.045 | 0.179 | 0.163 | ||
2 | 25-OHD | 0.045 | 0.009 | 0.941 | |
IFN-γ (pg/mL) | 1 | BMI | 0.078 | 0.532 | |
Sex | 0.138 | 0.281 | |||
Age | 0.029 | 0.050 | 0.695 | ||
2 | 25-OHD | 0.033 | −0.058 | 0.652 | |
IL-β (pg/mL) | 1 | BMI | 0.109 | 0.383 | |
Sex | −0.088 | 0.491 | |||
Age | 0.020 | 0.010 | 0.938 | ||
2 | 25-OHD | 0.028 | −0.094 | 0.465 | |
IL-2 (pg/mL) | 1 | BMI | −0.036 | 0.772 | |
Sex | 0.105 | 0.412 | |||
Age | 0.020 | 0.059 | 0.649 | ||
2 | 25-OHD | 0.026 | −0.085 | 0.508 | |
IL-4 (pg/mL) | 1 | BMI | −0.215 | 0.085 | |
Sex | −0.041 | 0.745 | |||
Age | 0.050 | −0.068 | 0.595 | ||
2 | 25-OHD | 0.062 | 0.114 | 0.369 | |
IL-6 (pg/mL) | 1 | BMI | 0.108 | 0.388 | |
Sex | −0.138 | 0.281 | |||
Age | 0.031 | 0.082 | 0.521 | ||
2 | 25-OHD | 0.040 | 0.102 | 0.425 | |
IL-8 (pg/mL) | 1 | BMI | 0.016 | 0.897 | |
Sex | 0.148 | 0.247 | |||
Age | 0.032 | 0.069 | 0.589 | ||
2 | 25-OHD | 0.065 | −0.189 | 0.136 | |
IL-10 (pg/mL) | 1 | BMI | 0.268 | 0.030 * | |
Sex | −0.087 | 0.485 | |||
Age | 0.08 | 0.011 | 0.930 | ||
2 | 25-OHD | 0.096 | −0.133 | 0.285 | |
IL-12p70 (pg/mL) | 1 | BMI | 0.011 | 0.924 | |
Sex | 0.316 | 0.012 * | |||
Age | 0.099 | −0.004 | 0.976 | ||
2 | 25-OHD | 0.103 | −0.060 | 0.629 | |
IL-13 (pg/mL) | 1 | BMI | −0.032 | 0.798 | |
Sex | 0.051 | 0.692 | |||
Age | 0.004 | −0.021 | 0.873 | ||
2 | 25-OHD | 0.009 | −0.076 | 0.559 | |
CRP (mg/L) | 1 | BMI | 0.055 | 0.663 | |
Sex | −0.032 | 0.806 | |||
Age | 0.007 | −0.043 | 0.741 | ||
2 | 25-OHD | 0.012 | 0.067 | 0.605 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feehan, O.; Armstrong, D.J.; Magee, P.J.; Pourshahidi, L.K.; Strain, J.J.; Beggan, L.; Cobice, D.F.; McSorley, E.M. Vitamin D and Bone Health of Older Adults within Care Homes: An Observational Study. Nutrients 2022, 14, 2680. https://doi.org/10.3390/nu14132680
Feehan O, Armstrong DJ, Magee PJ, Pourshahidi LK, Strain JJ, Beggan L, Cobice DF, McSorley EM. Vitamin D and Bone Health of Older Adults within Care Homes: An Observational Study. Nutrients. 2022; 14(13):2680. https://doi.org/10.3390/nu14132680
Chicago/Turabian StyleFeehan, Orlagh, David J. Armstrong, Pamela J. Magee, L. Kirsty Pourshahidi, J. J. Strain, Laura Beggan, Diego F. Cobice, and Emeir M. McSorley. 2022. "Vitamin D and Bone Health of Older Adults within Care Homes: An Observational Study" Nutrients 14, no. 13: 2680. https://doi.org/10.3390/nu14132680
APA StyleFeehan, O., Armstrong, D. J., Magee, P. J., Pourshahidi, L. K., Strain, J. J., Beggan, L., Cobice, D. F., & McSorley, E. M. (2022). Vitamin D and Bone Health of Older Adults within Care Homes: An Observational Study. Nutrients, 14(13), 2680. https://doi.org/10.3390/nu14132680