Association of the APOA-5 Genetic Variant rs662799 with Metabolic Changes after an Intervention for 9 Months with a Low-Calorie Diet with a Mediterranean Profile
Abstract
:1. Introduction:
2. Subjects and Methods
2.1. Subjects and Clinical Investigation
2.2. Adiposity Parameters and Blood Pressure
2.3. Analytical Parameters
2.4. Genotyping of the APOA5 Gene Variant
2.5. Dietary Intervention
2.6. Statistical Analysis
2.7. Ethical Approval
3. Results
3.1. Modifications in Anthropometry and Blood Pressure
3.2. Changes in Classical Biochemical Parameters
3.3. Adipokine Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomkin, G.H.; Owens, D. Diabetes and dyslipidemia: Characterizing lipoprotein metabolism. Diabetes Metab. Syndr. Obes. 2017, 10, 333–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teno, S.; Uto, Y.; Nagashima, H.; Endoh, Y.; Iwamoto, Y.; Omori, Y.; Takizawa, T. Association of postprandial hypertriglyceridemia and carotid intima-media thickness in patients with type 2 diabetes. Diabetes Care 2000, 23, 1401–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaap, F.G.; Rensen, P.C.; Voshol, P.J.; Vrins, C.; van der Vliet, H.N.; Chamuleau, R.A.; Havekes, L.M. ApoAV reduces plasma triglycerides by inhibiting very low density lipoproteintriglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis. J. Biol. Chem. 2004, 279, 27941–27944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fruchart-Najib, J.; Baugé, E.; Niculescu, L.S.; Pham, T.; Thomas, B.; Rommens, C.; Majd, Z.; Brewer, B.; Pennacchio, L.A.; Fruchart, J.C. Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5. Biochem. Biophys. Res. Commun. 2004, 319, 397–404. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Wu, Y.-H.; Zhang, Y.; Zhang, L.; Song, Y.; Bai, W.; Li, Y.; Yu, Y.; Kou, C. Effects of polymorphisms in APOA5 on the plasma levels of triglycerides and risk of coronary heart disease in Jilin, northeast China: A case–control study. BMJ Open 2018, 8, e020016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, H.; Zhou, A.; Hong, Q.; Tang, L.; Xu, X.; Xin, Y.; Jiang, D.; Dai, D.; Li, Y.; Wang, D.W.; et al. Positive Association between APOA5 rs662799 Polymorphism and Coronary Heart Disease: A Case-Control Study and Meta-Analysis. PLoS ONE 2015, 10, e0135683. [Google Scholar] [CrossRef] [Green Version]
- Lin, E.; Kuo, P.; Liu, Y.; Yang, A.C.; Tsai, S. Detection of susceptibility loci on APOA5 and COLEC12 associated with metabolic syndrome using a genome-wide association study in a Taiwanese population. Oncotarget 2017, 8, 93349–93359. [Google Scholar] [CrossRef] [Green Version]
- Joy, T.; Hegele, R.A. Genetics of metabolic syndrome: Is there a role for phenomics? Curr. Atheroscler. Rep. 2008, 10, 201–208. [Google Scholar] [CrossRef]
- Lim, H.H.; Choi, M.; Kim, J.Y.; Lee, J.H.; Kim, O.Y. Increased risk of obesity related to total energy intake with the APOA5-1131T > C polymorphism in Korean premenopausal women. Nutr. Res. 2014, 34, 827–836. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, O.Y.; Lim, H.H.; Lee, Y.J.; Jang, Y.; Lee, J.H. Contribution of APOA5-1131C allele to the increased susceptibility of diabetes mellitus in association with higher triglyceride in Korean women. Metabolism 2010, 59, 1583–1590. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Z.; Zhang, J.; Yang, Y.; Shen, J.; Zhang, X.; Song, Y. The APOA5 rs662799 polymorphism is associated with dyslipidemia and the severity of coronary heart disease in Chinese women. Lipids Health Dis. 2016, 15, 170–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennacchio, L.A.; Olivier, M.; Hubacek, J.A.; Krauss, R.M.; Rubin, E.M.; Cohen, J.C. Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum. Mol. Genet. 2002, 11, 3031–3038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Luis, D.A.; Izaola, O.; Primo, D.; Aller, R. APOA5 Variant rs662799, Role in Cardiovascular Traits and Serum Adipokine Levels in Caucasian Obese Subjects. Ann. Nutr. Metab. 2021, 2, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Hubacek, J.A.; Skodová, Z.; Adámková, V.; Lánská, V.; Poledne, R. The influence of APOAV polymorphisms (T-1131 > C and S19 > W) on plasma triglyceride levels and risk of myocardial infarction. Clin. Genet. 2004, 65, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Chae, J.S.; Kim, O.Y.; Park, H.J.; Kim, J.Y.; Paik, J.K. APOA5-1131T > C genotype effects on apolipoprotein A5 and triglyceride levels in response to dietary intervention and regular exercise (DIRE) in hypertriglyceridemic subjects. Atherosclerosis 2010, 211, 512–519. [Google Scholar] [CrossRef]
- Lin, J.; Fang, D.Z.; Du, J.; Shigdar, S.; Xiao, L.Y.; Zhou, X.D. Elevated levels of triglyceride and triglyceride-rich lipoprotein triglyceride induced by a high-carbohydrate diet is associated with polymorphisms of APOA5-1131T > C and APOC3-482C > T in Chinese healthy young adults. Ann. Nutr. Metab. 2011, 58, 150–157. [Google Scholar] [CrossRef]
- de Luis, D.; Izaola, O.; Primo, D. APOA-5 Genetic Variant rs662799: Role in Lipid Changes and Insulin Resistance after a Mediterranean Diet in Caucasian Obese Subjects. Dis. Markers 2021, 12, 1245–1257. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, O.Y.; Koh, S.J.; Jang, Y.; Yun, S.S.; Ordovas, J.M. Comparison of low-fat meal and highfat meal on postprandial lipemic response in non-obese men according to the -1131T > C polymorphism of the apolipoprotein A5 (APOA5) gene (randomized cross-over design). J. Am. Coll. Nutr. 2006, 25, 340–347. [Google Scholar] [CrossRef]
- Lukaski, H.; Johson, P.E. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am. J. Clin. Nutr. 1985, 41, 810–817. [Google Scholar] [CrossRef]
- Mathews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F. Homeostasis model assessment: Insulin resistance and beta cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–414. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.J.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Suominen, P. evaluation of an enzyme immunometric assay to measure serum adiponectin concentrations. Clin. Chem. 2004, 50, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Meier, U.; Gressner, M. Endocrine regulation of energy metabolism: Review of pathobiochemical and clinical chemical aspects of leptin, Ghrelin, adiponectin, and resistin. Clin. Chem. 2004, 50, 1511–1525. [Google Scholar] [CrossRef] [PubMed]
- Pfutzner, A.; Langefeld, M.; Kunt, T.; Lobig, M. Evaluation of human resistin assays with serum from patients with type 2 diabetes and different degrees of insulin resistance. Clin. Lab. 2003, 49, 571–576. [Google Scholar] [PubMed]
- Mataix, J.; Mañas, M. Tablas de Composición de Alimentos Españoles; Pirámide Publishing House: Madrid, Spain, 2003. [Google Scholar]
- Hubacek, J.A.; Adamkova, V.; Prusikova, M. Impact of apolipoprotein A5 variants on statin treatment efficacy. Pharmacogenomics 2009, 10, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Peng, B.; Gong, R.R.; Gao, L.B.; Du, J.; Fang, D.Z.; Song, Y.Y.; Li, Y.H.; Ou, G.J. Apolipoprotein A5 polymorphisms and risk of coronary artery disease: A meta-analysis. Biosci. Trends 2011, 5, 165–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talmud, P.J.; Palmen, J.; Putt, W.; Lins, L.; Humphries, S.E. Determination of the functionality of common APOA5 polymorphisms. J. Biol. Chem. 2005, 280, 28215–28220. [Google Scholar] [CrossRef] [Green Version]
- Perez-Martinez, P.; Corella, D.; Shen, J.; Arnett, D.K.; Yiannakouris, N.; Tai, E.S.; Orho-Melander, M.; Tucker, K.L.; Tsai, M.; Straka, R.J.; et al. Association between glucokinase regulatory protein (GCKR) and apolipoprotein A5 (APOA5) gene polymorphisms and triacylglycerol concentrations in fasting, postprandial, and fenofibrate-treated states. Am. J. Clin. Nutr. 2009, 89, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Prieur, X.; Coste, H.; Rodriguez, J.C. The human apolipoprotein AV gene is regulated by peroxisome proliferator-activated receptor-alpha and contains a novel farnesoid X-activated receptor response element. J. Biol. Chem. 2003, 278, 25468–25480. [Google Scholar] [CrossRef] [Green Version]
- Vaessen, S.F.; Schaap, F.G.; Kuivenhoven, J.A.; Groen, A.K.; Hutten, B.A.; Boekholdt, S.M.; Hattori, H.; Khaw, K.T. Apolipoprotein A-V, triglycerides and risk of coronary artery disease: The prospective Epic-Norfolk Population Study. J. Lipid Res. 2006, 47, 2064–2070. [Google Scholar] [CrossRef] [Green Version]
- Fielding, B.A.; Frayn, K.N. Lipoprotein lipase and the disposition of dietary fatty acids. Br. J. Nutr. 1998, 80, 495–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemánková, K.; Dembovská, R.; Piťha, J.; Kovář, J. Glucose added to a fat load suppresses the postprandial triglyceridemia response in carriers of the -1131C and 56G variants of the APOA5 gene. Physiol. Res. 2017, 66, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.; Helleboid-Chapman, A.; Jakel, H.; Martin, G.; Duran-Sandoval, D.; Staels, B.; Rubin, E.M.; Fruchart, J.C. Insulin-mediated down-regulation of apolipoprotein A5 gene expression through the phosphatidylinositol 3-kinase pathway: Role of upstream stimulatory factor. Mol. Cell Biol. 2005, 25, 1537–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Moreno, C.; Ordovás, J.M.; Smith, C.E.; Baraza, J.C.; Lee, Y.C.; Garaulet, M. APOA5 gene variation interacts with dietary fat intake to modulate obesity and circulating triglycerides in a Mediterranean population. J. Nutr. 2011, 141, 380–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubacek, J.A.; Peasey, A.; Kubinova, R.; Pikhart, H.; Bobak, M. The association between APOA5 haplotypes and plasma lipids is not modified by energy or fat intake: The Czech HAPIEE study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 243–247. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.Q.; Corella, D.; Demissie, S.; Cupples, L.A.; Adiconis, X.; Zhu, Y.; Parnell, L.D.; Tucker, K.L.; Ordovas, J.M. Dietary intake of n-6 fatty acids modulates effect of apolipoprotein A5 gene on plasma fasting triglycerides, remnant lipoprotein concentrations, and lipoprotein particle size: The Framingham Heart Study. Circulation 2006, 113, 2062–2070. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Kang, S. Alcohol, Carbohydrate, and Calcium Intakes and Smoking Interactions with APOA5 rs662799 and rs2266788 were Associated with Elevated Plasma Triglyceride Concentrations in a Cross-Sectional Study of Korean Adults. J. Acad. Nutr. Diet. 2020, 120, 1318–1329. [Google Scholar] [CrossRef]
- Hechmi, M.; Dallali, H.; Gharbi, M.; Jmel, H.; Fassatoui, M.; Halima, Y.B.; Bahri, S.; Bahlous, A.; Abid, A.; Jamoussi, H.; et al. Association of rs662799 variant and APOA5 gene haplotypes with metabolic syndrome and its components: A meta-analysis in North Africa. Biosci. Rep. 2020, 40, BSR20200706. [Google Scholar] [CrossRef]
- Ramos-Lopez, O.; Milton-Laskibar, I.; Martínez, J.A. Precision nutrition based on phenotypical traits and the (epi)genotype: Nutrigenetic and nutrigenomic approaches for obesity care. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 315–325. [Google Scholar] [CrossRef]
TT (n = 237) | TC + CC (n = 32) | |||||
---|---|---|---|---|---|---|
0 Time | 3 Months | 9 Months | 0 Time | 3 Months | 9 Months | |
Calorie intake (kcal/day) | 1728.9 + 210.8 | 1012.1 + 21.1 * | 1008.1 + 13.1 * | 1823.9 + 129.1 | 1010.1 + 18.1 * | 1001.9 + 12.1 * |
Carbohydrate intake (g/day) (PTC%) | 207.8 + 51.9 (48.9%) | 137.5 + 20.1 $ (54.3%) | 130.1 + 18.1 $ (53.9%) | 218.1 + 41.1 (47.8%) | 133.1 + 19.1 $ (53.7%) | 130.9 + 12.1 $ (52.6%) |
Fat intake (g/day) (PTC%) | 58.9 + 10.3 (30.6%) | 31.1 + 8.1 # (26.7%) | 32.2 + 5.1 # (26.9%) | 62.4 + 8.3 (30.8%) | 30.2 + 4.3 # (26.9%) | 31.1 + 5.1 # (27.4%) |
Protein intake (g/day) (PTC%) | 88.6 + 14.1 (20.5%) | 50.6 + 7.3 & (20.0%) | 51.9 + 7.1 & (20.2%) | 92.9 + 10.1 (22.4%) | 51.2 + 6.9 & (20.5%) | 52.3 + 6.0 & (21.0%) |
Saturated Fat intake (g/day) (PFC%) | 36.2 + 6.0 (61.4%) | 6.1 + 4.9 ** (19,6%) | 6.4 + 4.0 ** (19,0%) | 37.8 + 5.1 (60.5%) | 5.9 + 2.2 (19.5%) | 5.3 + 1.1 (19.1%) |
Monounsaturated Fat intake (g/day) (PFC%) | 15.2 + 3.1 (25.8%) | 21.3 + 2.9 $$ (63.2%) | 22.1 + 2.0 $$ (64.1%) | 15.8 + 5.2 (25.3%) | 19.9 + 4.0 (65.9%) | 20.1 + 4.1 (66.1%) |
Polyunsaturated Fat intake (g/day) (PFC%) | 7.5 + 6.0 (13.8%) | 5.3 + 4.9 ## (17.2%) | 5.4 + 3.2 ## (16.9%) | 8.8 + 4.2 (14.2%) | 4.4 + 2.2 (15.6%) | 4.7 + 0.9 (15.8%) |
Physical activity (min/week) | 121.2 + 12.1 | 127.8 + 12.5 | 130.1 + 9.9 | 125.9 + 4.2 | 132.1 + 11.2 | 133.2 + 10.2 |
TT (n = 237) | TC + CC (n = 32) | |||||
---|---|---|---|---|---|---|
0 Time | 3 Months | 9 Months | 0 Time | 3 Months | 9 Months | |
BMI | 40.8 ± 2.1 | 38.3 ± 3.2 * | 36.1 ± 1.1 * | 40,6 ± 2.3 | 38.4 ± 2.1 * | 36.2 ± 1.0 * |
Weight (kg) | 91.4 ± 3.2 | 86.9 ± 2.0 $ | 84.8 ± 2.0 $ | 90.9 ± 2.1 | 86.8 ± 2.0 $ | 84.5 ± 2.1 $ |
Fat mass (kg) | 36.3 ± 1.1 | 33.1 ± 1.0 # | 31.2 ± 1.1 # | 35.9± 1.2 | 33.0± 1.8 # | 30.9 ± 1.8 # |
WC (cm) | 111.7 ± 4.3 | 107.1 ± 3.1 & | 105.5 ± 3.0 & | 110.8 ± 6.0 | 107.6 ± 4.1 & | 104.9 ± 3.1 & |
SBP (mmHg) | 127.0 ± 3.0 | 123.1 ± 3.1 ** | 122.8 ± 4.0 ** | 126.9± 4.1 | 122.1 ± 3.1 ** | 121.7 ± 2.9 ** |
DBP (mmHg) | 81.3 ± 3.1 | 78.8 ± 4.1 | 79.1 ± 4.0 | 81.4 ± 3.0 | 78.1 ± 3.0 | 78.9 ± 4.1 |
TT (n = 237) | TC + CC (n = 32) | |||||
---|---|---|---|---|---|---|
0 Time | 3 Months | 9 Months | 0 Time | 3 Months | 9 Months | |
Glucose (mg/dL) | 103.8 ± 4.0 | 100.8 ± 3.1 | 99.8 ± 4.2 | 101.3 ± 6.0 | 99.9 ± 4.2 | 98.7 ± 4.1 |
Total ch. (mg/dL) | 208.8 ± 4.6 | 195.2 ± 4.1 $ | 193.1 ± 3.1 $ | 208.7 ± 4.1 | 194.1 ± 3.1 $ | 192.1 ± 3.0 $ |
LDL-ch. (mg/dL) | 137.2 ± 8.1 | 120.8 ± 2.2 # | 118.1 ± 4.0 # | 140.5 ± 3.9 | 122.5 ± 4.2 # | 118.9 ± 3.1 # |
HDL-ch. (mg/dL) | 55.8 ± 1.6 | 54.7 ± 1.9 | 55.1 ± 1.2 | 55.9 ± 2.1 | 55.5 ± 1.3 | 56.1 ± 1.2 |
TG (mg/dL) | 123.2 ± 11.0 | 110.9 ± 9.2 * | 104.1 ± 6.2 * | 143.1 ± 10.2 x | 140.8 ± 4.1 x | 139.1 ± 7.8 x |
Insulin (mUI/L) | 10.8 ± 2.1 | 9.2 ± 1.3 & | 7.0 ± 1.0 & | 12.3 ± 2.1 | 10.8 ± 2.2 | 11.0 ± 2.3 |
HOMA-IR | 3.7 ± 1.0 | 2.1 ± 0.9 ** | 1.5 ± 0.7 ** | 3.9 ± 0.8 | 3.5 ± 1.1 | 3.6 ± 1.2 |
CRP (mg/dL) | 4.3 ± 1.0 | 4.3 ± 1.3 | 4.2 ± 1.1 | 4.4 ± 2.1 | 4.5 ± 1.3 | 4.3 ± 1.1 |
TT (n = 237) | TC + CC (n = 32) | |||||
---|---|---|---|---|---|---|
0 Time | 3 Months | 9 Months | 0 Time | 3 Months | 9 Months | |
Adiponectin (ng/mL) | 4.8 ± 1.0 | 4.7 ± 2.0 | 4.9 ± 1.8 | 4.5 ± 2.0 | 4.4 ± 1.3 | 4.7 ± 1.2 |
Resistin (ng/mL) | 39.1 ± 5.0 | 68.1 ± 4.2 $ | 63.1 ± 4.1 $ | 34.9 ± 4.1 | 67.2 ± 4.2 $ | 66.1 ± 3.1 $ |
Leptin(ng/mL) | 88.1 ± 8.1 | 71.2 ± 4.1 * | 68.9 ± 4.1 * | 89.1 ± 8.1 | 70.1 ± 3.1 * | 69.9 ± 6.1 * |
Ratio Adiponectin/leptin | 0.36 ± 0.2 | 0.92 ± 0.1 # | 0.91 ± 0.1 # | 0.18 ± 0.1 | 0.92 ± 0.3 # | 0.93 ± 0.2 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Luis Roman, D.; Primo, D.; Izaola, O.; Aller, R. Association of the APOA-5 Genetic Variant rs662799 with Metabolic Changes after an Intervention for 9 Months with a Low-Calorie Diet with a Mediterranean Profile. Nutrients 2022, 14, 2427. https://doi.org/10.3390/nu14122427
de Luis Roman D, Primo D, Izaola O, Aller R. Association of the APOA-5 Genetic Variant rs662799 with Metabolic Changes after an Intervention for 9 Months with a Low-Calorie Diet with a Mediterranean Profile. Nutrients. 2022; 14(12):2427. https://doi.org/10.3390/nu14122427
Chicago/Turabian Stylede Luis Roman, Daniel, David Primo, Olatz Izaola, and Rocio Aller. 2022. "Association of the APOA-5 Genetic Variant rs662799 with Metabolic Changes after an Intervention for 9 Months with a Low-Calorie Diet with a Mediterranean Profile" Nutrients 14, no. 12: 2427. https://doi.org/10.3390/nu14122427
APA Stylede Luis Roman, D., Primo, D., Izaola, O., & Aller, R. (2022). Association of the APOA-5 Genetic Variant rs662799 with Metabolic Changes after an Intervention for 9 Months with a Low-Calorie Diet with a Mediterranean Profile. Nutrients, 14(12), 2427. https://doi.org/10.3390/nu14122427