Iron Supplementation Is Associated with Improvement of Motor Development, Hemoglobin Level, and Weight in Preterm Infants during the First Year of Life in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Assessment of Outcomes
2.4. Assessment of Covariates
2.5. Demographics
2.6. Risk Factors in the Prenatal Stage
2.7. Risk Factors in the Neonatal Stage
2.8. Nutrition during Follow Up
2.9. Statistical Analysis
3. Results
3.1. Basic Characteristics of the Study Population
3.2. Differences in Neurobehavioral Development between the Iron Supplementation Group and the Control Group
3.3. Differences in Hb and Anthropometry between the Iron Supplementation Group and Control Group
3.4. Association of Iron Supplementation with Neurobehavioral Development
3.5. Association of Iron Supplementation with Hb and Anthropometry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- World Health Organization. WHO Preterm Birth Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth (accessed on 5 November 2021).
- Wang, Y.; Wu, Y.; Li, T.; Wang, X.; Zhu, C. Iron Metabolism and Brain Development in Premature Infants. Front. Physiol. 2019, 10, 463. [Google Scholar] [CrossRef]
- Basu, S.; Kumar, D.; Anupurba, S.; Verma, A.; Kumar, A. Effect of maternal iron deficiency anemia on fetal neural development. J. Perinatol. 2018, 38, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Raffaeli, G.; Manzoni, F.; Cortesi, V.; Cavallaro, G.; Mosca, F.; Ghirardello, S. Iron Homeostasis Disruption and Oxidative Stress in Preterm Newborns. Nutrients 2020, 12, 1554. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.D.; Greer, F.R. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age). Pediatrics 2010, 126, 1040–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, R.; Georgieff, M.K. Iron therapy for preterm infants. Clin. Perinatol. 2009, 36, 27–42. [Google Scholar] [CrossRef] [Green Version]
- McCann, S.; Perapoch Amado, M.; Moore, S.E. The Role of Iron in Brain Development: A Systematic Review. Nutrients 2020, 12, 2001. [Google Scholar] [CrossRef]
- Little, A.G.; Lau, G.; Mathers, K.E.; Leary, S.C.; Moyes, C.D. Comparative biochemistry of cytochrome c oxidase in animals. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2018, 224, 170–184. [Google Scholar] [CrossRef]
- Agostoni, C.; Buonocore, G.; Carnielli, V.P.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellöf, M.; Embleton, N.D.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral nutrient supply for preterm infants: Commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef]
- McCarthy, E.K.; Ni Chaoimh, C.; Kenny, L.C.; Hourihane, J.O.; Irvine, A.D.; Murray, D.M.; Kiely, M.E. Iron status, body size, and growth in the first 2 years of life. Matern. Child Nutr. 2018, 14, e12458. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, E.K.; Dempsey, E.M.; Kiely, M.E. Iron supplementation in preterm and low-birth-weight infants: A systematic review of intervention studies. Nutr. Rev. 2019, 77, 865–877. [Google Scholar] [CrossRef]
- Pasricha, S.R.; Hayes, E.; Kalumba, K.; Biggs, B.A. Effect of daily iron supplementation on health in children aged 4–23 months: A systematic review and meta-analysis of randomised controlled trials. Lancet Glob. Health 2013, 1, e77–e86. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhan, S.; Gong, T.; Lee, L. Iron therapy for improving psychomotor development and cognitive function in children under the age of three with iron deficiency anaemia. Cochrane Database Syst. Rev. 2013, 2013, Cd001444. [Google Scholar] [CrossRef]
- Friel, J.K.; Aziz, K.; Andrews, W.L.; Harding, S.V.; Courage, M.L.; Adams, R.J. A double-masked, randomized control trial of iron supplementation in early infancy in healthy term breast-fed infants. J. Pediatr. 2003, 143, 582–586. [Google Scholar] [CrossRef]
- Angulo-Barroso, R.M.; Li, M.; Santos, D.C.; Bian, Y.; Sturza, J.; Jiang, Y.; Kaciroti, N.; Richards, B.; Lozoff, B. Iron Supplementation in Pregnancy or Infancy and Motor Development: A Randomized Controlled Trial. Pediatrics 2016, 137, e20153547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moffatt, M.E.; Longstaffe, S.; Besant, J.; Dureski, C. Prevention of iron deficiency and psychomotor decline in high-risk infants through use of iron-fortified infant formula: A randomized clinical trial. J. Pediatr. 1994, 125, 527–534. [Google Scholar] [CrossRef]
- Berglund, S.K.; Chmielewska, A.; Starnberg, J.; Westrup, B.; Hägglöf, B.; Norman, M.; Domellöf, M. Effects of iron supplementation of low-birth-weight infants on cognition and behavior at 7 years: A randomized controlled trial. Pediatr. Res. 2018, 83, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Berglund, S.K.; Westrup, B.; Hägglöf, B.; Hernell, O.; Domellöf, M. Effects of iron supplementation of LBW infants on cognition and behavior at 3 years. Pediatrics 2013, 131, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Friel, J.K.; Andrews, W.L.; Aziz, K.; Kwa, P.G.; Lepage, G.; L’Abbe, M.R. A randomized trial of two levels of iron supplementation and developmental outcome in low birth weight infants. J. Pediatr. 2001, 139, 254–260. [Google Scholar] [CrossRef]
- Angeles, I.T.; Schultink, W.J.; Matulessi, P.; Gross, R.; Sastroamidjojo, S. Decreased rate of stunting among anemic Indonesian preschool children through iron supplementation. Am. J. Clin. Nutr. 1993, 58, 339–342. [Google Scholar] [CrossRef]
- Aukett, M.A.; Parks, Y.A.; Scott, P.H.; Wharton, B.A. Treatment with iron increases weight gain and psychomotor development. Arch. Dis. Child 1986, 61, 849–857. [Google Scholar] [CrossRef]
- Morais, M.B.; Ferrari, A.A.; Fisberg, M. Effect of oral iron therapy on physical growth. Rev. Paul. Med. 1993, 111, 439–444. [Google Scholar] [PubMed]
- Vucic, V.; Berti, C.; Vollhardt, C.; Fekete, K.; Cetin, I.; Koletzko, B.; Gurinovic, M.; van’t Veer, P. Effect of iron intervention on growth during gestation, infancy, childhood, and adolescence: A systematic review with meta-analysis. Nutr. Rev. 2013, 71, 386–401. [Google Scholar] [CrossRef] [PubMed]
- Wachs, T.D.; Georgieff, M.; Cusick, S.; McEwen, B.S. Issues in the timing of integrated early interventions: Contributions from nutrition, neuroscience, and psychological research. Ann. N. Y. Acad. Sci. 2014, 1308, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.M. Iron supplementation in premature infants using the zinc protoporphyrin to heme ratio: Short- and long-term outcomes. J. Perinatol. 2013, 33, 712–716. [Google Scholar] [CrossRef] [Green Version]
- Taylor, T.A.; Kennedy, K.A. Randomized trial of iron supplementation versus routine iron intake in VLBW infants. Pediatrics 2013, 131, e433–e438. [Google Scholar] [CrossRef] [Green Version]
- Editorial Board of Chinese Journal of Pediatrics; Child Health Care Group Pediatrics Branch of Chinese Medical Association; Neonatology Group Pediatrics Society of Chinese Medical Association. Feeding recommendations for premature and low birth weight infants after discharge. Chin. J. Pediatr. 2016, 54, 6–12. [Google Scholar]
- Zheng, J.; Liu, J.; Yang, W. Association of Iron-Deficiency Anemia and Non-Iron-Deficiency Anemia with Neurobehavioral Development in Children Aged 6–24 Months. Nutrients 2021, 13, 3423. [Google Scholar] [CrossRef]
- Jin, C.; Li, R.; Zhang, L.; Zhang, Y.; Li, N.; Wang, J.; Wang, X.; Liang, W.; Zhang, Y.; Wei, Z.; et al. The revision and according validity reseasher of Child Development Scale for Children. Chin. J. Child Health Care 2014, 22, 1242–1246. [Google Scholar]
- Zheng, M.; Feng, L.; Liu, X.; Xu, X.; Li, H.; Wang, k. Standardization of the mental developmental screening test (DST) for children aged 0~6 years in China. Chin. J. Pediatr. 1997, 35, 117–120. [Google Scholar]
- Agoritsas, T.; Merglen, A.; Shah, N.D.; O’Donnell, M.; Guyatt, G.H. Adjusted Analyses in Studies Addressing Therapy and Harm: Users’ Guides to the Medical Literature. JAMA 2017, 317, 748–759. [Google Scholar] [CrossRef]
- Li, M.; Ji, C.; Xuan, W.; Chen, W.; Lv, Y.; Liu, T.; You, Y.; Gao, F.; Zheng, Q.; Shao, J. Effects of Daily Iron Supplementation on Motor Development and Brain Connectivity in Preterm Infants: A Diffusion Magnetic Resonance Study. Front. Neurosci. 2021, 15, 769558. [Google Scholar] [CrossRef] [PubMed]
- Black, M.M.; Baqui, A.H.; Zaman, K.; Ake Persson, L.; El Arifeen, S.; Le, K.; McNary, S.W.; Parveen, M.; Hamadani, J.D.; Black, R.E. Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants. Am. J. Clin. Nutr. 2004, 80, 903–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berglund, S.K.; Westrup, B.; Domellöf, M. Iron supplementation until 6 months protects marginally low-birth-weight infants from iron deficiency during their first year of life. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 390–395. [Google Scholar] [CrossRef]
- Iglesias Vazquez, L.; Canals, J.; Voltas, N.; Jardi, C.; Hernandez, C.; Bedmar, C.; Escribano, J.; Aranda, N.; Jimenez, R.; Barroso, J.M.; et al. Does the fortified milk with high iron dose improve the neurodevelopment of healthy infants? Randomized controlled trial. BMC Pediatr. 2019, 19, 315. [Google Scholar] [CrossRef] [PubMed]
- Georgieff, M.K.; Brunette, K.E.; Tran, P.V. Early life nutrition and neural plasticity. Dev. Psychopathol. 2015, 27, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Rice, D.; Barone, S., Jr. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ. Health Perspect 2000, 108 (Suppl. 3), 511–533. [Google Scholar]
- Cai, J.; Zhang, Y.P.; Shields, L.B.; Zhang, Z.Z.; Liu, N.; Xu, X.M.; Feng, S.Q.; Shields, C.B. Correlation between electrophysiological properties, morphological maturation, and olig gene changes during postnatal motor tract development. Dev. Neurobiol. 2013, 73, 713–722. [Google Scholar] [CrossRef]
- Domellöf, M.; Braegger, C.; Campoy, C.; Colomb, V.; Decsi, T.; Fewtrell, M.; Hojsak, I.; Mihatsch, W.; Molgaard, C.; Shamir, R.; et al. Iron requirements of infants and toddlers. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 119–129. [Google Scholar] [CrossRef]
- Lozoff, B.; Jiang, Y.; Li, X.; Zhou, M.; Richards, B.; Xu, G.; Clark, K.M.; Liang, F.; Kaciroti, N.; Zhao, G.; et al. Low-Dose Iron Supplementation in Infancy Modestly Increases Infant Iron Status at 9 Mo without Decreasing Growth or Increasing Illness in a Randomized Clinical Trial in Rural China. J. Nutr. 2016, 146, 612–621. [Google Scholar] [CrossRef] [Green Version]
- Jain, V.; Singhal, A. Catch up growth in low birth weight infants: Striking a healthy balance. Rev. Endocr. Metab. Disord. 2012, 13, 141–147. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, J.; Guo, C.; Shi, H.; Wu, D.; Sun, F.; Shen, L.; Ge, P.; Wang, J.; Hu, X.; et al. Growth of infants and young children born small for gestational age: Growth restriction accompanied by overweight. J. Int. Med. Res. 2018, 46, 3765–3777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexeev, E.E.; He, X.; Slupsky, C.M.; Lönnerdal, B. Effects of iron supplementation on growth, gut microbiota, metabolomics and cognitive development of rat pups. PLoS ONE 2017, 12, e0179713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Control Group | Iron Supplementation Group | p |
---|---|---|---|
871 | 697 | ||
Demographics at birth | |||
Sex | 0.129 | ||
Boy | 459 (52.7) | 395 (56.7) | |
Girl | 412 (47.3) | 302 (43.3) | |
GA (weeks) | 34.79 ± 2.06 | 33.59 ± 2.42 | <0.001 |
GA group | <0.001 | ||
Late preterm | 661 (75.9) | 379 (54.4) | |
Early preterm | 210 (24.1) | 318 (45.6) | |
BW (g) | 2271.47 ± 512.26 | 1997.13 ± 499.40 | <0.001 |
BW group | <0.001 | ||
NBW | 301 (34.6) | 113 (16.2) | |
LBW | 502 (57.6) | 480 (68.9) | |
VLBW | 68 (7.8) | 104 (14.9) | |
GA by weight at birth | 0.635 | ||
AGA | 746 (85.6) | 596 (85.5) | |
SGA | 106 (12.2) | 90 (12.9) | |
LGA | 19 (2.2) | 11 (1.6) | |
BL (cm) | 45.87 ± 3.72 | 43.88 ± 4.14 | <0.001 |
HC (cm) | 31.70 ± 2.07 | 30.79 ± 2.28 | <0.001 |
Neonatal diseases | |||
Asphyxia | 38 (4.4) | 38 (5.5) | 0.379 |
Intracranial hemorrhage | 37 (4.2) | 55 (7.9) | 0.003 |
Acute respiratory distress syndrome | 40 (4.6) | 86 (12.3) | <0.001 |
Hyperbilirubinemia | 289 (33.2) | 176 (25.3) | 0.001 |
Hypoglycemia | 42 (4.8) | 54 (7.7) | 0.022 |
Infection | 74 (8.5) | 108 (15.5) | <0.001 |
Bronchopulmonary dysplasia | 18 (2.1) | 33 (4.7) | 0.005 |
Sepsis | 30 (3.4) | 49 (7.0) | 0.002 |
Pneumonia | 132 (15.2) | 175 (25.1) | <0.001 |
Neonatal anemia | 164 (18.8) | 238 (34.1) | <0.001 |
Prenatal risk factors | |||
Parity | 0.715 | ||
Nulliparous | 497 (57.1) | 405 (58.1) | |
Multiparous | 374 (42.9) | 292 (41.9) | |
Mode of delivery | 0.011 | ||
Cesarean | 499 (57.3) | 380 (54.5) | |
Natural labor | 340 (39.0) | 306 (43.9) | |
Others | 32 (3.7) | 11 (1.6) | |
Type of gestation | 0.699 | ||
Singleton | 688 (79.0) | 557 (79.9) | |
Multiple | 183 (21.0) | 140 (20.1) | |
Premature rupture of membrane | 280 (32.1) | 232 (33.3) | 0.672 |
Placenta previa | 149 (17.1) | 64 (9.2) | <0.001 |
Hypertensive disorders of pregnancy | 63 (7.2) | 53 (7.6) | 0.856 |
GDM | 165 (18.9) | 157 (22.5) | 0.093 |
Gestational IDA | 331 (38.0) | 296 (42.5) | 0.082 |
Propensity score | 0.41 (0.13) | 0.49 (0.15) | <0.001 |
Variables | Control Group | Iron Supplementation Group | p |
---|---|---|---|
871 | 697 | ||
3 mo CA | |||
Neurobehavioral development | |||
DQ | 67.32 ± 13.34 | 62.74 ± 12.98 | <0.001 |
Hb, g/L | 110.46 ± 11.74 | 111.68 ± 10.60 | 0.136 |
Change of Hb, g/L | 5.46 ± 9.94 | 8.86 ± 10.84 | 0.013 |
Anthropometry | |||
LAZ | 34.80 ± 28.48 | 22.77 ± 24.96 | <0.001 |
WAZ | 40.88 ± 29.51 | 34.90 ± 28.79 | 0.001 |
HAZ | 29.00 ± 25.36 | 21.73 ± 23.67 | <0.001 |
6 mo CA | |||
Neurobehavioral development | |||
DQ | 84.99 ± 9.14 | 85.14 ± 8.56 | 0.839 |
Gross motor | 85.33 ± 12.28 | 85.40 ± 11.62 | 0.944 |
Fine motor | 85.60 ± 10.23 | 84.79 ± 11.17 | 0.352 |
Adaptability | 85.84 ± 11.32 | 85.84 ± 11.80 | 0.992 |
Language | 82.45 ± 11.45 | 82.54 ± 11.54 | 0.924 |
Personal–social | 85.65 ± 11.70 | 85.27 ± 10.85 | 0.679 |
Hb, g/L | 113.36 ± 11.93 | 116.37 ± 9.90 | 0.002 |
Change of Hb, g/L | 6.95 ± 14.49 | 14.81 ± 11.33 | <0.001 |
Anthropometry | |||
LAZ | 40.64 ± 29.55 | 35.90 ± 28.55 | 0.017 |
WAZ | 44.87 ± 30.18 | 45.70 ± 30.07 | 0.685 |
HAZ | 38.29 ± 28.47 | 33.35 ± 26.99 | 0.009 |
12 mo CA | |||
Neurobehavioral development | |||
DQ | 82.20 ± 7.86 | 82.04 ± 7.00 | 0.829 |
Gross motor | 86.44 ± 14.38 | 87.13 ± 12.18 | 0.606 |
Fine motor | 83.49 ± 9.83 | 83.68 ± 9.63 | 0.842 |
Adaptability | 80.17 ± 10.19 | 79.10 ± 11.81 | 0.317 |
Language | 78.72 ± 12.15 | 77.97 ± 11.34 | 0.523 |
Personal–social | 81.38 ± 9.31 | 81.00 ± 9.19 | 0.678 |
Hb, g/L | 120.23 ± 8.88 | 120.42 ± 7.90 | 0.847 |
Change of Hb, g/L | 15.45 ± 12.93 | 17.44 ± 11.61 | 0.431 |
Anthropometry | |||
LAZ | 41.39 ± 29.48 | 39.74 ± 28.81 | 0.504 |
WAZ | 42.49 ± 28.76 | 45.72 ± 29.19 | 0.186 |
HAZ | 43.55 ± 28.44 | 44.91 ± 30.20 | 0.582 |
Variables | Model 1 | Model 2 | Model 3 |
---|---|---|---|
3 mo CA | |||
Neurobehavioral development | |||
DQ | −4.577 *** (−6.166, −2.988) | −0.267 (−1.710, 1.176) | −0.136 (−1.607, 1.334) |
Hb, g/L | 1.218 (−0.123, 2.559) | 1.112 (−0.320, 2.543) | 2.196 *** (0.799, 3.594) |
Change of Hb, g/L | 3.402 ** (1.150, 5.654) | 2.790 ** (0.469, 5.112) | 3.920 *** (1.629, 6.211) |
Anthropometry | |||
LAZ | −12.030 *** (−14.744, −9.317) | −3.722 ** (−6.256, −1.188) | −3.056 (−5.634, −0.479) |
WAZ | −5.980 *** (−8.951, −3.009) | −5.980 *** (−8.951, −3.009) | 2.431 (−0.288, 5.151) |
HAZ | −7.263 *** (−9.794, −4.731) | −2.901 (−5.641, −0.162) | −2.096 (−4.865, 0.673) |
6 mo CA | |||
Neurobehavioral development | |||
DQ | 0.147 (−1.044, 1.338) | 2.317 *** (1.283, 3.351) | 1.669 *** (0.637, 2.701) |
Gross motor | 0.069 (−1.537, 1.676) | 2.408 *** (0.904, 3.912) | 1.894 ** (0.344, 3.445) |
Fine motor | −0.807 (−2.233, 0.619) | 1.404 (0.095, 2.714) | 1.077 (−0.297, 2.451) |
Adaptability | −0.009 (−1.553, 1.535) | 2.278 *** (0.831, 3.725) | 1.400 (−0.097, 2.897) |
Language | 0.090 (−1.449, 1.628) | 2.297 *** (0.850, 3.744) | 1.170 (−0.300, 2.640) |
Personal–social | −0.382 (−1.901, 1.136) | 1.474 (−0.012, 2.959) | 1.232 (−0.309, 2.773) |
Hb, g/L | 3.011 *** (1.395, 4.628) | 2.815 *** (1.128, 4.502) | 2.752 *** (1.094, 4.409) |
Change of Hb, g/L | 7.860 *** (4.720, 11.000) | 7.860 *** (4.573, 11.147) | 7.259 *** (3.939, 10.579) |
Anthropometry | |||
LAZ | −4.743 ** (−8.011, −1.475) | 0.482 (−2.589, 3.552) | 0.582 (−2.561, 3.725) |
HAZ | 0.837 (−2.550, 4.224) | 5.094 *** (1.905, 8.284) | 5.322 *** (2.020, 8.625) |
WAZ | −4.944 *** (−8.066, −1.822) | −2.025 (−5.560, 1.511) | −1.249 (−4.867, 2.370) |
12 mo CA | |||
Neurobehavioral development | |||
DQ | −0.161 (−1.382, 1.061) | 1.851 *** (0.795, 2.907) | 1.759 *** (0.694, 2.824) |
Gross motor | 0.690 (−1.508, 2.888) | 3.241 ** (1.116, 5.366) | 4.019 *** (1.859, 6.178) |
Fine motor | 0.192 (−1.388, 1.772) | 2.198 ** (0.715, 3.681) | 1.980 ** (0.471, 3.490) |
Adaptability | −1.070 (−2.828, 0.688) | 0.525 (−1.215, 2.265) | 0.413 (−1.345, 2.171) |
Language | −0.745 (−2.665, 1.174) | 1.492 (−0.367, 3.350) | 1.403 (−0.479, 3.284) |
Personal–social | −0.379 (−1.879, 1.122) | 1.403 (−0.035, 2.840) | 0.825 (−0.596, 2.246) |
Hb, g/L | 0.189 (−1.423, 1.802) | −0.036 (−1.705, 1.633) | 0.877 (−0.781, 2.535) |
Change of Hb, g/L | 1.984 (−2.148, 6.116) | 0.763 (−3.646, 5.172) | 2.652 (−1.864, 7.168) |
Anthropometry | |||
LAZ | −1.647 (−5.696, 2.403) | 3.093 (−0.804, 6.990) | 2.582 (−1.642, 6.807) |
HAZ | 3.233 (−0.783, 7.248) | 7.549 *** (3.765, 11.332) | 6.830 *** (2.730, 10.929) |
WAZ | 1.357 (−2.696, 5.411) | 3.160 (−1.471, 7.792) | 3.480 (−1.366, 8.326) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Ma, L.; Li, H.; Wang, X.; Wu, M.; Jing, J.; Chen, X.; Lan, R.; Tang, W.; Zhu, Y. Iron Supplementation Is Associated with Improvement of Motor Development, Hemoglobin Level, and Weight in Preterm Infants during the First Year of Life in China. Nutrients 2022, 14, 2624. https://doi.org/10.3390/nu14132624
Xu S, Ma L, Li H, Wang X, Wu M, Jing J, Chen X, Lan R, Tang W, Zhu Y. Iron Supplementation Is Associated with Improvement of Motor Development, Hemoglobin Level, and Weight in Preterm Infants during the First Year of Life in China. Nutrients. 2022; 14(13):2624. https://doi.org/10.3390/nu14132624
Chicago/Turabian StyleXu, Suhua, Liya Ma, Hailin Li, Xiaotong Wang, Miao Wu, Jiajia Jing, Xiaoyan Chen, Ruiling Lan, Weike Tang, and Yanna Zhu. 2022. "Iron Supplementation Is Associated with Improvement of Motor Development, Hemoglobin Level, and Weight in Preterm Infants during the First Year of Life in China" Nutrients 14, no. 13: 2624. https://doi.org/10.3390/nu14132624
APA StyleXu, S., Ma, L., Li, H., Wang, X., Wu, M., Jing, J., Chen, X., Lan, R., Tang, W., & Zhu, Y. (2022). Iron Supplementation Is Associated with Improvement of Motor Development, Hemoglobin Level, and Weight in Preterm Infants during the First Year of Life in China. Nutrients, 14(13), 2624. https://doi.org/10.3390/nu14132624