Cruciferous Vegetable Intake and Bulky DNA Damage within Non-Smokers and Former Smokers in the Gen-Air Study (EPIC Cohort)
Abstract
:1. Introduction
2. Material and Methods
2.1. Selection of Subjects and Collection of Specimens
2.2. Dietary and Lifestyle Variables
2.3. DNA Adduct Analysis
2.4. Statistical Analysis
3. Results
3.1. Cruciferous Vegetables
3.2. Cruciferous Vegetable Intake and DNA Damage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magalhaes, B.; Peleteiro, B.; Lunet, N. Dietary patterns and colorectal cancer: Systematic review and meta-analysis. Eur. J. Cancer Prev. 2012, 21, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Liebman, S.E.; Le, T.H. Eat Your Broccoli: Oxidative Stress, NRF2, and Sulforaphane in Chronic Kidney Disease. Nutrients 2021, 13, 266. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Qu, X.; Shi, J.; Li, H.; Guo, X.; Wu, X.; Liu, Y.; Li, Z. Cruciferous vegetables and colorectal cancer risk: A hospital-based matched case–control study in Northeast China. Eur. J. Clin. Nutr. 2018, 73, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Bergan, R.; Shannon, J.; Slatore, C.G.; Bobe, G.; Takata, Y. The Role of Cruciferous Vegetables and Isothiocyanates for Lung Cancer Prevention: Current Status, Challenges, and Future Research Directions. Mol. Nutr. Food Res. 2018, 62, 1700936. [Google Scholar] [CrossRef] [PubMed]
- Munnia, A.; Giese, R.W.; Polvani, S.; Galli, A.; Cellai, F.; Peluso, M.E. Bulky DNA Adducts, Tobacco Smoking, Genetic Susceptibility, and Lung Cancer Risk. Adv. Clin. Chem. 2017, 81, 231–277. [Google Scholar]
- Al-Ishaq, R.K.; Overy, A.J.; Busselberg, D. Phytochemicals and Gastrointestinal Cancer: Cellular Mechanisms and Effects to Change Cancer Progression. Biomolecules 2020, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Melim, C.; Lauro, M.R.; Pires, I.M.; Oliveira, P.J.; Cabral, C. The Role of Glucosinolates from Cruciferous Vegetables (Brassicaceae) in Gastrointestinal Cancers: From Prevention to Therapeutics. Pharmaceutics 2022, 14, 190. [Google Scholar] [CrossRef]
- Sugimura, T. Nutrition and dietary carcinogens. Carcinogenesis 2000, 21, 387–395. [Google Scholar] [CrossRef]
- Lumbreras, B.; Garte, S.; Overvad, K.; Tjonneland, A.; Clavel-Chapelon, F.; Linseisen, J.; Boeing, H.; Trichopoulou, A.; Palli, D.; Peluso, M. Meat intake and bladder cancer in a prospective study: A role for heterocyclic aromatic amines? Cancer Causes Control 2008, 19, 649–656. [Google Scholar] [CrossRef]
- Reed, L.; Mrizova, I.; Barta, F.; Indra, R.; Moserova, M.; Kopka, K.; Schmeiser, H.H.; Wolf, C.R.; Henderson, C.J.; Stiborova, M.; et al. Cytochrome b (5) impacts on cytochrome P450-mediated metabolism of benzo[a]pyrene and its DNA adduct formation: Studies in hepatic cytochrome b (5) /P450 reductase null (HBRN) mice. Arch. Toxicol. 2018, 92, 1625–1638. [Google Scholar] [CrossRef] [Green Version]
- Wauchope, O.R.; Mitchener, M.M.; Beavers, W.N.; Galligan, J.J.; Camarillo, J.M.; Sanders, W.D.; Kingsley, P.J.; Shim, H.-N.; Blackwell, T.; Luong, T.; et al. Oxidative stress increases M1dG, a major peroxidation-derived DNA adduct, in mitochondrial DNA. Nucleic Acids Res. 2018, 46, 3458–3467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peluso, M.E.; Munnia, A.; Srivatanakul, P.; Jedpiyawongse, A.; Sangrajrang, S.; Ceppi, M.; Godschalk, R.W.; van Schooten, F.J.; Boffetta, P. DNA adducts and combinations of multiple lung cancer at-risk alleles in environmentally exposed and smoking subjects. Environ. Mol. Mutagenesis 2013, 54, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Brancato, B.; Munnia, A.; Cellai, F.; Ceni, E.; Mello, T.; Bianchi, S.; Catarzi, S.; Risso, G.G.; Galli, A.; Peluso, M.E. 8-Oxo-7, 8-dihydro-2-deoxyguanosine and other lesions along the coding strand of the exon 5 of the tumour suppressor gene P53 in a breast cancer case-control study. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 2016, 23, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Galli, A.; Munnia, A.; Cellai, F.; Tarocchi, M.; Ceni, E.; van Schooten, F.J.; Godschalk, R.; Giese, R.W.; Peluso, M. Ligation-Mediated Polymerase Chain Reaction Detection of 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine and 5-Hydroxycytosine at the Codon 176 of the p53 Gene of Hepatitis C-Associated Hepatocellular Carcinoma Patients. Int. J. Mol. Sci. 2020, 21, 6753. [Google Scholar] [CrossRef]
- Peluso, M.; Munnia, A.; Hoek, G.; Krzyzanowski, M.; Veglia, F.; Airoldi, L.; Autrup, H.; Dunning, A.; Garte, S.; Hainaut, P.; et al. DNA adducts and lung cancer risk: A prospective study. Cancer Res. 2005, 65, 8042–8048. [Google Scholar] [CrossRef] [Green Version]
- Munnia, A.; Saletta, F.; Allione, A.; Piro, S.; Confortini, M.; Matullo, G.; Peluso, M. 32P-Post-labelling method improvements for aromatic compound-related molecular epidemiology studies. Mutagenesis 2007, 22, 381–385. [Google Scholar] [CrossRef] [Green Version]
- Randerath, K.; Zhou, G.-D.; Somers, R.L.; Robbins, J.H.; Brooks, P.J. A 32P-postlabeling assay for the oxidative DNA lesion 8,5′-cyclo-2′-deoxyadenosine in mammalian tissues: Evidence that four type II I-compounds are dinucleotides containing the lesion in the 3′ nucleotide. J. Biol. Chem. 2001, 276, 36051–36057. [Google Scholar] [CrossRef] [Green Version]
- Joseph, P.; Jaiswal, A.K. NAD(P)H:quinone oxidoreductase1 (DT diaphorase) specifically prevents the formation of benzo[a]pyrene quinone-DNA adducts generated by cytochrome P4501A1 and P450 reductase. Proc. Natl. Acad. Sci. USA 1994, 91, 8413–8417. [Google Scholar] [CrossRef] [Green Version]
- Phillips, D.H.; Arlt, V.M. The 32P-postlabeling assay for DNA adducts. Nat. Protoc. 2007, 2, 2772–2781. [Google Scholar] [CrossRef]
- Zhan, D.-J.; Herreno-Saenz, D.; Chiu, L.-H.; Von Tungeln, L.S.; Wu, Y.-S.; Lewtas, J.; Fu, P.P. Separation of 32P-labeled 3′,5′-bisphosphate nucleotides of polycyclic aromatic hydrocarbon anti-diol-epoxides and derivatives. J. Chromatogr. A 1995, 710, 149–157. [Google Scholar] [CrossRef]
- Phillips, D.; Castegnaro, M. Standardization and validation of DNA adduct postlabelling methods: Report of interlaboratory trials and production of recommended protocols. Mutagenesis 1999, 14, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Peluso, M.; Merlo, F.; Munnia, A.; Valerio, F.; Perrotta, A.; Puntoni, R.; Parodi, S. 32P-postlabeling detection of aromatic adducts in the white blood cell DNA of nonsmoking police officers. Cancer Epidemiol. Biomark. Prev. 1998, 7, 3–11. [Google Scholar]
- Peluso, M.; Airoldi, L.; Munnia, A.; Colombi, A.; Veglia, F.; Autrup, H.; Dunning, A.; Garte, S.; Gormally, E.; Malaveille, C.; et al. Bulky DNA adducts, 4-aminobiphenyl-haemoglobin adducts and diet in the European Prospective Investigation into Cancer and Nutrition (EPIC) prospective study. Br. J. Nutr. 2008, 100, 489–495. [Google Scholar] [CrossRef]
- Smith, M.T.; Hainaut, P.; Perera, F.; Schulte, P.A.; Boffetta, P.; Chanock, S.J.; Rothman, N. Future perspectives on molecular epidemiology. IARC Sci. Publ. 2011, 163, 493–500. [Google Scholar] [CrossRef]
- Airoldi, L.; Vineis, P.; Colombi, A.; Olgiati, L.; Dell’Osta, C.; Fanelli, R.; Manzi, L.; Veglia, F.; Autrup, H.; Dunning, A.; et al. 4-Aminobiphenyl-hemoglobin adducts and risk of smoking-related disease in never smokers and former smokers in the European Prospective Investigation into Cancer and Nutrition prospective study. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2118–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceppi, M.; Munnia, A.; Cellai, F.; Bruzzone, M.; Peluso, M.E.M. Linking the generation of DNA adducts to lung cancer. Toxicology 2017, 390, 160–166. [Google Scholar] [CrossRef]
- Palli, D.; Vineis, P.; Russo, A.; Berrino, F.; Krogh, V.; Masala, G.; Munnia, A.; Panico, S.; Taioli, E.; Tumino, R.; et al. Diet, metabolic polymorphisms and dna adducts: The EPIC-Italy cross-sectional study. Int. J. Cancer 2000, 87, 444–451. [Google Scholar] [CrossRef]
- Riso, P.; Martini, D.; Visioli, F.; Martinetti, A.; Porrini, M. Effect of Broccoli Intake on Markers Related to Oxidative Stress and Cancer Risk in Healthy Smokers and Nonsmokers. Nutr. Cancer 2009, 61, 232–237. [Google Scholar] [CrossRef]
- Kongkachuichai, R.; Charoensiri, R.; Sungpuag, P. Carotenoid, flavonoid profiles and dietary fiber contents of fruits commonly consumed in Thailand. Int. J. Food Sci. Nutr. 2010, 61, 536–548. [Google Scholar] [CrossRef]
- Peluso, M.; Munnia, A.; Piro, S.; Jedpiyawongse, A.; Sangrajrang, S.; Giese, R.W.; Ceppi, M.; Boffetta, P.; Srivatanakul, P. Fruit and vegetable and fried food consumption and 3-(2-deoxy-beta-D-erythro-pentafuranosyl)pyrimido[1,2-alpha] purin-10(3H)-one deoxyguanosine adduct formation. Free Radic. Res. 2012, 46, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Palli, D.; Masala, G.; Peluso, M.; Gaspari, L.; Krogh, V.; Munnia, A.; Panico, S.; Saieva, C.; Tumino, R.; Vineis, P. The effects of diet on DNA bulky adduct levels are strongly modified by GSTM1 genotype: A study on 634 subjects. Carcinogenesis 2004, 25, 577–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palli, D.; Masala, G.; Vineis, P.; Garte, S.; Saieva, C.; Krogh, V.; Panico, S.; Tumino, R.; Munnia, A.; Riboli, E. Biomarkers of dietary intake of micronutrients modulate DNA adduct levels in healthy adults. Carcinogenesis 2003, 24, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Leuratti, C.; Watson, M.A.; Deag, E.J.; Welch, A.; Singh, R.; Gottschalg, E.; Marnett, L.J.; Atkin, W.; Day, N.E.; Shuker, D.E.; et al. Detection of malondialdehyde DNA adducts in human colorectal mucosa: Relationship with diet and the presence of adenomas. Cancer Epidemiol. Biomark. Prev. 2002, 11, 267–273. [Google Scholar]
- Pedersen, M.; Schoket, B.; Godschalk, R.W.; Wright, J.; von Stedingk, H.; Tarnqvist, M.; Sunyer, J.; Nielsen, J.K.; Merlo, D.F.; Mendez, M.A.; et al. Bulky dna adducts in cord blood, maternal fruit-and-vegetable consumption, and birth weight in a European mother-child study (NewGeneris). Environ. Health Perspect. 2013, 121, 1200–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, C.I.R.; Haldar, S.; Porter, S.; Matthews, S.; Sullivan, S.; Coulter, J.; McGlynn, H.; Rowland, I. The Effect of Cruciferous and Leguminous Sprouts on Genotoxicity, In vitro and In vivo. Cancer Epidemiol. Biomark. Prev. 2004, 13, 1199. [Google Scholar] [CrossRef]
- Kim, J.K.; McCormick, M.A.; Gallaher, C.M.; Gallaher, D.D.; Trudo, S.P. Apiaceous Vegetables and Cruciferous Phytochemicals Reduced PhIP-DNA Adducts in Prostate but Not in Pancreas of Wistar Rats. J. Med. Food 2018, 21, 199–202. [Google Scholar] [CrossRef]
- Kim, J.K.; Gallaher, D.D.; Chen, C.; Gallaher, C.M.; Yao, D.; Trudo, S.P. Phenethyl isothiocyanate and indole-3-carbinol from cruciferous vegetables, but not furanocoumarins from apiaceous vegetables, reduced PhIP-induced DNA adducts in Wistar rats. Mol. Nutr. Food Res. 2016, 60, 1956–1966. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Ichikawa, H. Molecular Targets and Anticancer Potential of Indole-3-Carbinol and Its Derivatives. Cell Cycle 2005, 4, 1201–1215. [Google Scholar] [CrossRef] [Green Version]
- Hillestrom, P.R.; Covas, M.I.; Poulsen, H.E. Effect of dietary virgin olive oil on urinary excretion of etheno-DNA adducts. Free Radic. Biol. Med. 2006, 41, 1133–1138. [Google Scholar] [CrossRef]
- Krishnan, R.; Maru, G.B. Inhibitory effect(s) of polymeric black tea polyphenols on the formation of B(a)P-derived DNA adducts in mouse skinJ. Environ. Pathol. Toxicol. Oncol. 2005, 24, 79–90. [Google Scholar] [CrossRef]
- Nandini, D.B.; Rao, R.S.; Deepak, B.S.; Reddy, P.B. Sulforaphane in broccoli: The green chemoprevention!! Role in cancer prevention and therapy. J. Oral Maxillofac. Pathol. JOMFP 2020, 24, 405. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.J.; Yang, Y.; Vogtmann, E.; Wang, J.; Han, L.H.; Li, H.L.; Xiang, Y.B. Cruciferous vegetables intake and the risk of colorectal cancer: A meta-analysis of observational studies. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2013, 24, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Sram, R.J.; Farmer, P.; Singh, R.; Garte, S.; Kalina, I.; Popov, T.A.; Binkova, B.; Ragin, C.; Taioli, E. Effect of vitamin levels on biomarkers of exposure and oxidative damage-the EXPAH study. Mutat. Res. Toxicol. Environ. Mutagen. 2009, 672, 129–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Leu, R.K.; Winter, J.M.; Christophersen, C.T.; Young, G.P.; Humphreys, K.J.; Hu, Y.; Gratz, S.W.; Miller, R.B.; Topping, D.L.; Bird, A.R.; et al. Butyrylated starch intake can prevent red meat-induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: A randomised clinical trial. Br. J. Nutr. 2015, 114, 220–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laky, B.; Knasmüller, S.; Gminski, R.; Mersch-Sundermann, V.; Scharf, G.; Verkerk, R.; Freywald, C.; Uhl, M.; Kassie, F. Protective effects of Brussels sprouts towards B[a]P-induced DNA damage: A model study with the single-cell gel electrophoresis (SCGE)/Hep G2 assay. Food Chem. Toxicol. 2002, 40, 1077–1083. [Google Scholar] [CrossRef]
- Peluso, M.; Bolognesi, C.; Munnia, A.; Landini, E.; Parodi, S. In vivo studies on genotoxicity of a soil fumigant, dazomet. Environ. Mol. Mutagenesis 1998, 32, 179–184. [Google Scholar] [CrossRef]
- Bolognesi, C.; Peluso, M.; Degan, P.; Rabboni, R.; Munnia, A.; Abbondandolo, A. Genotoxic Effects of the Carbamate lnsecticide, Methomyl. ll. In Vivo Studies With Pure Compound ond the Technical Formulation. Environ. Mol. Mutagenesis 1994, 24, 242. [Google Scholar] [CrossRef]
- Bolognesi, C.; Bonatti, S.; Degan, P.; Gallerani, E.; Peluso, M.; Rabboni, R.; Roggieri, P.; Abbondandolo, A. Genotoxic activity of glyphosate and its technical formulation Roundup. J. Agric. Food Chem. 1997, 45, 1957–1962. [Google Scholar] [CrossRef]
- Peluso, M.; Munnia, A.; Bolognesi, C.; Parodi, S. 32P-postlabeling detection of DNA adducts in mice treated with the herbicide roundup. Environ. Mol. Mutagenesis 1998, 31, 55–59. [Google Scholar] [CrossRef]
- Davoren, M.J.; Schiestl, R.H. Glyphosate-based herbicides and cancer risk: A post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis 2018, 39, 1207–1215. [Google Scholar] [CrossRef] [Green Version]
- Le Goff, J.; Andre, V.; Lebailly, P.; Pottier, D.; Perin, F.; Perrin, O.; Gauduchon, P. Seasonal variations of DNA-adduct patterns in open field farmers handling pesticides. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis 2005, 587, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Munnia, A.; Puntoni, R.; Merlo, F.; Parodi, S.; Peluso, M. Exposure to agrochemicals and DNA adducts in Western Liguria, Italy. Environ. Mol. Mutagenesis 1999, 34, 52–56. [Google Scholar] [CrossRef]
- Peluso, M.; Merlo, F.; Munnia, A.; Bolognesi, C.; Puntoni, R.; Parodi, S. (32)P-postlabeling detection of DNA adducts in peripheral white blood cells of greenhouse floriculturists from western Liguria, Italy. Cancer Epidemiol. Biomark. Prev. 1996, 5, 361–369. [Google Scholar]
- Phillips, D.H. Polycyclic aromatic hydrocarbons in the diet. Mutat. Res. 1999, 443, 139–147. [Google Scholar] [CrossRef]
- Randerath, E.; Miller, R.H.; Mittal, D.; Avitts, T.A.; Dunsford, H.A.; Randerath, K. Covalent DNA damage in tissues of cigarette smokers as determined by 32P-postlabeling assay. J. Natl. Cancer Inst. 1989, 81, 341–347. [Google Scholar] [CrossRef]
- Geacintov, N.E.; Broyde, S. Repair-Resistant DNA Lesions. Chem. Res. Toxicol. 2017, 30, 1517–1548. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, A.; Arand, M.; Epe, B.; Guth, S.; Jahnke, G.; Lampen, A.; Martus, H.-J.; Monien, B.; Rietjens, I.M.C.M.; Schmitz-Spanke, S.; et al. Mode of action-based risk assessment of genotoxic carcinogens. Arch. Toxicol. 2020, 94, 1787–1877. [Google Scholar] [CrossRef]
- Otteneder, M.; Lutz, W.K. Correlation of DNA adduct levels with tumor incidence: Carcinogenic potency of DNA adducts. Mutat. Res. Fundam. Mol. Mech. Mutagenesis 1999, 424, 237–247. [Google Scholar] [CrossRef]
- Mori, N.; Shimazu, T.; Sasazuki, S.; Nozue, M.; Mutoh, M.; Sawada, N.; Iwasaki, M.; Yamaji, T.; Inoue, M.; Takachi, R.; et al. Cruciferous Vegetable Intake Is Inversely Associated with Lung Cancer Risk among Current Nonsmoking Men in the Japan Public Health Center (JPHC) Study. J. Nutr. 2017, 147, 841–849. [Google Scholar] [CrossRef]
Variable | |
---|---|
Age, years (Median, IQR) | 61.03 (55.18–65.43) |
Sex (N, %) | |
Male | 360 (51.79) |
Female | 336 (48.21) |
Smoking status (N, %) | |
Never-smokers | 379 (54.45) |
Former smokers | 317 (45.55) |
Country (N, %) | |
France | 12 (1.72) |
Italy | 105 (15.09) |
Spain | 91 (13.07) |
UK | 234 (33.62) |
Netherlands | 53 (7.61) |
Germany | 140 (20.11) |
Denmark | 61 (8.76) |
Blood sampling season (N, %) | |
Winter | 143 (20.52) |
Mid-season | 189 (27.12) |
Summer | 357 (51.22) |
Missing | 7 (1.14) |
Energy kcal/day (Median, IQR) | 2081 (1673–2535) |
Cruciferous vegetables g/d (Median, IQR) | 6.16 (2.16–13.66) |
Alcohol g/day (Median, IQR) | 5.86 (0.61–15.13) |
Variable | N | Mean ± SD Intake of Cruciferous Vegetables (g/day) | Median (IQR) Intake of Cruciferous Vegetables (g/day) | p | Mean ± SD Level of DNA Damage (RAL) | Median (IQR) Level of DNA Damage (RAL) | p |
---|---|---|---|---|---|---|---|
Recruitment age | |||||||
<55 years | 171 | 11.18 ± 16.66 | 5.49 (1.84–14.28) | 0.01 | 0.68 ± 0.64 | 0.60 (0.20–0.90) | 0.53 |
55–65 years | 367 | 9.78 ± 12.86 | 6.02(2.00–12.20) | 0.69 ± 0.54 | 0.60 (0.30–1.00) | ||
>65 years | 158 | 11.98 ± 12.05 | 7.47 (4.9–16.66) | 0.70 ± 0.55 | 0.60 (0.30–1.00) | ||
Sex | |||||||
Male | 361 | 10.47 ± 11.21 | 6.30 (2.56–14.00) | 0.13 | 0.69 ± 0.57 | 0.60 (0.30–0.95) | 0.96 |
Female | 336 | 10.80 ± 16.01 | 6.02 (1.96–12.76) | 0.69 ± 0.57 | 0.59 (0.20–1.00) | ||
Smoking status | |||||||
Never-smokers | 379 | 10.66 ± 14.98 | 6.02 (1.96–13.71) | 0.34 | 0.70 ± 0.58 | 0.60 (0.20–1.00) | 0.98 |
Former smokers | 317 | 10.59 ± 12.11 | 6.27 (2.56–13.48) | 0.69 ± 0.56 | 0.54 (0.30–1.00) | ||
Country | |||||||
France | 12 | 21.06 ± 24.01 | 8.25 (4.63–38.85) | <0.01 | 0.73 ± 0.34 | 0.75 (0.50–1.05) | 0.14 |
Italy | 105 | 13.36 ± 12.58 | 9.49 (4.49–17.74) | 0.72 ± 0.66 | 0.50 (0.20–1.00) | ||
Spain | 91 | 4.59 ± 9.54 | 0.37 (0.00–6.00) | 0.69 ± 0.58 | 0.60 (0.20–1.10) | ||
UK | 234 | 14.04 ± 14.46 | 11.34 (6.02–16.87) | 0.72 ± 0.57 | 0.60 (0.30–1.00) | ||
Netherlands | 53 | 5.93. ± 9.17 | 3.78 (2.00–6.40) | 0.59 ± 0.63 | 0.30 (.010–0.80) | ||
Germany | 140 | 8.93 ± 15.52 | 4.75 (2.08–9.25) | 0.66 ± 0.55 | 0.60 (0.20–0.80) | ||
Denmark | 61 | 7.45 ± 7.79 | 5.39 (2.99–7.93) | 0.70 ± 0.40 | 0.70 (0.40–1.00) | ||
Blood sampling season | |||||||
Winter | 143 | 11.79 ± 16.04 | 7.03 (1.96–14.28) | 0.18 | 0.74 ± 0.58 | 0.60 (0.30–1.10) | 0.30 |
Mid-season | 189 | 8.98 ± 1.57 | 6.02 (1.96–11.87) | 0.73 ± 0.65 | 0.60 (0.30–1.10) | ||
Summer | 357 | 11.03 ± 14.14 | 6.26 (2.56–14.00) | 0.65 ± 0.51 | 0.51 (0.20–0.90) | ||
Missing | 7 | 11.03 ± 16.81 | 4.79 (0.98–16.66) | 0.98 ± 0.49 | 0.80 (0.54–1.50) | ||
Energy intake (kcal/day) | |||||||
<1812 | 232 | 10.05 ± 15.58 | 5.48 (1.56–12.09) | 0.02 | 0.74 ± 0.60 | 0.60 (0.27–1.10) | 0.30 |
1812–2373 | 232 | 10.59 ± 11.60 | 6.83 (2.94–13.90) | 0.64 ± 0.51 | 0.50 (0.25–0.85) | ||
>2374 | 232 | 11.24 ± 13.80 | 6.41 (2.43–14.89) | 0.70 ± 0.59 | 0.60 (0.20–1.00) |
Intake of Cruciferous Vegetables | N | Adjusted Adduct Level ± SD a | Adduct Change | p-Value b | p-Value for Trend c |
---|---|---|---|---|---|
Low intake (<3.0 g/day) | 217 | 0.79 ± 0.05 | Reference | ||
Medium intake (3–20 g/day) | 377 | 0.66 ± 0.04 | −16.44% | 0.036 | |
High intake (>20 g/day) | 102 | 0.60 ± 0.06 | −23.32% | 0.032 | 0.078 |
After smoking status stratification | |||||
Never-smokers | |||||
Low intake (<3.0 g/day) | 125 | 0.76 ± 0.06 | Reference | ||
Medium intake (3–20 g/day) | 196 | 0.67 ± 0.05 | −11.94% | 0.360 | |
High intake (>20 g/day) | 58 | 0.69 ± 0.09 | −9.18% | 0.719 | 0.760 |
Former smokers | |||||
Low intake (<3.0 g/day) | 92 | 0.84 ± 0.07 | Reference | ||
Medium intake (3–20 g/day) | 181 | 0.66 ± 0.05 | −12.17% | 0.052 | |
High intake (>20 g/day) | 44 | 0.51 ± 0.09 | −39.87% | 0.008 | 0.020 |
Intake of Cruciferous Vegetables | MR and 95% CI a | p Value a |
---|---|---|
Low intake (<3.0 g/day) | 1.00 (reference) | |
Medium intake (3–20 g/day) | 0.84 (95% CI 0.73–0.98) | 0.030 |
High intake (>20 g/day) | 0.79 (95% CI 0.64–0.97) | 0.026 |
After smoking status stratification | ||
Never-smokers | ||
Low intake (<3.0 g/day) | 1.00 (reference) | |
Medium intake (3–20 g/day) | 0.89 (95% CI 0.73–1.09) | 0.267 |
High intake (>20 g/day) | 0.92 (95% CI 0.69–1.23) | 0.596 |
Former smokers | ||
Low intake (<3.0 g/day) | 1.00 (reference) | |
Medium intake (3–20 g/day) | 0.79 (95% CI 0.63–0.99) | 0.043 |
High intake (>20 g/day) | 0.65 (95% CI 0.48–0.88) | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peluso, M.; Munnia, A.; Russo, V.; Galli, A.; Pala, V.; Schouw, Y.T.v.d.; Schulze, M.B.; Weiderpass, E.; Tumino, R.; Saieva, C.; et al. Cruciferous Vegetable Intake and Bulky DNA Damage within Non-Smokers and Former Smokers in the Gen-Air Study (EPIC Cohort). Nutrients 2022, 14, 2477. https://doi.org/10.3390/nu14122477
Peluso M, Munnia A, Russo V, Galli A, Pala V, Schouw YTvd, Schulze MB, Weiderpass E, Tumino R, Saieva C, et al. Cruciferous Vegetable Intake and Bulky DNA Damage within Non-Smokers and Former Smokers in the Gen-Air Study (EPIC Cohort). Nutrients. 2022; 14(12):2477. https://doi.org/10.3390/nu14122477
Chicago/Turabian StylePeluso, Marco, Armelle Munnia, Valentina Russo, Andrea Galli, Valeria Pala, Yvonne T. van der Schouw, Matthias B. Schulze, Elisabete Weiderpass, Rosario Tumino, Calogero Saieva, and et al. 2022. "Cruciferous Vegetable Intake and Bulky DNA Damage within Non-Smokers and Former Smokers in the Gen-Air Study (EPIC Cohort)" Nutrients 14, no. 12: 2477. https://doi.org/10.3390/nu14122477