Dietary and Nutrient Patterns and Brain MRI Biomarkers in Dementia-Free Adults
Abstract
:1. Introduction
2. Methods
2.1. Strategy Used
2.2. Studies Retrieved
3. Mediterranean Diet
3.1. Brain Atrophy
3.2. Cerebrovascular Disease
3.3. Connectivity
3.4. Functional Brain Networks
4. Other Dietary or Nutrient Patterns
4.1. Brain Atrophy
4.2. Cerebrovascular Disease
4.3. Connectivity
4.4. Functional Brain Networks
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buckinx, F.; Aubertin-Leheudre, M. Nutrition to Prevent or Treat Cognitive Impairment in Older Adults: A GRADE Recommendation. J. Prev. Alzheimers Dis. 2021, 8, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Rochoy, M.; Rivas, V.; Chazard, E.; Decarpentry, E.; Saudemont, G.; Hazard, P.A.; Puisieux, F.; Gautier, S.; Bordet, R. Factors Associated with Alzheimer’s Disease: An Overview of Reviews. Prev. Alzheimers Dis. 2019, 6, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Collaborators, G.B.D.D.F. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public health 2022, 7, e105–e125. [Google Scholar]
- Cerejeira, J.; Lagarto, L.; Mukaetova-Ladinska, E.B. Behavioral and psychological symptoms of dementia. Front. Neurol. 2012, 3, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Cummings, J.L.; DeKosky, S.T.; Barberger-Gateau, P.; Delacourte, A.; Frisoni, G.; Fox, N.C.; Galasko, D.; et al. Revising the definition of Alzheimer’s disease: A new lexicon. Lancet Neurol. 2010, 9, 1118–1127. [Google Scholar] [CrossRef]
- Sperling, R.A.; Karlawish, J.; Johnson, K.A. Preclinical Alzheimer disease-the challenges ahead. Nat. Rev Neurol. 2013, 9, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr.; Kaye, J.; Montine, T.J.; et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011, 7, 280–292. [Google Scholar] [CrossRef] [Green Version]
- Furtner, J.; Prayer, D. Neuroimaging in dementia. Wien Med. Wochenschr. 2021, 171, 274–281. [Google Scholar] [CrossRef]
- Raposo Rodriguez, L.; Tovar Salazar, D.J.; Fernandez Garcia, N.; Pastor Hernandez, L.; Fernandez Guinea, O. Magnetic resonance imaging in dementia. Radiologia 2018, 60, 476–484. [Google Scholar] [CrossRef]
- Kehoe, E.G.; McNulty, J.P.; Mullins, P.G.; Bokde, A.L. Advances in MRI biomarkers for the diagnosis of Alzheimer’s disease. Biomark Med. 2014, 8, 1151–1169. [Google Scholar] [CrossRef]
- Vlachos, G.S.; Yannakoulia, M.; Anastasiou, C.A.; Kosmidis, M.H.; Dardiotis, E.; Hadjigeorgiou, G.; Charisis, S.; Sakka, P.; Stefanis, L.; Scarmeas, N. The role of Mediterranean diet in the course of subjective cognitive decline in the elderly population of Greece: Results from a prospective cohort study. Br. J. Nutr. 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Noble, J.M.; Marder, K.; Hartman, J.S.; Gu, Y.; Scarmeas, N. Dietary Patterns, Physical Activity, Sleep, and Risk for Dementia and Cognitive Decline. Curr. Nutr. Rep. 2018, 7, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Tsapanou, A.; Vlachos, G.S.; Cosentino, S.; Gu, Y.; Manly, J.J.; Brickman, A.M.; Schupf, N.; Zimmerman, M.E.; Yannakoulia, M.; Kosmidis, M.H.; et al. Sleep and subjective cognitive decline in cognitively healthy elderly: Results from two cohorts. J. Sleep Res. 2019, 28, e12759. [Google Scholar] [CrossRef]
- Anastasiou, C.A.; Yannakoulia, M.; Kontogianni, M.D.; Kosmidis, M.H.; Mamalaki, E.; Dardiotis, E.; Hadjigeorgiou, G.; Sakka, P.; Tsapanou, A.; Lykou, A.; et al. Mediterranean Lifestyle in Relation to Cognitive Health: Results from the HELIAD Study. Nutrients 2018, 10, 1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarmeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018, 17, 1006–1015. [Google Scholar] [CrossRef]
- Vlachos, G.S.; Scarmeas, N. Dietary interventions in mild cognitive impairment and dementia. Dialogues Clin. Neurosci. 2019, 21, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Charisis, S.; Ntanasi, E.; Yannakoulia, M.; Anastasiou, C.A.; Kosmidis, M.H.; Dardiotis, E.; Hadjigeorgiou, G.; Sakka, P.; Scarmeas, N. Mediterranean diet and risk for dementia and cognitive decline in a Mediterranean population. J. Am. Geriatr. Soc. 2021, 69, 1548–1559. [Google Scholar] [CrossRef]
- De Wilde, M.C.; Kamphuis, P.J.; Sijben, J.W.; Scheltens, P. Utility of imaging for nutritional intervention studies in Alzheimer’s disease. Eur. J. Pharmacol. 2011, 668, S59–S69. [Google Scholar] [CrossRef]
- Hill, E.; Goodwill, A.M.; Gorelik, A.; Szoeke, C. Diet and biomarkers of Alzheimer’s disease: A systematic review and meta-analysis. Neurobiol. Aging 2019, 76, 45–52. [Google Scholar] [CrossRef]
- Reddan, J.M.; Macpherson, H.; White, D.J.; Scholey, A.; Pipingas, A. Examining the relationship between nutrition and cerebral structural integrity in older adults without dementia. Nutr. Res. Rev. 2019, 32, 79–98. [Google Scholar] [CrossRef]
- Hemler, E.C.; Hu, F.B. Plant-Based Diets for Personal, Population, and Planetary Health. Adv. Nutr. 2019, 10, S275–S283. [Google Scholar] [CrossRef] [PubMed]
- Wirfalt, E.; Drake, I.; Wallstrom, P. What do review papers conclude about food and dietary patterns? Food Nutr.Res. 2013, 57, 20523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [Green Version]
- Buckland, G.; González, C.A.; Agudo, A.; Vilardell, M.; Berenguer, A.; Amiano, P.; Ardanaz, E.; Arriola, L.; Barricarte, A.; Basterretxea, M.; et al. Adherence to the Mediterranean diet and risk of coronary heart disease in the Spanish EPIC Cohort Study. Am. J. Epidemiol. 2009, 170, 1518–1529. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef]
- Zaragoza-Martí, A.; Cabañero-Martínez, M.J.; Hurtado-Sánchez, J.A.; Laguna-Pérez, A.; Ferrer-Cascales, R. Evaluation of Mediterranean diet adherence scores: A systematic review. BMJ Open Respir. Res. 2018, 8, e019033. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, A.; Zelicha, H.; Meir, A.Y.; Rinott, E.; Tsaban, G.; Levakov, G.; Prager, O.; Salti, M.; Yovell, Y.; Ofer, J.; et al. The effect of a high-polyphenol Mediterranean diet (GREEN-MED) combined with physical activity on age-related brain atrophy: The DIRECT PLUS randomized controlled trial. Am. J. Clin. Nutr. 2022, 115, 1270–1281. [Google Scholar] [CrossRef]
- Staubo, S.C.; Aakre, J.A.; Vemuri, P.; Syrjanen, J.A.; Mielke, M.M.; Geda, Y.E.; Kremers, W.K.; Machulda, M.M.; Knopman, D.S.; Petersen, R.C.; et al. Mediterranean diet, micronutrients and macronutrients, and MRI measures of cortical thickness. Alzheimers Dement. 2017, 13, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Corley, J.; Cox, S.R.; Taylor, A.M.; Hernandez, M.V.; Maniega, S.M.; Ballerini, L.; Wiseman, S.; Meijboom, R.; Backhouse, E.V.; Bastin, M.E.; et al. Dietary patterns, cognitive function, and structural neuroimaging measures of brain aging. Exp. Gerontol. 2020, 142, 111117. [Google Scholar] [CrossRef]
- Pelletier, A.; Barul, C.; Féart, C.; Helmer, C.; Bernard, C.; Periot, O.; Dilharreguy, B.; Dartigues, J.F.; Allard, M.; Barberger-Gateau, P.; et al. Mediterranean diet and preserved brain structural connectivity in older subjects. Alzheimers Dement. 2015, 11, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Luciano, M.; Corley, J.; Cox, S.R.; Hernández, M.C.; Craig, L.C.; Dickie, D.A.; Karama, S.; McNeill, G.M.; Bastin, M.E.; Wardlaw, J.M.; et al. Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort. Neurology 2017, 88, 449–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarmeas, N.; Luchsinger, J.A.; Stern, Y.; Gu, Y.; He, J.; DeCarli, C.; Brown, T.; Brickman, A.M. Mediterranean diet and magnetic resonance imaging-assessed cerebrovascular disease. Ann. Neurol. 2011, 69, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Titova, O.E.; Ax, E.; Brooks, S.J.; Sjögren, P.; Cederholm, T.; Kilander, L.; Kullberg, J.; Larsson, E.M.; Johansson, L.; Åhlström, H.; et al. Mediterranean diet habits in older individuals: Associations with cognitive functioning and brain volumes. Exp.Gerontol. 2013, 48, 1443–1448. [Google Scholar] [CrossRef] [Green Version]
- Walters, M.J.; Sterling, J.; Quinn, C.; Ganzer, C.; Osorio, R.S.; Andrews, R.D.; Matthews, D.C.; Vallabhajosula, S.; de Leon, M.J.; Isaacson, R.S.; et al. Associations of lifestyle and vascular risk factors with Alzheimer’s brain biomarker changes during middle age: A 3-year longitudinal study in the broader New York City area. BMJ Open 2018, 8, e023664. [Google Scholar] [CrossRef] [Green Version]
- Gardener, H.; Scarmeas, N.; Gu, Y.; Boden-Albala, B.; Elkind, M.S.; Sacco, R.L.; DeCarli, C.; Wright, C.B. Mediterranean diet and white matter hyperintensity volume in the Northern Manhattan Study. Arch. Neurol. 2012, 69, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Mosconi, L.; Murray, J.; Tsui, W.H.; Li, Y.; Davies, M.; Williams, S.; Pirraglia, E.; Spector, N.; Osorio, R.S.; Glodzik, L.; et al. Mediterranean Diet and Magnetic Resonance Imaging-Assessed Brain Atrophy in Cognitively Normal Individuals at Risk for Alzheimer’s Disease. Alzheimers Dis. 2014, 1, 23–32. [Google Scholar] [CrossRef]
- Mosconi, L.; Walters, M.; Sterling, J.; Quinn, C.; McHugh, P.; Andrews, R.E.; Matthews, D.C.; Ganzer, C.; Osorio, R.S.; Isaacson, R.S.; et al. Lifestyle and vascular risk effects on MRI-based biomarkers of Alzheimer’s disease: A cross-sectional study of middle-aged adults from the broader New York City area. BMJ open 2018, 8, e019362. [Google Scholar] [CrossRef]
- Gu, Y.; Brickman, A.M.; Stern, Y.; Habeck, C.G.; Razlighi, Q.R.; Luchsinger, J.A.; Manly, J.J.; Schupf, N.; Mayeux, R.; Scarmeas, N. Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology 2015, 85, 1744–1751. [Google Scholar] [CrossRef] [Green Version]
- Karstens, A.J.; Tussing-Humphreys, L.; Zhan, L.; Rajendran, N.; Cohen, J.; Dion, C.; Zhou, X.J.; Lamar, M. Associations of the Mediterranean diet with cognitive and neuroimaging phenotypes of dementia in healthy older adults. Am. J. Clin. Nutr. 2019, 109, 361–368. [Google Scholar] [CrossRef]
- Zabetian-Targhi, F.; Srikanth, V.K.; Smith, K.J.; Oddy, W.H.; Beare, R.; Moran, C.; Wang, W.; Callisaya, M.L. Dietary Patterns Are Not Associated with Brain Atrophy or Cerebral Small Vessel Disease in Older Adults with and without Type 2 Diabetes. J. Nutr. 2019, 149, 1805–1811. [Google Scholar] [CrossRef] [PubMed]
- Akbaraly, T.; Sexton, C.; Zsoldos, E.; Mahmood, A.; Filippini, N.; Kerleau, C.; Verdier, J.M.; Virtanen, M.; Gabelle, A.; Ebmeier, K.P.; et al. Association of Long-Term Diet Quality with Hippocampal Volume: Longitudinal Cohort Study. Am. J. Med. 2018, 131, 1372–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prinelli, F.; Fratiglioni, L.; Kalpouzos, G.; Musicco, M.; Adorni, F.; Johansson, I.; Marseglia, A.; Xu, W. Specific nutrient patterns are associated with higher structural brain integrity in dementia-free older adults. Neuroimage 2019, 199, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, R.; Nishita, Y.; Nakamura, A.; Kato, T.; Iwata, K.; Tange, C.; Tomida, M.; Kinoshita, K.; Nakagawa, T.; Ando, F.; et al. Dietary diversity is associated with longitudinal changes in hippocampal volume among Japanese community dwellers. Eur. J. Clin. Nutr. 2021, 75, 946–953. [Google Scholar] [CrossRef]
- Gu, Y.; Manly, J.J.; Mayeux, R.P.; Brickman, A.M. An Inflammation-related Nutrient Pattern is Associated with Both Brain and Cognitive Measures in a Multiethnic Elderly Population. Curr. Alzheimer Res. 2018, 15, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Zwilling, C.E.; Talukdar, T.; Zamroziewicz, M.K.; Barbey, A.K. Nutrient biomarker patterns, cognitive function, and fMRI measures of network efficiency in the aging brain. Neuroimage 2019, 188, 239–251. [Google Scholar] [CrossRef]
- Gu, Y.; Manly, J.J.; Mayeux, R.P.; Brickman, A.M. White matter integrity as a mediator in the relationship between dietary nutrients and cognition in the elderly. Ann. Neurol. 2016, 79, 1014–1025. [Google Scholar] [CrossRef] [Green Version]
- Shishtar, E.; Rogers, G.T.; Blumberg, J.B.; Au, R.; DeCarli, C.; Jacques, P.F. Flavonoid Intake and MRI Markers of Brain Health in the Framingham Offspring Cohort. J. Nutr. 2020, 150, 1545–1553. [Google Scholar] [CrossRef]
- Berti, V.; Murray, J.; Davies, M.; Spector, N.; Tsui, W.H.; Li, Y.; Williams, S.; Pirraglia, E.; Vallabhajosula, S.; McHugh, P.; et al. Nutrient patterns and brain biomarkers of Alzheimer’s disease in cognitively normal individuals. J. Nutr. Health Aging 2015, 19, 413–423. [Google Scholar] [CrossRef] [Green Version]
- Jacka, F.N.; Cherbuin, N.; Anstey, K.J.; Sachdev, P.; Butterworth, P. Western diet is associated with a smaller hippocampus: A longitudinal investigation. BMC Med. 2015, 13, 215. [Google Scholar] [CrossRef] [Green Version]
- Stomby, A.; Otten, J.; Ryberg, M.; Nyberg, L.; Olsson, T.; Boraxbekk, C.J. Paleolithic Diet with and without Combined Aerobic and Resistance Exercise Increases Functional Brain Responses and Hippocampal Volume in Subjects with Type 2 Diabetes. Front. Aging Neurosci. 2017, 9, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croll, P.H.; Voortman, T.; Ikram, M.A.; Franco, O.H.; Schoufour, J.D.; Bos, D.; Vernooij, M.W. Better diet quality relates to larger brain tissue volumes: The Rotterdam Study. Neurology 2018, 90, e2166–e2173. [Google Scholar] [CrossRef] [PubMed]
- Arjmand, G.; Abbas-Zadeh, M.; Eftekhari, M.H. Effect of MIND diet intervention on cognitive performance and brain structure in healthy obese women: A randomized controlled trial. Sci. Rep. 2022, 12, 2871. [Google Scholar] [CrossRef] [PubMed]
- Stephen, R.; Liu, Y.; Ngandu, T.; Antikainen, R.; Hulkkonen, J.; Koikkalainen, J.; Kemppainen, N.; Lötjönen, J.; Levälahti, E.; Parkkola, R.; et al. Brain volumes and cortical thickness on MRI in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER). Alzheimers Res. Ther. 2019, 11, 53. [Google Scholar] [CrossRef] [Green Version]
- Vemuri P, P.; Jack, C.R., Jr. Role of structural MRI in Alzheimer’s disease. Alzheimers Res. Ther. 2010, 2, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anastasiou, C.A.; Yannakoulia, M.; Kosmidis, M.H.; Dardiotis, E.; Hadjigeorgiou, G.M.; Sakka, P.; Arampatzi, X.; Bougea, A.; Labropoulos, I.; Scarmeas, N. Mediterranean diet and cognitive health: Initial results from the Hellenic Longitudinal Investigation of Ageing and Diet. PLoS ONE 2017, 12, e0182048. [Google Scholar] [CrossRef] [Green Version]
- Gustafson, D.R.; Bäckman, K.; Scarmeas, N.; Stern, Y.; Manly, J.J.; Mayeux, R.; Gu, Y. Dietary fatty acids and risk of Alzheimer’s disease and related dementias: Observations from the Washington Heights-Hamilton Heights-Inwood Columbia Aging Project (WHICAP). Alzheimers Demen. 2020, 16, 1638–1649. [Google Scholar] [CrossRef]
- Lauer, A.A.; Grimm, H.S.; Apel, B.; Golobrodska, N.; Kruse, L.; Ratanski, E.; Schulten, N.; Schwarze, L.; Slawik, T.; Sperlich, S.; et al. Mechanistic Link between Vitamin B12 and Alzheimer’s Disease. Biomolecules 2022, 1, 129. [Google Scholar] [CrossRef]
- McGarel, C.; Pentieva, K.; Strain, J.J.; McNulty, H. Emerging roles for folate and related B-vitamins in brain health across the lifecycle. Proc. Nutr. Soc. 2015, 74, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, M.; Grillo, A.; Losurdo, P.; Panizon, E.; Mearelli, F.; Cattin, L.; Barazzoni, R.; Carretta, R. Omega-3 Polyunsaturated Fatty Acids: Structural and Functional Effects on the Vascular Wall. Biomed. Res. Int. 2015, 2015, 791978. [Google Scholar] [CrossRef] [Green Version]
Study Name | Population Characteristics | Duration | Dietary Assessment or Intervention | MD Assessment Tools | Outcomes | Authors | |||
---|---|---|---|---|---|---|---|---|---|
Brain Atrophy | CBVD | Connecti-vity | Functional Brain Networks | ||||||
Cross-Sectional Studies | |||||||||
NOMAS | n = 966 (59.3% female), ≥55 years old (mean age 72 years old) | FFQ | Trichopoulou MD score | ↓ log WMH volume | Gardener et al., 2012 [31] | ||||
WHICAP | n = 707 (34% male) ≥65 years old (mean age 80.3 years old) | FFQ | Trichopoulou MD score | ↓ odds of MRI infarcts, N.S. WMH | Scarmeas et al., 2011 [32] | ||||
n = 674 (67% female), ≥65 years old(mean age 80.1 years old) | FFQ | Trichopoulou MD score | ↑ TBV, GMV, WMV/Cingulate, parietal, temporal, hippocampus volume and Superior frontal CT distinguish low high MD | Gu et al., 2015 [33] | |||||
MCSA | n = 672 (52.5% male), 70–89 years old (mean age 79.8 years old) | FFQ | Trichopoulou MD score | increased frontal, average lobar, parietal, and occipital lobe CT | Staubo et al., 2017 [29] | ||||
Lothian Birth | N = 358 (46.9% female), mean age 79.3 years old | FFQ | PCA (i) Mediterranean-style pattern (ii) Processed pattern | N.S. TBV, GMV, WMV, NAWMV, gFA, | N.S. gMD | Corley et al., 2020 [30] | |||
PIVUS | n = 194 (93 female), 75 years old | 1 week food diary at 70 years and MRI at 75 years | Trichopoulou MD score | N.S. TBV, WMV, GMV | Titova et al., 2013 [34] | ||||
Three-City study Bordeaux | n = 146 (58% female), mean age 73 years old | FFQ, 24h diet recall, collected 8.9 years before MRI | Trichopoulou MD score | N.S. GMV, WMV | preserved structural connectivity | Pelletier et al., 2015 [35] | |||
NYU | n = 116 (62% female), 30–60 years old (mean age 50 years old) | FFQ | Trichopoulou MD score | ↑ CT (+PCC, EC) positively associated with brain structure | Mosconi et al., 2018 [36] | ||||
n = 52 (70% female), 25–72 years old (mean age 52 years old) | - | FFQ | Trichopoulou MD score | ↑ CT OFC, EC and PCC of the left hemisphere | Mosconi et al., 2014 [37] | ||||
UIC | n = 82 (52% female), mean age 68.8 years old | - | FFQ | MedDietScore (Panagiotakos) | ↑ DG volumes | N.S. WMH | Karstens et al., 2019 [38] | ||
Observational Longitudinal Studies | |||||||||
Lothian Birth | n = 323 70 years old at baseline | 10 years (2 MRIs between 3 years) | FFQ | Trichopoulou MD score | ↓ TBV reduction N.S. GMV, CT | Luciano et al., 2017 [39] | |||
NYU | n = 70 (69% female), 30–60 years old (mean age 49 years old) | 3 years | FFQ | Trichopoulou MD score | N.S. CT | Walters et al., 2018 [40] | |||
Randomized Clinical Trials | |||||||||
DIRECT PLUS | n = 224 abdominally obese/dyslipidemic participants (88% male), ≥30 years old (mean age 51 years old) | 18 months | (i) Control: healthy dietary guidelines (ii) MD (iii) Green-MD: MD higher in polyphenols (+800 mg/day through green tea) and lower in red/processed meat Both MD groups consumed 440 mg/d polyphenols through walnuts | ↓ hippocampal occupancy score decline | Kaplan et al., 2022 [28] |
Study Name | Population Characteristics | Duration | Dietary Assessment or Intervention | Outcomes | Authors | |||
---|---|---|---|---|---|---|---|---|
Brain Atrophy | CBVD | Connectivity | Functional Brain Networks | |||||
Cross-Sectional Studies | ||||||||
The Rotterdam Study | n = 4213 (56.8% female), 45–98 years old (mean age 65.7 years old) | FFQ (adherence to Dutch dietary guidelines) | ↑ TBV, GMV, WMV, hippocampal volume | N.S. WMLs, lacunes, microbleeds | Croll et al., 2018 [41] | |||
Framingham Heart Study Offspring | n = 2086 (53.7% female), (mean age 60.6 years old) | FFQ (flavonoid intake) | N.S. TBV, hippocampal volume | ↓ WMH | Shishtar et al., 2020 [42] | |||
Cognition and Diabetes in Older Tasmanians | n = 689 (57% male) n = 343 T2D, 55–90 years old (mean age 69.9 years old) | FFQ (PCA) | Zabetian–Targhi et al., 2019 [43] | |||||
Prudent DP | N.S. GMV, WMV, hippocampal volumes | N.S. microbleeds | ||||||
Traditional DP | N.S. GMV, WMV, hippocampal volumes | N.S. microbleeds | ||||||
Western DP | N.S. GMV, WMV, hippocampal volumes | N.S. microbleeds | ||||||
Whitehall II | n = 459 (19.2% female), mean age 59.6 years old | FFQ (AHEI-2010 score) | ↑ hippocampal volumes | Akbaraly et al., 2018 [44] | ||||
Swedish National study on Aging and Care-Kungsholmen (SNAC-K) | n = 417 (59% female), ≥60 years old | FFQ (PCA) | Prinelli et al., 2019 [45] | |||||
DP1: Fiber andAntioxidants | ↑ TBV | ↓ WMH | ||||||
DP2: LC ω-3 PUFAs andproteins | ↑ TBV | N.S. WMH | ||||||
DP3: MUFAs and ω-3,6 PUFAs | ↑ TBV | N.S. WMH | ||||||
DP4: SFAs andTrans fat | N.S. TBV | ↑ WMH | ||||||
DP5: B- vitamins, retinol, proteins | ↓ TBV | N.S. WMH | ||||||
WHICAP | n = 330 (64% female), mean age 79 years | FFQ | Gu et al., 2018 [46] | |||||
INP | ↓ TBV, GMV, WMV | |||||||
n = 239 (70% female), ≥65 years old (mean age 84.1 years old) | FFQ (PCA) | Gu et al., 2016 [47] | ||||||
DP characterized by ω-3, ω-6, vit. E | ↑ FA | |||||||
n = 116 (63% female), 65–75 years old (mean age 69 years old) | nutrient biomarker pattern (PCA) | Zwilling et al., 2019 [48] | ||||||
ω-6 PUFAs | enhanced functional brain networks efficiency | |||||||
ω-3 PUFAs | enhanced functional brain networks efficiency | |||||||
lycopene | enhanced functional brain networks efficiency | |||||||
NYU | n = 52 (71% female), mean age 54 years old | FFQ (PCA) | Berti et al., 2015 [49] | |||||
DP1: vitamin B andminerals | N.S. GMV | |||||||
DP2: vitamin E andminerals | ↑ GMV | |||||||
DP3: antioxidants andfibers | N.S. GMV | |||||||
DP4: vitamins D andB12 | ↑ GMV | |||||||
DP5: Fats | ↓ GMV | |||||||
Observational longitudinal studies | ||||||||
NILS-LSA | n = 1683 (50.6% male), 40–89 years old | 2 years | 3-day weighed dietary records, dietary diversity through QUANTIDD | ↓ hippocampal volume N.S. GMV | Otsuka et al., 2021 [50] | |||
PATH | n = 255 (46% female), 60–64 years old (mean age 62.6 years old) | 4 years | FFQ (PCA) | Jacka et al., 2015 [51] | ||||
Prudent DP | ↑ left hippocampal volume | |||||||
Western DP | ↓ hippocampal volume | |||||||
Randomized clinical trials | ||||||||
FINGER (multi-domain intervention) | n = 112 (59 intervention), 60–77 years old (mean age 70 years old) | 2 years | Intervention: diet (based on the Finnish Nutrition Recommendations), exercise, cognitive training, vascular risk monitoring Control: general health advice | N.S. CT, total hippocampal volume total intracranial volume, GMV | N.S. WMLs | Stephen et al., 2019 [52] | ||
n = 37 obese female, 40–60 years old (mean age 49 years old) | 3 months | Intervention: calorie-restricted modified MIND diet, Control: calorie-restricted standard control diet | ↑ IFG, N.S. cerebellum white matter or cerebellum cortex | Arjmand et al., 2022 [53] | ||||
n = 30 with type 2 diabetes, 30–75 years old (female were postmenopausal) | 3 months | Paleolithic diet (n = 12) with and without high intensity exercise (n = 12), control (n = 6) | ↑ volume of the right posterior hippocampus | Stomby et al., 2017 [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drouka, A.; Mamalaki, E.; Karavasilis, E.; Scarmeas, N.; Yannakoulia, M. Dietary and Nutrient Patterns and Brain MRI Biomarkers in Dementia-Free Adults. Nutrients 2022, 14, 2345. https://doi.org/10.3390/nu14112345
Drouka A, Mamalaki E, Karavasilis E, Scarmeas N, Yannakoulia M. Dietary and Nutrient Patterns and Brain MRI Biomarkers in Dementia-Free Adults. Nutrients. 2022; 14(11):2345. https://doi.org/10.3390/nu14112345
Chicago/Turabian StyleDrouka, Archontoula, Eirini Mamalaki, Efstratios Karavasilis, Nikolaos Scarmeas, and Mary Yannakoulia. 2022. "Dietary and Nutrient Patterns and Brain MRI Biomarkers in Dementia-Free Adults" Nutrients 14, no. 11: 2345. https://doi.org/10.3390/nu14112345
APA StyleDrouka, A., Mamalaki, E., Karavasilis, E., Scarmeas, N., & Yannakoulia, M. (2022). Dietary and Nutrient Patterns and Brain MRI Biomarkers in Dementia-Free Adults. Nutrients, 14(11), 2345. https://doi.org/10.3390/nu14112345