High Diet Quality Is Linked to Low Risk of Abdominal Obesity among the Elderly Women in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Construction of the CDGI-E
2.3. Dietary Quality Measurement
2.4. Assessment of Obesity
2.5. Assessment of Relevant Covariates
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Association between Overall Diet Quality and Overweight/General Obesity
3.3. Association between Overall Diet Quality and Abdominal Obesity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Chen, W.W.; Gao, R.L.; Liu, L.S.; Zhu, M.L.; Wang, W.; Wang, Y.J.; Zhao-Su, W.U. China cardiovascular diseases report 2015: A summary. J. Geriatr. Cardiol. 2017, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Silveira, E.A.; Vieira, L.L.; Souza, J.D. High prevalence of abdominal obesity among the elderly and its association with diabetes, hypertension and respiratory diseases. Ciênc. Saúde Coletiva 2018, 23, 903–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, P.; Zhang, B.; Wang, H.J.; Qi, S.F.; Mi, Y.J.; Yao, J.C.; Liu, D.W.; Tian, Q.B. The prevalence and secular trends of abdominal obesity among Chinese adults, 1993–2011. Ann. Epidemiol. 2015, 25, 797–799. [Google Scholar] [CrossRef] [PubMed]
- GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Løvsletten, O.; Jacobsen, B.K.; Grimsgaard, S.; Njølstad, I.; Wilsgaard, T.; Løchen, M.-L.; Hopstock, L.A. Prevalence of general and abdominal obesity in 2015–2016 and 8-year longitudinal weight and waist circumference changes in adults and elderly: The Tromsø Study. BMJ Open 2020, 10, e038465. [Google Scholar] [CrossRef]
- Lee, Y.; Park, K. Adherence to a Vegetarian Diet and Diabetes Risk: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2017, 9, 603. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Andreyeva, T. Diet Quality and Health in Older Americans. Nutrients 2022, 14, 1198. [Google Scholar] [CrossRef]
- Wells, J.C.K.; Marphatia, A.A.; Amable, G.; Siervo, M.; Friis, H.; Miranda, J.J.; Haisma, H.H.; Raubenheimer, D. The future of human malnutrition: Rebalancing agency for better nutritional health. Glob. Health 2021, 17, 119. [Google Scholar] [CrossRef]
- Roberts, S.B.; Silver, R.E.; Das, S.K.; Fielding, R.A.; Gilhooly, C.H.; Jacques, P.F.; Kelly, J.M.; Mason, J.B.; McKeown, N.M.; Reardon, M.A.; et al. Healthy Aging-Nutrition Matters: Start Early and Screen Often. Adv. Nutr. 2021, 12, 1438–1448. [Google Scholar] [CrossRef]
- Long, T.; Zhang, K.; Chen, Y.; Wu, C. Trends in Diet Quality Among Older US Adults From 2001 to 2018. JAMA Netw. Open 2022, 5, e221880. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ouyang, Y.; Jiang, H.; Zhang, B.; Wang, H.; Zhang, J.; Du, W.; Niu, R.; Wang, Z. Secular trends in food intakes among the elderly aged 60 and older in nine provinces in China from 1991 to 2015. Wei Sheng Yan Jiu 2022, 51, 24–31. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Takeda, Y.; Fujihara, K.; Nedachi, R.; Ikeda, I.; Morikawa, S.Y.; Hatta, M.; Horikawa, C.; Kato, M.; Kato, N.; Yokoyama, H.; et al. Comparing Associations of Dietary Energy Density and Energy Intake, Macronutrients with Obesity in Patients with Type 2 Diabetes (JDDM 63). Nutrients 2021, 13, 3167. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, C.K.; Khadka, S. Heterogeneities in Consumer Diet Quality and Health Outcomes of Consumers by Store Choice and Income. Nutrients 2021, 13, 1046. [Google Scholar] [CrossRef]
- Daneshzad, E.; Askari, M.; Moradi, M.; Ghorabi, S.; Rouzitalab, T.; Heshmati, J.; Azadbakht, L. Red meat, overweight and obesity: A systematic review and meta-analysis of observational studies. Clin. Nutr. ESPEN 2021, 45, 66–74. [Google Scholar] [CrossRef]
- Rezagholizadeh, F.; Djafarian, K.; Khosravi, S.; Shab-Bidar, S. A posteriori healthy dietary patterns may decrease the risk of central obesity: Findings from a systematic review and meta-analysis. Nutr. Res. 2017, 41, 1–13. [Google Scholar] [CrossRef]
- Farzaneh, B.; Ebrahim, F.; Ammar Hassanzadeh, K.; Ahmadreza, Y.; Ahmad, E. Adherence to the Dietary Approaches to Stop Hypertension (DASH) diet in relation to obesity among Iranian female nurses. Public Health Nutr. 2015, 18, 705–712. [Google Scholar] [CrossRef] [Green Version]
- Noora, K.; Kaartinen, N.E.; Ursula, S.; Marjaana, L.K.; Satu, M.N. Adherence to the Baltic Sea diet consumed in the Nordic countries is associated with lower abdominal obesity. Br. J. Nutr. 2013, 109, 520–528. [Google Scholar] [CrossRef] [Green Version]
- Riseberg, E.; Tamez, M.; Tucker, K.L.; Rodriguez Orengo, J.F.; Mattei, J. Associations between diet quality scores and central obesity among adults in Puerto Rico. J. Hum. Nutr. Diet. 2021, 34, 1014–1021. [Google Scholar] [CrossRef]
- Wu, P.Y.; Huang, C.L.; Lei, W.S.; Yang, S.H. Alternative health eating index and the Dietary Guidelines from American Diabetes Association both may reduce the risk of cardiovascular disease in type 2 diabetes patients. J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc. 2016, 29, 363–373. [Google Scholar] [CrossRef]
- Rallidis, L.S.; John, L.; Anastasia, K.; Antonios, Z.; Georgia, V.; Stamatis, E.; George, D.; Raptis, S.A.; Kremastinos, D.T. Close adherence to a Mediterranean diet improves endothelial function in subjects with abdominal obesity. Am. J. Clin. Nutr. 2009, 90, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Adair, L.S.; Cai, J.; Gordon-Larsen, P.; Popkin, B.M. Diet Quality Is Linked to Insulin Resistance among Adults in China. J. Nutr. 2017, 147, 2102–2108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Siega-Riz, A.M.; Gordon-Larsen, P.; Cai, J.; Adair, L.S.; Bing, Z.; Popkin, B.M. Diet Quality and Its Association with Type 2 Diabetes and Major Cardiometabolic Risk Factors among Adults in China. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 987–1001. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Du, S.; Zhai, F.; Zhang, B. Cohort Profile: The China Health and Nutrition Survey—monitoring and understanding socio-economic and health change in China, 1989–2011. Int. J. Epidemiol. 2010, 39, 1435–1440. [Google Scholar] [CrossRef] [Green Version]
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2013, 15, 16–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Society, C.N. Chinese Dietary Reference Intakes, 1st ed.; Science Press: Beijing, China, 2014. [Google Scholar]
- Adair, L.S.; Gordon-Larsen, P.; Du, S.F.; Zhang, B.; Popkin, B.M. The emergence of cardiometabolic disease risk in Chinese children and adults: Consequences of changes in diet, physical activity and obesity. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2013, 15, 49–59. [Google Scholar] [CrossRef]
- National Institute of Nutrition and Food Safety. China Food Composition Table 2009, 2nd ed.; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Zimmet, P.P.; Alberti, K.G.M.M.; Ríos, M.S. A New International Diabetes Federation (IDF) Worldwide Definition of the Metabolic Syndrome: The Rationale and the Results. Rev. Española Cardiol. 2005, 58, 1371–1375. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for the Western Pacific. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment. Sydney: Health Communications Australia 2000. Available online: https://apps.who.int/iris/handle/10665/206936 (accessed on 1 June 2022).
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 9 (Suppl. 1), S498–S504. [Google Scholar] [CrossRef] [Green Version]
- Jones-Smith, J.C.; Popkin, B.M. Understanding community context and adult health changes in China: Development of an urbanicity scale. Soc. Sci. Med. 2010, 71, 1436–1446. [Google Scholar] [CrossRef] [Green Version]
- Lui, K.J.; Cumberland, W.G. A Wilcoxon-type test for trend. Stat. Med. 2010, 4, 87–90. [Google Scholar] [CrossRef]
- Society, C.N. Dietary Guidelines for Chinese Residents, 1st ed.; People’s Medical Publishing House: Beijing, China, 2016. [Google Scholar]
- Yu-Na, H.E.; Fang, Y.H.; Yang, X.G.; Ding, G.Q. Establishment and Application of China Healthy Diet Index. Acta Nutr. Sin. 2017, 39, 436–441. [Google Scholar]
- Yuan, Y.Q.; Li, F.; Dong, R.H.; Chen, J.S.; He, G.S.; Li, S.G.; Chen, B. The Development of a Chinese Healthy Eating Index and Its Application in the General Population. Nutrients 2017, 9, 977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.Q.; Cao, W.T.; Shivappa, N.; Hebert, J.R.; Li, B.L.; He, J.; Tang, X.Y.; Liang, Y.Y.; Chen, Y.M. Association Between Diet Inflammatory Index and Osteoporotic Hip Fracture in Elderly Chinese Population. J. Am. Med. Dir. Assoc. 2017, 18, S1525861017301068. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, K.B.; Hyun, Y.Y.; Chang, Y.; Ryu, S.; Choi, Y. DASH dietary pattern and chronic kidney disease in elderly Korean adults. Eur. J. Clin. Nutr. 2016, 71, 755–761. [Google Scholar] [CrossRef] [Green Version]
- Vera Elizabeth, C.; Ana Maria, P.F.; Irenio, G.; Carla Helena, A.S. Healthy eating index of elderly: Description and association with energy, macronutrients and micronutrients intake. Arch. Latinoam. Nutr. 2014, 64, 34–41. [Google Scholar]
- Guenther, P.M.; Jill, R.; Krebs-Smith, S.M. Development of the Healthy Eating Index-2005. J. Am. Diet. Assoc. 2008, 108, 1854–1864. [Google Scholar] [CrossRef] [PubMed]
- Sijtsma, F.P.; Meyer, K.A.; Steffen, L.M.; Shikany, J.M.; Van, H.L.; Harnack, L.; Kromhout, D.; Jr, J.D. Longitudinal trends in diet and effects of sex, race, and education on dietary quality score change: The Coronary Artery Risk Development in Young Adults study. Am. J. Clin. Nutr. 2012, 95, 580–586. [Google Scholar] [CrossRef] [Green Version]
- Fung, T.T.; Pan, A.; Hou, T.; Chiuve, S.E.; Tobias, D.K.; Mozaffarian, D.; Willett, W.C.; Hu, F.B. Long-Term Change in Diet Quality Is Associated with Body Weight Change in Men and Women. J. Nutr. 2015, 145, 1850–1856. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gordon-Larsen, P.; Siega-Riz, A.M.; Cai, J.; Wang, H.; Adair, L.S.; Popkin, B.M. Sociodemographic disparity in the diet quality transition among Chinese adults from 1991 to 2011. Eur. J. Clin. Nutr. 2016, 71, 486–493. [Google Scholar] [CrossRef] [Green Version]
- Galloway, T.; Johnson-Down, L.; Egeland, G.M. Socioeconomic and Cultural Correlates of Diet Quality in the Canadian Arctic: Results from the 2007-2008 Inuit Health Survey. Can. J. Diet. Pract. Res. 2015, 76, 117–125. [Google Scholar] [CrossRef]
- Alkerwi, A.A.; Baydarlioglu, B.; Sauvageot, N.; Stranges, S.; Lemmens, P.; Shivappa, N.; Hébert, J.R. Smoking status is inversely associated with overall diet quality: Findings from the ORISCAV-LUX study. Clin. Nutr. 2016, 36, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Cacau, L.T.; Benseñor, I.M.; Goulart, A.C.; Cardoso, L.O.; Lotufo, P.A.; Moreno, L.A.; Marchioni, D.M. Adherence to the Planetary Health Diet Index and Obesity Indicators in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutrients 2021, 13, 3691. [Google Scholar] [CrossRef] [PubMed]
- Kadam, I.; Neupane, S.; Wei, J.; Fullington, L.A.; Li, T.; An, R.; Zhao, L.; Ellithorpe, A.; Jiang, X.; Wang, L. A Systematic Review of Diet Quality Index and Obesity among Chinese Adults. Nutrients 2021, 13, 3555. [Google Scholar] [CrossRef]
- Drenowatz, C.; Shook, R.P.; Hand, G.A.; Hébert, J.R.; Blair, S.N. The independent association between diet quality and body composition. Sci. Rep. 2014, 4, 4928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aljadani, H.M.; Patterson, A.J.; Sibbritt, D.; Collins, C.E. Diet quality and 6-year risk of overweight and obesity among mid-age Australian women who were initially in the healthy weight range. Health Promot. J. Aust. 2015, 27, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Asghari, G.; Mirmiran, P.; Yuzbashian, E.; Azizi, F. A systematic review of diet quality indices in relation to obesity. Br. J. Nutr. 2017, 117, 1055–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelsen, C.D.; Vos, R.C.; Rijken, M.; Rutten, G.E.H.M. Comparison of perceptions of obesity among adults with central obesity with and without additional cardiometabolic risk factors and among those who were formally obese, 3 years after screening for central obesity. BMC Public Health 2015, 15, 1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Society, C.D. China guideline for type 2 diabetes 2013. Chin. J. Diabetes Mellit. 2014, 6, 447–498. [Google Scholar] [CrossRef]
Varity of Food | Energy Intake Level (kcal) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1000 | 1200 | 1400 | 1600 | 1800 | 2000 | 2200 | 2400 | 2600 | 2800 | 3000 | |
Grain | 85 | 100 | 150 | 200 | 225 | 250 | 275 | 300 | 350 | 375 | 400 |
Whole grain and beans | Moderate | 50–150 | |||||||||
Tuber | Moderate | 50–100 | 125 | 125 | 125 | ||||||
Vegetable | 200 | 250 | 300 | 300 | 400 | 450 | 450 | 500 | 500 | 500 | 600 |
Dark-colored vegetable | Accounts for half of all vegetables | ||||||||||
Fruit | 150 | 150 | 150 | 200 | 200 | 300 | 300 | 350 | 350 | 400 | 400 |
Red meat and poultry | 15 | 25 | 40 | 40 | 50 | 50 | 75 | 75 | 75 | 100 | 100 |
Egg | 20 | 25 | 25 | 40 | 40 | 50 | 50 | 50 | 50 | 50 | 50 |
Seafood | 15 | 20 | 40 | 40 | 50 | 50 | 75 | 75 | 75 | 100 | 125 |
Dairy products | 500 | 500 | 350 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
Soybeans | 5 | 15 | 15 | 15 | 15 | 15 | 25 | 25 | 25 | 25 | 25 |
Nuts | Moderate | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | ||
Cooking Oil | 15–20 | 20–25 | 25 | 25 | 25 | 30 | 30 | 30 | 35 | ||
Salt | <2 | <3 | <4 | <6 | <6 | <6 | <6 | <6 | <6 | <6 | <6 |
Qualitative Recommendations of DGC | Quantitative Recommendations of CFGP | Components of CDGI-E | Recommendation for Elderly b | Criteria for Lowest Score (0) d | Criteria for Highest Score d | Highest Score Value |
---|---|---|---|---|---|---|
Eat a variety of foods, cereal based. | Grains, beans, and tubers: 250–400 g/d | Percentage of energy from carbohydrates | 50−65% | 0% or 100% | 50−65% | 5 |
Whole grains and beans: 50–150 g/d | Other grains and beans | 50–150 g/d | 0 g/d | ≥100 g/d | 5 | |
Tubers: 50–100 g/d | ||||||
Eat plenty of vegetables, fruits, dairy products, and soybeans. | Vegetables: 300–500 g/d | Vegetables | Male: 450 g/d | 0 g/d | Male: ≥450 g/d a | 5 |
Female: 300–400 g/d | 0 g/d | Female: ≥350 g/d a | ||||
Dark-colored vegetables c | >1/2 | 0 | ≥1/2 | 5 | ||
Fruits: 200–350 g/d | Fruits | Male: 300 g/d | 0 g/d | Male: ≥300 g/d a | 10 | |
Female: 200 g/d | Female: ≥200 g/d a | |||||
Dairy products: 300 g/d | Dairy products | 300 g/d | 0 g/d | ≥300 g/d | 10 | |
Soybeans and nuts: 25–35 g/d | Soybeans and nuts | Male: 25–35 g/d | 0 g/d | Male: ≥30 g/d a | 10 | |
Female: 25 g/d | 0 g/d | Female: ≥25 g/d a | ||||
Eat a moderate amount of fish, poultry, eggs, and lean meats. | Seafood: 40–75 g/d | Seafood | Male: 50–75 g/d | 0 g/d | Male: ≥62.5 g/d a | 10 |
Female: 40–50 g/d | Female: ≥45 g/d a | |||||
Red meat and poultry: 40–75 g/d | Red meat and poultry | Male: 50–75 g/d | Male: 0 g/d or ≥125 g/d | Male: 62.5 g/d a | 10 | |
Female: 40–50 g/d | Female: 0 g/d or ≥90 g/d | Female: 45 g/d a | ||||
Eggs: 40–50 g/d | Eggs | Male: 50 g/d | 0 g/d | Male: 50 g/d | 10 | |
Female: 40 g/d | 0 g/d | Female: 40 g/d | ||||
Limit salt, cooking oil, added sugar, and alcohol. | Edible oil: 25–30 g/d | Edible oil | 25 g/d | 50 g/d | 25 g/d | 10 |
Salt: <6 g/d | Salt | <6 g/d | ≥12 g/d | <6 g/d | 10 | |
Alcohol | Male: <25 g/d | Male: ≥50 g/d | Male: <25 g/d | 10 | ||
Female: <15 g/d | Female: ≥30 g/d | Female: <15 g/d |
Characteristics | Men | p 2 | Women | p2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 (n = 224) | S2 (n = 194) | S3 (n = 188) | S4 (n = 202) | S5 (n = 188) | S6 (n = 195) | S1 (n = 119) | S2 (n = 130) | S3 (n = 133) | S4 (n = 132) | S5 (n = 119) | S6 (n = 141) | |||
CDGI-E scores 1 | 25.93 | 32.93 | 37.57 | 42.55 | 47.86 | 56.44 | <0.001 | 29.33 | 35.91 | 41.60 | 45.98 | 50.67 | 59.93 | <0.001 |
Age (y) 1 | 62.40 | 62.61 | 62.33 | 62.68 | 63.06 | 63.09 | 0.040 | 62.79 | 62.46 | 62.93 | 62.90 | 62.55 | 63.99 | 0.048 |
PA (%) | ||||||||||||||
Light | 19.20 | 19.59 | 15.43 | 19.31 | 26.60 | 30.77 | <0.001 | 9.24 | 12.31 | 15.04 | 16.67 | 11.76 | 12.77 | 0.003 |
Moderate | 24.55 | 21.13 | 31.38 | 29.21 | 23.40 | 31.28 | 31.93 | 30.77 | 31.58 | 28.79 | 37.82 | 51.06 | ||
Heavy | 56.25 | 59.28 | 53.19 | 51.49 | 50.00 | 37.95 | 58.82 | 56.92 | 53.38 | 54.55 | 50.42 | 36.17 | ||
Educational level (%) | ||||||||||||||
Less than primary school | 46.88 | 48.45 | 40.96 | 45.05 | 42.55 | 41.54 | 0.012 | 77.31 | 82.31 | 81.20 | 81.06 | 73.11 | 58.87 | <0.001 |
Completion of primary school | 30.36 | 22.68 | 29.26 | 27.23 | 27.66 | 18.97 | 17.65 | 12.31 | 8.27 | 11.36 | 15.13 | 23.40 | ||
Middle school or advanced | 22.77 | 28.87 | 29.79 | 27.72 | 29.79 | 39.49 | 5.04 | 5.38 | 10.53 | 7.58 | 11.76 | 17.73 | ||
Geographic region (%) | ||||||||||||||
Central | 46.43 | 36.60 | 43.62 | 40.59 | 38.30 | 33.85 | 0.623 | 41.18 | 42.31 | 34.59 | 35.61 | 18.49 | 26.24 | 0.004 |
East | 24.11 | 26.29 | 22.87 | 24.75 | 30.85 | 41.54 | 25.21 | 18.46 | 23.31 | 16.67 | 29.41 | 39.01 | ||
West | 29.46 | 37.11 | 33.51 | 34.65 | 30.85 | 24.62 | 33.61 | 39.23 | 42.11 | 47.73 | 52.10 | 34.75 | ||
Urbanicity index (%) | ||||||||||||||
Low | 44.64 | 40.72 | 35.11 | 31.19 | 28.19 | 20.51 | <0.001 | 48.74 | 40.77 | 41.35 | 39.39 | 26.05 | 19.86 | <0.001 |
Middle | 32.59 | 33.51 | 32.98 | 34.65 | 35.64 | 26.67 | 32.77 | 30.00 | 32.33 | 37.12 | 40.34 | 26.24 | ||
High | 22.77 | 25.77 | 31.91 | 34.16 | 36.17 | 52.82 | 18.49 | 29.23 | 26.32 | 23.48 | 33.61 | 53.90 | ||
Household income (%) | ||||||||||||||
Low | 39.29 | 38.66 | 34.04 | 29.70 | 30.32 | 22.56 | <0.001 | 47.06 | 40.77 | 39.10 | 37.12 | 26.89 | 29.08 | <0.001 |
Middle | 32.59 | 29.90 | 32.98 | 29.70 | 34.04 | 28.72 | 28.57 | 30.00 | 31.58 | 33.33 | 31.93 | 25.53 | ||
High | 28.13 | 31.44 | 32.98 | 40.59 | 35.64 | 48.72 | 24.37 | 29.23 | 29.32 | 29.55 | 41.18 | 45.39 | ||
Ever smokers (%) | 66.96 | 69.59 | 63.30 | 62.87 | 63.30 | 58.46 | 0.030 | 7.56 | 10.00 | 9.77 | 12.12 | 9.24 | 14.89 | 0.096 |
Energy intake (kcal/day) 1 | 2590.52 | 2482.68 | 2294.73 | 2187.27 | 2203.64 | 2099.76 | <0.001 | 2132.65 | 2149.74 | 1980.12 | 1941.63 | 1920.70 | 1784.00 | <0.001 |
BMI (kg/cm2) 1 | 20.94 | 20.85 | 21.36 | 21.51 | 21.23 | 21.64 | 0.127 | 20.43 | 20.47 | 19.70 | 20.30 | 20.50 | 20.40 | 0.172 |
WC (cm) 1 | 77.35 | 77.00 | 77.70 | 78.00 | 78.00 | 79.00 | 0.826 | 73.00 | 73.00 | 73.00 | 72.00 | 72.00 | 73.00 | 0.572 |
Model 1 2 | Model 2 2 | Model 3 2 | |
---|---|---|---|
Fixed effect | |||
CDGI-E scores 1 | |||
S1 | 1.00 (1.00, 1.00) a | 1.00 (1.00, 1.00) a | 1.00 (1.00, 1.00) a |
S2 | 1.05 (0.61, 1.79) | 1.07 (0.62, 1.83) | 1.02 (0.60, 1.74) |
S3 | 1.06 (0.63, 1.78) | 1.07 (0.63, 1.80) | 1.05 (0.62, 1.75) |
S4 | 1.12 (0.66, 1.92) | 1.13 (0.66, 1.93) | 1.05 (0.62, 1.79) |
S5 | 1.02 (0.60, 1.73) | 1.02 (0.60, 1.74) | 0.99 (0.58, 1.69) |
S6 | 0.83 (0.48, 1.45) | 0.85 (0.49, 1.48) | 0.88 (0.51, 1.53) |
Random effect | |||
Level 2 variance-Individual | 0.94 (0.64, 1.37) | 0.95 (0.65, 1.38) | 0.88 (0.60, 1.28) |
Level 3 variance-Community | 1.03 (0.69, 1.54) | 1.04 (0.69, 1.55) | 1.08 (0.72, 1.61) |
Men | Women | |||||
---|---|---|---|---|---|---|
Model 1 2 | Model 2 2 | Model 3 2 | Model 1 2 | Model 2 2 | Model 3 2 | |
Fixed effect | ||||||
CDGI-E scores 1 | ||||||
S1 | 1.00 (1.00, 1.00) a | 1.00 (1.00, 1.00) a | 1.00 (1.00, 1.00) a | 1.00 (1.00, 1.00) a | 1.00 (1.00, 1.00) a | 1.00 (1.00, 1.00) a |
S2 | 1.01 (0.63, 1.61) | 0.99 (0.62, 1.58) | 1.08 (0.68, 1.72) | 0.96 (0.67, 1.39) | 0.96 (0.67, 1.39) | 0.99 (0.68, 1.42) |
S3 | 1.24 (0.79, 1.95) | 1.21 (0.77, 1.90) | 1.25 (0.80, 1.96) | 1.05 (0.73, 1.52) | 1.04 (0.72, 1.50) | 1.08 (0.75, 1.56) |
S4 | 0.96 (0.61, 1.52) | 0.94 (0.59, 1.49) | 0.95 (0.60, 1.50) | 1.15 (0.79, 1.67) | 1.13 (0.78, 1.64) | 1.16 (0.80, 1.68) |
S5 | 0.85 (0.53, 1.36) | 0.82 (0.51, 1.32) | 0.88 (0.55, 1.40) | 1.16 (0.79, 1.70) | 1.14 (0.78, 1.66) | 1.29 (0.88, 1.89) |
S6 | 0.90 (0.56, 1.45) | 0.87 (0.54, 1.41) | 0.93 (0.58, 1.49) | 0.61 (0.41, 0.91) * | 0.60 (0.40, 0.89) * | 0.62 (0.41, 0.92) * |
Random effect | ||||||
Level 2 variance-Individual | 3.16 (2.16, 4.16) *** | 2.99 (2.02, 3.96) *** | 2.27 (1.45, 3.08) *** | 2.33 (1.50, 2.96) *** | 2.14 (1.44, 2.85) *** | 1.59 (1.00, 2.18) *** |
Level 3 variance-Community | 0.68 (0.19, 1.17) ** | 0.65 (0.17, 1.12) ** | 0.47 (0.08, 0.87) ** | 0.65 (0.04, 0.60) * | 0.034 (0.06, 0.61) * | 0.27 (0.04, 0.52) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, L.; Jiang, H.; Zhang, B.; Wang, H.; Zhang, J.; Du, W.; Guo, C.; Wang, Z.; Wang, L. High Diet Quality Is Linked to Low Risk of Abdominal Obesity among the Elderly Women in China. Nutrients 2022, 14, 2623. https://doi.org/10.3390/nu14132623
Hao L, Jiang H, Zhang B, Wang H, Zhang J, Du W, Guo C, Wang Z, Wang L. High Diet Quality Is Linked to Low Risk of Abdominal Obesity among the Elderly Women in China. Nutrients. 2022; 14(13):2623. https://doi.org/10.3390/nu14132623
Chicago/Turabian StyleHao, Lixin, Hongru Jiang, Bing Zhang, Huijun Wang, Jiguo Zhang, Wenwen Du, Chunlei Guo, Zhihong Wang, and Liusen Wang. 2022. "High Diet Quality Is Linked to Low Risk of Abdominal Obesity among the Elderly Women in China" Nutrients 14, no. 13: 2623. https://doi.org/10.3390/nu14132623
APA StyleHao, L., Jiang, H., Zhang, B., Wang, H., Zhang, J., Du, W., Guo, C., Wang, Z., & Wang, L. (2022). High Diet Quality Is Linked to Low Risk of Abdominal Obesity among the Elderly Women in China. Nutrients, 14(13), 2623. https://doi.org/10.3390/nu14132623