Effect of Different Nutritional Supplements on Glucose Response of Complete Meals in Two Crossover Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Interventions
2.2. Design of the Studies
2.3. Data Analyses
3. Results
3.1. Average 2h-PPGR Curves
3.2. Average 2h-iAUC, iCmax and Tmax
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blaak, E.E.; Antoine, J.-M.; Benton, D.; Björck, I.; Bozzetto, L.; Brouns, F.; Diamant, M.; Dye, L.; Hulshof, T.; Holst, J.J.; et al. Impact of postprandial glycaemia on health and prevention of disease. Obes. Rev. 2012, 13, 923–984. [Google Scholar] [CrossRef]
- Riddle, M.; Umpierrez, G.; DiGenio, A.; Zhou, R.; Rosenstock, J. Contributions of basal and postprandial hyperglycemia over a wide range of A1C levels before and after treatment intensification in type 2 diabetes. Diabetes Care 2011, 34, 2508–2514. [Google Scholar] [CrossRef] [Green Version]
- Monnier, L.; Colette, C. Postprandial and basal hyperglycaemia in type 2 diabetes: Contributions to overall glucose exposure and diabetic complications. Diabetes Metab. 2015, 41 (Suppl. S1), 6S9–6S15. [Google Scholar] [CrossRef]
- Mainous, A.G.I.; Tanner, R.J.; Baker, R.; E Zayas, C.; Harle, A.C. Prevalence of prediabetes in England from 2003 to 2011: Population-based, cross-sectional study. BMJ Open 2014, 4, e005002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhavan, T.; Luhovyy, B.L.; Panahi, S.; Kubant, R.; Brown, P.H.; Anderson, G.H. Mechanism of action of pre-meal consumption of whey protein on glycemic control in young adults. J. Nutr. Biochem. 2014, 25, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Jakubowicz, D.; Froy, O.; Ahrén, B.; Boaz, M.; Landau, Z.; Bar-Dayan, Y.; Ganz, T.; Barnea, M.; Wainstein, J. Incretin, insulinotropic and glucose-lowering effects of whey protein pre-load in type 2 diabetes: A randomised clinical trial. Diabetologia 2014, 57, 1807–1811. [Google Scholar] [CrossRef]
- Ma, J.; Jesudason, D.R.; Stevens, J.E.; Keogh, J.B.; Jones, K.L.; Clifton, P.M.; Horowitz, M.; Rayner, C.K. Sustained effects of a protein ‘preload’ on glycaemia and gastric emptying over 4 weeks in patients with type 2 diabetes: A randomized clinical trial. Diabetes Res. Clin. Pract. 2015, 108, e31–e34. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, T.; Luhovyy, B.L.; Brown, P.H.; Cho, C.E.; Anderson, G.H. Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults. Am. J. Clin. Nutr. 2010, 91, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Frid, A.H.; Nilsson, M.; Holst, J.J.; Björck, I.M. Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects. Am. J. Clin. Nutr. 2005, 82, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Bjørnshave, A.; Johansen, T.N.; Amer, B.; Dalsgaard, T.K.; Holst, J.J.; Hermansen, K. Pre-meal and postprandial lipaemia in subjects with the metabolic syndrome: Effects of timing and protein quality (randomised crossover trial). Br. J. Nutr. 2019, 121, 312–321. [Google Scholar] [CrossRef]
- King, D.G.; Walker, M.; Campbell, M.; Breen, L.; Stevenson, E.J.; West, D.J. A small dose of whey protein co-ingested with mixed-macronutrient breakfast and lunch meals improves postprandial glycemia and suppresses appetite in men with type 2 diabetes: A randomized controlled trial. Am. J. Clin. Nutr. 2018, 107, 550–557. [Google Scholar] [CrossRef]
- Breuille, D.; Moore, D.R.; Stellingwerf, T.; Pouteau, E.; Bovetto, L. Whey Protein Micelles against Muscle Atrophy and Sarcopenia. U.S. Patent 20140249078A1, 4 September 2014. [Google Scholar]
- Phimarn, W.; Wichaiyo, K.; Silpsavikul, K.; Sungthong, B.; Saramunee, K. A meta-analysis of efficacy of Morus alba Linn. to improve blood glucose and lipid profile. Eur. J. Nutr. 2017, 56, 1509–1521. [Google Scholar] [CrossRef] [PubMed]
- Asano, N. Sugar-mimicking glycosidase inhibitors: Bioactivity and application. Cell. Mol. Life Sci. 2009, 66, 1479–1492. [Google Scholar] [CrossRef] [PubMed]
- Asano, N.; Yamashita, T.; Yasuda, K.; Ikeda, K.; Kizu, H.; Kameda, Y.; Kato, A.; Nash, R.J.; Lee, H.S.; Ryu, K.S. Polyhydroxylated alkaloids isolated from mulberry trees (Morusalba L.) and silkworms (Bombyx mori L.). J. Agric. Food Chem. 2001, 49, 4208–4213. [Google Scholar] [CrossRef] [PubMed]
- Józefczuk, J.; Malikowska, K.; Glapa, A.; Stawińska-Witoszyńska, B.; Nowak, J.K.; Bajerska, J.; Lisowska, A.; Walkowiak, J. Mulberry leaf extract decreases digestion and absorption of starch in healthy subjects-A randomized, placebo-controlled, crossover study. Adv. Med. Sci. 2017, 62, 302–306. [Google Scholar] [CrossRef]
- Kimura, T.; Nakagawa, K.; Kubota, H.; Kojima, Y.; Goto, Y.; Yamagishi, K.; Oita, S.; Oikawa, A.S.; Miyazawa, T. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. J. Agric. Food Chem. 2007, 55, 5869–5874. [Google Scholar] [CrossRef] [PubMed]
- Lown, M.; Fuller, R.; Lightowler, H.; Fraser, A.; Gallagher, A.; Stuart, B.; Byrne, C.; Lewith, G. Mulberry-extract improves glucose tolerance and decreases insulin concentrations in normoglycaemic adults: Results of a randomised double-blind placebo-controlled study. PLoS ONE 2017, 12, e0172239. [Google Scholar] [CrossRef]
- Nakamura, M.; Nakamura, S.; Oku, T. Suppressive response of confections containing the extractive from leaves of Morus Alba on postprandial blood glucose and insulin in healthy human subjects. Nutr. Metab. 2009, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Asai, A.; Nakagawa, K.; Higuchi, O.; Kimura, T.; Kojima, Y.; Kariya, J.; Miyazawa, T.; Oikawa, S. Effect of mulberry leaf extract with enriched 1-deoxynojirimycin content on postprandial glycemic control in subjects with impaired glucose metabolism. J. Diabetes Investig. 2011, 2, 318–323. [Google Scholar] [CrossRef]
- Andallu, B.; Suryakantham, V.; Srikanthi, B.L.; Reddy, G.K. Effect of mulberry (Morus indica L.) therapy on plasma and erythrocyte membrane lipids in patients with type 2 diabetes. Clin. Chim. Acta 2001, 314, 47–53. [Google Scholar] [CrossRef]
- Banu, S.; Jabir, N.R.; Manjunath, N.C.; Khan, M.S.; Ashraf, G.M.; Kamal, M.A.; Tabrez, S. Reduction of post-prandial hyperglycemia by mulberry tea in type-2 diabetes patients. Saudi J. Biol. Sci. 2015, 22, 32–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, K.; Yatsunami, K.; Fukuda, E.; Onodera, S.; Mizukami, O.; Hoshino, G.; Kamei, T. Antihyperglycemic effects of propolis mixed with mulberry leaf extract on patients with type 2 diabetes. Altern. Ther. Health Med. 2004, 10, 78–79. [Google Scholar] [PubMed]
- Schmitt, C.; Moitzi, C.; Bovay, C.; Rouvet, M.; Bovetto, L.; Donato, L.; Leser, M.E.; Schurtenberger, P.; Stradner, A. Internal structure and colloidal behaviour of covalent whey protein microgels obtained by heat treatment. Soft Matter 2010, 6, 4676–4684. [Google Scholar] [CrossRef] [Green Version]
- Rytz, A.; Adeline, D.; Lê, K.-A.; Tan, D.; Lamothe, L.; Roger, O.; Macé, K. Predicting Glycemic Index and Glycemic Load from Macronutrients to Accelerate Development of Foods and Beverages with Lower Glucose Responses. Nutrients 2019, 11, 1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, T.; Bode, B.W.; Christiansen, M.P.; Klaff, L.J.; Alva, S. The Performance and Usability of a Factory-Calibrated Flash Glucose Monitoring System. Diabetes Technol. Ther. 2015, 17, 787–794. [Google Scholar] [CrossRef]
- Bonora, B.; Maran, A.; Ciciliot, S.; Avogaro, A.; Fadini, G.P. Head-to-head comparison between flash and continuous glucose monitoring systems in outpatients with type 1 diabetes. J. Endocrinol. Investig. 2016, 39, 1391–1399. [Google Scholar] [CrossRef]
- Distiller, L.A.; Cranston, I.; Mazze, R. First Clinical Experience with Retrospective Flash Glucose Monitoring (FGM) Analysis in South Africa: Characterizing Glycemic Control with Ambulatory Glucose Profile. J. Diabetes Sci. Technol. 2016, 10, 1294–1302. [Google Scholar] [CrossRef] [Green Version]
- Schierenbeck, F.; Franco-Cereceda, A.; Liska, J. Accuracy of 2 Different Continuous Glucose Monitoring Systems in Patients Undergoing Cardiac Surgery. J. Diabetes Sci. Technol. 2017, 11, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Williams, E. Experimental designs balanced for the estimation of residual effects of treatments. Aust. J. Chem. 1949, 2, 149–168. [Google Scholar] [CrossRef]
- International Standard Organization. Food Products—Determination of the Glycaemic Index (GI) and Recommendations for Food Classification; International Standard Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Senn, S. Cross-Over Trials in Clinical Research, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Mela, D.J.; Cao, X.-Z.; Dobriyal, R.; Fowler, M.I.; Lin, L.; Joshi, M.; Mulder, T.J.P.; Murray, P.G.; Peters, H.P.F.; Vermeer, M.A.; et al. The effect of 8 plant extracts and combinations on post-prandial blood glucose and insulin responses in healthy adults: A randomized controlled trial. Nutr. Metab. 2020, 17, 51. [Google Scholar] [CrossRef]
- Smith, K.; Taylor, G.S.; Brunsgaard, L.H.; Walker, M.; Davies, K.A.B.; Stevenson, E.J.; West, D.J. Thrice daily consumption of a novel, premeal shot containing a low dose of whey protein increases time in euglycemia during 7 days of free-living in individuals with type 2 diabetes. BMJ Open Diabetes Res. Care 2022, 10, e002820. [Google Scholar] [CrossRef] [PubMed]
Study | Intervention | Supplement [g Active + mL Water] | Timing [min before Meal] |
---|---|---|---|
Protein Premeal | Control 30 | 0 g + 100 mL | 30 |
WPI 30 | 10 g WPI + 100 mL | 30 | |
WPM 30 | 10 g WPM + 100 mL | 30 | |
Control 10 | 0 g + 100 mL | 10 | |
WPI 10 | 10 g WPI + 100 mL | 10 | |
WPM 10 | 10 g WPM + 100 mL | 10 | |
MLE | Control | 0 mg + 200 mL | 5 |
MLE Before | 250 mg MLE + 200 mL | 5 | |
MLE During | 250 mg MLE + 200 mL | 0 |
Protein Premeal Study | MLE Study | |
---|---|---|
Energy [kcal] | 320 | 510 |
CHO [g (%kcal)] | 71.0 (89%) | 72.5 (57%) |
Sugars [g (%kcal)] | 43.5 (54%) | 4.5 (4%) |
Protein [g (%kcal)] | 5.0 (6%) | 24.9 (19%) |
Fat [g (%kcal)] | 1.8 (5%) | 13.4 (24%) |
eGL [g] | 48 | 48 |
2h-iAUC [mmol/L × min] | iCmax [mmol/L] | Tmax [min] | |
---|---|---|---|
Control 30 | 245 ± 30 | 3.50 ± 0.33 | 50 ± 5 |
WPI 30 | 212 ± 30 | 2.80 ± 0.33 | 59 ± 5 |
WPM 30 | 172 ± 26 | 2.41 ± 0.33 | 59 ± 5 |
Control 10 | 247 ± 29 | 3.77 ± 0.39 | 51 ± 6 |
WPI 10 | 203 ± 32 | 2.83 ± 0.36 | 45 ± 4 |
WPM 10 | 185 ± 28 | 2.65 ± 0.32 | 46 ± 5 |
Control | 167 ± 12 | 2.45 ± 0.14 | 60 ± 7 |
MLE before | 123 ± 12 | 1.77 ± 0.13 | 85 ± 9 |
MLE during | 111 ± 10 | 1.61 ± 0.12 | 82 ± 9 |
2h-iAUC [%] | iCmax [mmol/L] | Tmax [min] | |
---|---|---|---|
WPI 30—Control 30 | −14 ± 8 (p = 0.104) | −0.70 ± 0.26 (p = 0.019) | 9 ± 5 (p = 0.104) |
WPM 30—Control 30 | −30 ± 7 (p = 0.001) | −1.09 ± 0.24 (p = 0.001) | 9 ± 7 (p = 0.218) |
WPM30—WPI30 | −19 ± 8 (p = 0.042) | −0.40 ± 0.22 (p = 0.100) | 0 ± 8 (p = 1.000) |
WPI 10—Control 10 | −18 ± 9 (p = 0.077) | −0.94 ± 0.31 (p = 0.009) | −6 ± 6 (p = 0.290) |
WPM 10—Control 10 | −25 ± 9 (p = 0.019) | −1.13 ± 0.33 (p = 0.004) | −5 ± 7 (p = 0.444) |
WPM10—WPI10 | −9 ± 10 (p = 0.375) | −0.19 ± 0.29 (p = 0.534) | 1 ± 7 (p = 0.876) |
MLE before—Control | −26 ± 7 (p = 0.002) | −0.68 ± 0.17 (p = 0.001) | 25 ± 9 (p = 0.023) |
MLE during—Control | −34 ± 7 (p < 0.001) | −0.84 ± 0.15 (p < 0.001) | 22 ± 11 (p = 0.206) |
MLE during—MLE before | −10 ± 7 (p = 0.050) | −0.16 ± 0.12 (p = 0.046) | −3 ± 10 (p = 0.420) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheldof, N.; Francey, C.; Rytz, A.; Egli, L.; Delodder, F.; Bovetto, L.; Piccardi, N.; Darimont, C. Effect of Different Nutritional Supplements on Glucose Response of Complete Meals in Two Crossover Studies. Nutrients 2022, 14, 2674. https://doi.org/10.3390/nu14132674
Gheldof N, Francey C, Rytz A, Egli L, Delodder F, Bovetto L, Piccardi N, Darimont C. Effect of Different Nutritional Supplements on Glucose Response of Complete Meals in Two Crossover Studies. Nutrients. 2022; 14(13):2674. https://doi.org/10.3390/nu14132674
Chicago/Turabian StyleGheldof, Nele, Celia Francey, Andreas Rytz, Léonie Egli, Frederik Delodder, Lionel Bovetto, Nathalie Piccardi, and Christian Darimont. 2022. "Effect of Different Nutritional Supplements on Glucose Response of Complete Meals in Two Crossover Studies" Nutrients 14, no. 13: 2674. https://doi.org/10.3390/nu14132674
APA StyleGheldof, N., Francey, C., Rytz, A., Egli, L., Delodder, F., Bovetto, L., Piccardi, N., & Darimont, C. (2022). Effect of Different Nutritional Supplements on Glucose Response of Complete Meals in Two Crossover Studies. Nutrients, 14(13), 2674. https://doi.org/10.3390/nu14132674