Mediating Effect of Physical Activity in the Association between Low 25-Hydroxyvitamin D and Frailty Trajectories: The English Longitudinal Study of Ageing
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Measures
2.2.1. Serum 25(OH)D Concentration
2.2.2. Physical Activity (PA)
2.2.3. Frailty Index (FI)
2.2.4. Covariates
2.3. Statistical Analyses
3. Results
3.1. Sample Characteristics
3.2. Frailty Trajectories
3.3. Association between 25(OH)D Levels and Frailty Trajectories
3.4. Causal Mediation Analysis of the Mediating Effect of Physical Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [Green Version]
- O’Caoimh, R.; Sezgin, D.; O’Donovan, M.R.; Molloy, D.W.; Clegg, A.; Rockwood, K.; Liew, A. Prevalence of frailty in 62 countries across the world: A systematic review and meta-analysis of population-level studies. Age Ageing 2021, 50, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Welstead, M.; Jenkins, N.D.; Russ, T.; Luciano, M.; Muniz-Terrera, G. A Systematic Review of Frailty Trajectories: Their Shape And Influencing Factors. Gerontologist 2020, 61, e463–e475. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.J.; Farruggia, M.; Veronese, N.; Barbagallo, M. Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment. Metabolites 2021, 11, 255. [Google Scholar] [CrossRef]
- de Jongh, R.T.; van Schoor, N.M.; Lips, P. Changes in vitamin D endocrinology during aging in adults. Mol. Cell Endocrinol. 2017, 453, 144–150. [Google Scholar] [CrossRef]
- Aspell, N.; Laird, E.; Healy, M.; Shannon, T.; Lawlor, B.; O’Sullivan, M. The Prevalence and Determinants of Vitamin D Status in Community-Dwelling Older Adults: Results from the English Longitudinal Study of Ageing (ELSA). Nutrients 2019, 11, 1253. [Google Scholar] [CrossRef] [Green Version]
- Vaes, A.M.M.; Brouwer-Brolsma, E.M.; Toussaint, N.; de Regt, M.; Tieland, M.; van Loon, L.J.C.; de Groot, L. The association between 25-hydroxyvitamin D concentration, physical performance and frailty status in older adults. Eur. J. Nutr. 2019, 58, 1173–1181. [Google Scholar] [CrossRef] [Green Version]
- Buta, B.J.; Walston, J.D.; Godino, J.G.; Park, M.; Kalyani, R.R.; Xue, Q.L.; Bandeen-Roche, K.; Varadhan, R. Frailty assessment instruments: Systematic characterization of the uses and contexts of highly-cited instruments. Ageing Res. Rev. 2016, 26, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Searle, S.D.; Mitnitski, A.; Gahbauer, E.A.; Gill, T.M.; Rockwood, K. A standard procedure for creating a frailty index. BMC Geriatr. 2008, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.; Lv, Q.; Chen, F.; Wang, Y.; Liu, Y.; Shi, W.; Liu, Y.; Wang, D. The effect of vitamin D on sarcopenia depends on the level of physical activity in older adults. J. Cachexia Sarcopenia Muscle 2020, 11, 678–689. [Google Scholar] [CrossRef] [PubMed]
- Kolehmainen, L.; Havulinna, S.; Ngandu, T.; Strandberg, T.; Levalahti, E.; Lehtisalo, J.; Antikainen, R.; Hietikko, E.; Peltonen, M.; Polonen, A.; et al. Earlier life leisure-time physical activity in relation to age-related frailty syndrome. Age Ageing 2021, 50, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Steptoe, A.; Breeze, E.; Banks, J.; Nazroo, J. Cohort profile: The English longitudinal study of ageing. Int. J. Epidemiol. 2013, 42, 1640–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IOM (Institute of Medicine). Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Hamer, M.; de Oliveira, C.; Demakakos, P. Non-exercise physical activity and survival: English longitudinal study of ageing. Am. J. Prev. Med. 2014, 47, 452–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Jette, M.; Sidney, K.; Blumchen, G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef]
- Watts, P.; Webb, E.; Netuveli, G. The role of sports clubs in helping older people to stay active and prevent frailty: A longitudinal mediation analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 95. [Google Scholar] [CrossRef] [Green Version]
- Rockwood, K.; Song, X.; MacKnight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005, 173, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Najafi, B.; Veranyan, N.; Zulbaran-Rojas, A.; Park, C.; Nguyen, H.; Nakahara, Q.K.; Elizondo-Adamchik, H.; Chung, J.; Mills, J.L.; Montero-Baker, M.; et al. Association Between Wearable Device-Based Measures of Physical Frailty and Major Adverse Events Following Lower Extremity Revascularization. JAMA Netw. Open 2020, 3, e2020161. [Google Scholar] [CrossRef]
- Luiz, M.M.; Maximo, R.; Oliveira, D.C.; Ramirez, P.C.; de Souza, A.F.; Delinocente, M.L.B.; Steptoe, A.; de Oliveira, C.; Alexandre, T. Association of Serum 25-Hydroxyvitamin D Deficiency with Risk of Incidence of Disability in Basic Activities of Daily Living in Adults > 50 Years of Age. J. Nutr. 2020, 150, 2977–2984. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.L.; Nagin, D.S. Advances in Group-Based Trajectory Modeling and an SAS Procedure for Estimating Them. Sociol. Methods Res. 2007, 35, 542–571. [Google Scholar] [CrossRef] [Green Version]
- Edelman, E.J.; Li, Y.; Barry, D.; Brennan Braden, J.; Crystal, S.; Kerns, R.D.; Gaither, J.R.; Gordon, K.S.; Manhapra, A.; Merlin, J.S.; et al. Trajectories of Self-Reported Opioid Use Among Patients with HIV Engaged in Care: Results from a National Cohort Study. J. Acquir. Immune Defic. Syndr. 2020, 84, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Robins, J.M.; Greenland, S. Identifiability and exchangeability for direct and indirect effects. Epidemiology 1992, 3, 143–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, K.; Keele, L.; Tingley, D. A general approach to causal mediation analysis. Psychol. Methods 2010, 15, 309–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VanderWeele, T.J. Mediation Analysis: A Practitioner’s Guide. Annu. Rev. Public Health 2016, 37, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Howrey, B.T.; Al Snih, S.; Middleton, J.A.; Ottenbacher, K.J. Trajectories of Frailty and Cognitive Decline Among Older Mexican Americans. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 1551–1557. [Google Scholar] [CrossRef]
- Mandelblatt, J.S.; Zhou, X.; Small, B.J.; Ahn, J.; Zhai, W.; Ahles, T.; Extermann, M.; Graham, D.; Jacobsen, P.B.; Jim, H.; et al. Deficit Accumulation Frailty Trajectories of Older Breast Cancer Survivors and Non-Cancer Controls: The Thinking and Living with Cancer Study. J. Natl. Cancer Inst. 2021, 113, 1053–1064. [Google Scholar] [CrossRef]
- Alvarez-Bustos, A.; Carnicero-Carreno, J.A.; Sanchez-Sanchez, J.L.; Garcia-Garcia, F.J.; Alonso-Bouzon, C.; Rodriguez-Manas, L. Associations between frailty trajectories and frailty status and adverse outcomes in community-dwelling older adults. J. Cachexia Sarcopenia Muscle 2021, 13, 230–239. [Google Scholar] [CrossRef]
- Marcos-Perez, D.; Sanchez-Flores, M.; Proietti, S.; Bonassi, S.; Costa, S.; Teixeira, J.P.; Fernandez-Tajes, J.; Pasaro, E.; Valdiglesias, V.; Laffon, B. Low Vitamin D Levels and Frailty Status in Older Adults: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2286. [Google Scholar] [CrossRef]
- Lips, P.; van Schoor, N.M. The effect of vitamin D on bone and osteoporosis. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Remelli, F.; Vitali, A.; Zurlo, A.; Volpato, S. Vitamin D Deficiency and Sarcopenia in Older Persons. Nutrients 2019, 11, 2861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Total (n = 2997) | Non-Frail (n = 2059) | Pre-Frail to Frail (n = 724) | Frail to Severely Frail (n = 214) | p-Value * |
---|---|---|---|---|---|
Frailty index, mean (SD) | 0.15 (0.11) | 0.09 (0.05) | 0.23 (0.08) | 0.42 (0.12) | <0.001 |
Age (years), mean (SD) | 68.6 (6.3) | 68.3 (6.1) | 69.7 (6.8) | 68.4 (6.3) | 0.001 |
Sex, n (%) | <0.001 | ||||
Male | 1334 (44.5) | 1030 (50.0) | 244 (33.7) | 60 (28.0) | |
Female | 1663 (55.5) | 1029 (50.0) | 480 (66.3) | 154 (72.0) | |
Education, n (%) | <0.001 | ||||
Degree | 558 (18.7) | 463 (22.6) | 80 (11.1) | 15 (7.0) | |
Higher education | 469 (15.7) | 347 (17.0) | 96 (13.3) | 26 (12.2) | |
Higher secondary | 264 (8.9) | 183 (8.9) | 70 (9.7) | 11 (5.2) | |
Lower secondary | 572 (19.2) | 391 (19.1) | 141 (19.5) | 40 (18.8) | |
No formal qualifications | 1119 (37.5) | 662 (32.4) | 336 (46.5) | 121 (56.8) | |
Marital status, n (%) | <0.001 | ||||
Married | 2065 (68.9) | 1509 (73.4) | 444 (61.3) | 112 (52.3) | |
Single or never married | 145 (4.8) | 105 (5.1) | 29 (4.0) | 11 (5.1) | |
Divorced or separated | 361 (12.1) | 214 (10.4) | 99 (13.7) | 48 (22.4) | |
Widowed | 424 (14.2) | 229 (11.1) | 152 (21.0) | 43 (20.1) | |
Employment, n (%) | <0.001 | ||||
Employed | 609 (20.5) | 502 (24.6) | 99 (13.8) | 8 (3.8) | |
Unemployed | 2358 (79.5) | 1535 (75.4) | 619 (86.2) | 204 (96.2) | |
Annual income, n (%) | <0.001 | ||||
Fifth quintile (≥£141,500) | 614 (20.8) | 501 (24.7) | 98 (13.6) | 15 (7.1) | |
Fourth quintile (≥£59,000 and <£141,500) | 598 (20.2) | 474 (23.3) | 113 (15.7) | 11 (5.2) | |
Third quintile (≥£23,720 and <£59,000) | 595 (20.1) | 436 (21.5) | 130 (18.1) | 29 (13.8) | |
Second quintile (≥£5500 and <£23,720) | 588 (19.9) | 355 (17.5) | 182 (25.3) | 51 (24.3) | |
Lower quintile (<£5500) | 564 (19.1) | 264 (13.0) | 196 (27.3) | 104 (49.5) | |
Smoking, n (%) | <0.001 | ||||
Never smoker | 2681 (89.5) | 1871 (90.9) | 634 (87.6) | 176 (82.2) | |
Past smoker | 71 (2.4) | 53 (2.6) | 16 (2.2) | 2 (0.9) | |
Current smoker | 245 (8.2) | 135 (6.6) | 74 (10.2) | 36 (16.8) | |
Alcohol intake, n (%) | <0.001 | ||||
Less than once a week | 1087 (38.3) | 615 (31.3) | 350 (51.2) | 122 (63.2) | |
Once to six days a week | 1284 (45.2) | 987 (50.3) | 252 (36.9) | 45 (23.3) | |
Daily | 467 (16.5) | 360 (18.3) | 81 (11.9) | 26 (13.5) | |
BMI, n (%) | <0.001 | ||||
Normal | 728 (24.9) | 586 (29.0) | 117 (16.6) | 25 (12.7) | |
Pre-obese | 1317 (45.1) | 966 (47.8) | 291 (41.2) | 60 (30.5) | |
Obese | 878 (30.0) | 468 (23.2) | 298 (42.2) | 112 (56.9) | |
Vitamin D supplements use, n (%) | <0.001 | ||||
No | 2850 (95.1) | 1986 (96.5) | 673 (93.0) | 191 (89.3) | |
Yes | 147 (4.9) | 73 (3.5) | 51 (7.0) | 23 (10.7) | |
25(OH)D level, n (%) | <0.001 | ||||
≥50 nmol/L (Sufficient) | 1448 (48.3) | 1077 (52.3) | 301 (41.6) | 70 (32.7) | |
≥30 and <50 nmol/L (Insufficient) | 963 (32.1) | 655 (31.8) | 242 (33.4) | 66 (30.8) | |
<30 nmol/L (Deficient) | 586 (19.6) | 327 (15.9) | 181 (25.0) | 78 (36.4) | |
Physical Activity, n (%) | <0.001 | ||||
Vigorous | 1032 (34.4) | 874 (42.4) | 139 (19.2) | 19 (8.9) | |
Moderate | 1485 (49.5) | 1015 (49.3) | 400 (55.2) | 70 (32.7) | |
None | 480 (16.0) | 170 (8.3) | 185 (25.6) | 125 (58.4) |
Group | 25(OH)D Level (Ref: ≥50 nmol/L) | Non-Frail (Ref) | Model 1 | Model 2 | Model 3 | Model 4 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Pre-Frail to Frail | Frail to Severely Frail | Pre-Frail to Frail | Frail to Severely Frail | Pre-Frail to Frail | Frail to Severely Frail | Pre-Frail to Frail | Frail to Severely Frail | |||
OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | |||
Total population (n = 2997) | 30–50 | 1.32 ** (1.09, 1.61) | 1.55 * (1.09, 2.2) | 1.15 (0.93, 1.44) | 1.13 (0.74, 1.72) | 1.24 (0.99, 1.55) | 1.29 (0.84, 1.99) | 1.15 (0.91, 1.44) | 1.23 (0.79, 1.92) | |
<30 | 1.98 ** (1.59, 2.47) | 3.67 ** (2.6, 5.18) | 1.37 * (1.06, 1.78) | 1.98 ** (1.29, 3.02) | 1.51 ** (1.14, 1.98) | 2.29 ** (1.45, 3.62) | 1.29 (0.97, 1.71) | 1.79 * (1.11, 2.88) | ||
Fall (n = 789) | 30–50 | 1.14 (0.8, 1.63) | 1.43 (0.85, 2.43) | 1.08 (0.72, 1.63) | 1.22 (0.63, 2.38) | 1.15 (0.76, 1.75) | 1.36 (0.69, 2.7) | 1.12 (0.73, 1.72) | 1.57 (0.77, 3.22) | |
<30 | 2.36 ** (1.54, 3.61) | 4.30 ** (2.48, 7.43) | 1.87 * (1.13, 3.11) | 2.70 ** (1.29, 5.67) | 1.99 * (1.16, 3.42) | 3.11 ** (1.40, 6.92) | 1.75( 1.00, 3.05) | 2.35 * (1.02, 5.45) | ||
Depression (n = 273) | 30–50 | 2.08 (0.98, 4.39) | 2.30 * (1, 5.27) | 1.72 (0.68, 4.30) | 1.10 (0.38, 3.25) | 1.85 (0.71, 4.87) | 1.23 (0.39, 3.86) | 1.38 (0.48, 3.93) | 0.78 (0.23, 2.72) | |
<30 | 1.96 (0.84, 4.56) | 4.65 ** (1.95, 11.08) | 1.45 (0.51, 4.16) | 2.35 (0.75, 7.41) | 2.32 (0.70, 7.75) | 3.85 * (1.02, 14.54) | 1.71 (0.48, 6.11) | 2.02 (0.48, 8.45) | ||
Living alone (n = 760) | 30–50 | 1.44 * (1, 2.07) | 2.23 * (1.18, 4.21) | 1.27 (0.83, 1.93) | 1.91 (0.89, 4.09) | 1.41 (0.92, 2.17) | 2.68 * (1.18, 6.06) | 1.33 (0.85, 2.07) | 3.06 *(1.29, 7.26) | |
<30 | 1.32 (0.88, 1.98) | 4.08 ** (2.21, 7.54) | 1.12 (0.70, 1.8) | 3.48 ** (1.67, 7.24) | 1.31 (0.79, 2.19) | 4.87 ** (2.11, 11.24) | 1.04 (0.61, 1.77) | 3.78 ** (1.57, 9.11) | ||
Hypertension (n = 1030) | 30–50 | 1.60 ** (1.17, 2.19) | 2.16 ** (1.26, 3.72) | 1.41 (0.98, 2.02) | 1.68 (0.84, 3.37) | 1.56 * (1.08, 2.25) | 1.93 (0.94, 3.97) | 1.54 * (1.06, 2.24) | 2.31 * (1.06, 5.01) | |
<30 | 1.91 ** (1.34, 2.71) | 4.91 ** (2.91, 8.28) | 1.44 (0.96, 2.16) | 3.36 ** (1.73, 6.53) | 1.72 * (1.11, 2.67) | 4.75 ** (2.28, 9.93) | 1.47 (0.94, 2.32) | 3.42 ** (1.54, 7.61) | ||
Diabetes (n = 227) | 30–50 | 1.21 (0.62, 2.36) | 2.90 * (1.05, 8.05) | 1.08 (0.47, 2.49) | 3.03 (0.68, 13.48) | 1.17 (0.5, 2.73) | 5.00 (0.88, 28.46) | 1.12 (0.45, 2.82) | 10.02 * (1.01, 99.69) | |
<30 | 1.32 (0.65, 2.66) | 3.57 * (1.27, 10.04) | 0.79 (0.32, 1.95) | 3.20 (0.73, 14.06) | 0.72 (0.27, 1.89) | 5.98 * (1.02, 35.11) | 0.36 (0.12, 1.10) | 2.82 (0.32, 24.87) | ||
Arthritis (n = 1100) | 30–50 | 1.69 ** (1.25, 2.29) | 2.03 ** (1.32, 3.13) | 1.45 * (1.02, 2.06) | 1.47 (0.88, 2.48) | 1.59 * (1.11, 2.27) | 1.67 (0.97, 2.85) | 1.54 * (1.07, 2.22) | 1.68 (0.96, 2.94) | |
<30 | 2.23 ** (1.58, 3.14) | 3.98 ** (2.56, 6.17) | 1.46 (0.98, 2.2) | 1.92 * (1.11, 3.32) | 1.67 * (1.08, 2.56) | 2.26 ** (1.26, 4.06) | 1.47 (0.94, 2.29) | 1.79 (0.97, 3.33) | ||
Obesity (n = 878) | 30–50 | 1.54 * (1.10, 2.17) | 1.44 (0.86, 2.40) | 1.68 ** (1.15, 2.45) | 1.34 (0.74, 2.44) | 1.70 ** (1.16, 2.50) | 1.41 (0.77, 2.58) | 1.63 * (1.09, 2.41) | 1.46 (0.78, 2.75) | |
<30 | 1.72 ** (1.18, 2.52) | 2.53 ** (1.50, 4.26) | 1.53 (0.99, 2.36) | 2.02 * (1.09, 3.73) | 1.60 * (1.02, 2.53) | 2.26 * (1.18, 4.34) | 1.35 (0.84, 2.17) | 1.89 (0.95, 3.78) | ||
Smoking (n = 316) | 30–50 | 0.99 (0.53, 1.86) | 1.22 (0.42, 3.55) | 1.19 (0.56, 2.51) | 1.18 (0.31, 4.54) | 1.35 (0.62, 2.94) | 1.27 (0.32, 5.00) | 1.19 (0.53, 2.66) | 1.31 (0.33, 5.27) | |
<30 | 2.24 * (1.21, 4.17) | 5.73 ** (2.27, 14.46) | 2.89 ** (1.35, 6.19) | 5.70 ** (1.76, 18.48) | 3.95 ** (1.67, 9.36) | 9.37 ** (2.60, 33.74) | 2.99 * (1.22, 7.37) | 7.26 ** (1.94, 27.17) | ||
Social isolation (n = 413) | 30–50 | 1.48 (0.88, 2.49) | 0.80 (0.35, 1.82) | 1.37 (0.74, 2.51) | 0.51 (0.18, 1.43) | 1.38 (0.74, 2.58) | 0.55 (0.19, 1.63) | 1.41 (0.74, 2.70) | 0.57 (0.17, 1.91) | |
<30 | 2.73 ** (1.52, 4.90) | 2.40 * (1.10, 5.21) | 1.40 (0.70, 2.79) | 1.14 (0.44, 2.92) | 1.39 (0.67, 2.91) | 1.01 (0.34, 3.00) | 1.03 (0.47, 2.23) | 0.61 (0.19, 2.01) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Shi, K.; Zhang, Z.; Lin, J.; Fang, Y. Mediating Effect of Physical Activity in the Association between Low 25-Hydroxyvitamin D and Frailty Trajectories: The English Longitudinal Study of Ageing. Nutrients 2022, 14, 2292. https://doi.org/10.3390/nu14112292
Shi Z, Shi K, Zhang Z, Lin J, Fang Y. Mediating Effect of Physical Activity in the Association between Low 25-Hydroxyvitamin D and Frailty Trajectories: The English Longitudinal Study of Ageing. Nutrients. 2022; 14(11):2292. https://doi.org/10.3390/nu14112292
Chicago/Turabian StyleShi, Zaixing, Kanglin Shi, Zeyun Zhang, Jianlin Lin, and Ya Fang. 2022. "Mediating Effect of Physical Activity in the Association between Low 25-Hydroxyvitamin D and Frailty Trajectories: The English Longitudinal Study of Ageing" Nutrients 14, no. 11: 2292. https://doi.org/10.3390/nu14112292
APA StyleShi, Z., Shi, K., Zhang, Z., Lin, J., & Fang, Y. (2022). Mediating Effect of Physical Activity in the Association between Low 25-Hydroxyvitamin D and Frailty Trajectories: The English Longitudinal Study of Ageing. Nutrients, 14(11), 2292. https://doi.org/10.3390/nu14112292