Satiety of Edible Insect-Based Food Products as a Component of Body Weight Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pancake Preparation
2.3. Nutrient Composition
2.4. Satiety and Hunger Measurement
2.5. Consumer Characteristics
- -
- BMI: from 18.5 to 25 kg/m2,
- -
- age from 20 to 28 years.
2.6. Statistical Analysis
3. Results
3.1. Hunger
3.2. Satiety
3.3. The Effect of Physico-Chemical Factors on the Generation of Satiety in Products with the Addition of Insect Flour
- y—AUC M satiety,
- x1—protein content,
- x2—carbohydrate content,
- x3—fibre content,
- x4—fat content,
- x5—water content.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halder, T.; Mehta, P.; Acharya, N. Nutraceuticals for Aging and Anti-Aging; Lokhande, J.N., Pathak, Y.V., Eds.; CRC Press: Boca Raton, FL, USA, 2021; Chapter 1; pp. 1–26. [Google Scholar] [CrossRef]
- Hilton, J. Developing New Functional Food and Nutraceutical Products; Bagchi, D., Nair, S., Eds.; Academic Press: Cambridge, MA, USA, 2016; Chapter 1; pp. 1–28. [Google Scholar] [CrossRef]
- Alviña, M.; Araya, H. Functional Food to Regulate Satiety and Energy Intake in Human. Open Agric. J. 2016, 10, 58–68. [Google Scholar] [CrossRef]
- Arguin, H.; Gagnon-Sweeney, M.; Pigeon, É.; Tremblay, A. Functional food and satiety. Impact of a satiating context effect on appetite control of non-obese men. Appetite 2012, 58, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.S.; Pérez-Álvarez, J.Á.; Pateiro, M.; Viuda-Matos, M.; Fernández-López, J.; Lorenzo, J.M. Satiety from healthier and functional foods. Trends Food Sci. Technol. 2021, 113, 397–410. [Google Scholar] [CrossRef]
- Kim, T.-K.; Yong, H.I.; Kim, Y.-B.; Kim, H.-W.; Choi, Y.-S. Edible Insects as a Protein Source: A Review of Public Perception, Processing Technology, and Research Trends. Korean J. Food Sci. Anim. Resour. 2019, 39, 521–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skotnicka, M.; Karwowska, K.; Kłobukowski, F.; Borkowska, A.; Pieszko, M. Possibilities of the Development of Edible Insect-Based Foods in Europe. Foods 2021, 10, 766. [Google Scholar] [CrossRef]
- Villaseñor, V.M.; Enriquez-Vara, J.N.; Urías-Silva, J.E.; Mojica, L. Edible Insects: Techno-functional Properties Food and Feed Applications and Biological Potential. Food Rev. Int. 2021, 1–27. [Google Scholar] [CrossRef]
- Di Rosa, C.; Lattanzi, G.; Taylor, S.F.; Manfrini, S.; Khazrai, Y.M. Very low calorie ketogenic diets in overweight and obesity treatment: Effects on anthropometric parameters, body composition, satiety, lipid profile and microbiota. Obes. Res. Clin. Pr. 2020, 14, 491–503. [Google Scholar] [CrossRef]
- Loper, H.; Leinen, M.; Bassoff, L.; Sample, J.; Romero-Ortega, M.; Gustafson, K.J.; Taylor, D.M.; Schiefer, M.A. Both high fat and high carbohydrate diets impair vagus nerve signaling of satiety. Sci. Rep. 2021, 11, 10394. [Google Scholar] [CrossRef]
- Hong, J.; Han, T.; Kim, Y.Y. Mealworm (Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef]
- Shah, A.A.; Wanapat, M. Gryllus testaceus walker (crickets) farming management, chemical composition, nutritive profile, and their effect on animal digestibility. Èntomol. Res. 2021, 51, 639–649. [Google Scholar] [CrossRef]
- Shah, A.A.; Totakul, P.; Matra, M.; Cherdthong, A.; Harnboonsong, Y.; Wanapat, M. Nutritional composition of various insects and potential uses as alternative protein sources in animal diets. Anim. Biosci. 2022, 35, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Blundell, J.E.; Gibbons, C.; Caudwell, P.; Finlayson, G.; Hopkins, M. Appetite control and energy balance: Impact of exercise. Obes. Rev. 2015, 16 (Suppl. 1), 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, A.; Bellisle, F. Nutrients, satiety, and control of energy intake. Appl. Physiol. Nutr. Metab. 2015, 40, 971–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, S.M.; Byers, A.W.; Leidy, H.J. Habitual Breakfast Patterns Do Not Influence Appetite and Satiety Responses in Normal vs. High-Protein Breakfasts in Overweight Adolescent Girls. Nutrients 2019, 11, 1223. [Google Scholar] [CrossRef] [Green Version]
- Westerterp-Plantenga, M.S.; Lemmens, S.G.; Westerterp, K.R. Dietary protein—Its role in satiety, energetics, weight loss and health. Br. J. Nutr. 2012, 108, S105–S112. [Google Scholar] [CrossRef] [Green Version]
- Martini, D.; Brusamolino, A.; Del Bo’, C.; Laureati, M.; Porrini, M.; Riso, P. Effect of fiber and protein-enriched pasta formulations on satiety-related sensations and afternoon snacking in Italian healthy female subjects. Physiol. Behav. 2018, 185, 61–69. [Google Scholar] [CrossRef]
- Rebello, C.; Greenway, F.L.; Dhurandhar, N.V. Functional foods to promote weight loss and satiety. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 596–604. [Google Scholar] [CrossRef]
- Moon, J.; Koh, G. Clinical Evidence and Mechanisms of High-Protein Diet-Induced Weight Loss. J. Obes. Metab. Syndr. 2020, 29, 166–173. [Google Scholar] [CrossRef]
- Belza, A.; Ritz, C.; Sørensen, M.Q.; Holst, J.J.; Rehfeld, J.F.; Astrup, A. Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety. Am. J. Clin. Nutr. 2013, 97, 980–989. [Google Scholar] [CrossRef]
- Gannon, M.C.; Nuttall, F.Q. Amino acid ingestion and glucose metabolism-A review. IUBMB Life 2010, 62, 660–668. [Google Scholar] [CrossRef]
- Veldhorst, M.; Smeets, A.; Soenen, S.; Hochstenbach-Waelen, A.; Hursel, R.; Diepvens, K.; Lejeune, M.; Luscombe-Marsh, N.; Westerterp-Plantenga, M. Protein-induced satiety: Effects and mechanisms of different proteins. Physiol. Behav. 2008, 94, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Blom, W.A.M.; Lluch, A.; Stafleu, A.; Vinoy, S.; Holst, J.J.; Schaafsma, G.; Hendriks, H.F.J. Effect of a high-protein breakfast on the postprandial ghrelin response. Am. J. Clin. Nutr. 2006, 83, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Halton, T.L.; Hu, F.B. The Effects of High Protein Diets on Thermogenesis, Satiety and Weight Loss: A Critical Review. J. Am. Coll. Nutr. 2004, 23, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Gaglio, R.; Barbera, M.; Tesoriere, L.; Osimani, A.; Busetta, G.; Matraxia, M.; Attanzio, A.; Restivo, I.; Aquilanti, L.; Settanni, L. Sourdough “ciabatta” bread enriched with powdered insects: Physicochemical, microbiological, and simulated intestinal digesta functional properties. Innov. Food Sci. Emerg. Technol. 2021, 72, 102755. [Google Scholar] [CrossRef]
- Khuenpet, K.; Pakasap, C.; Vatthanakul, S.; Kitthawee, S. Effect of larval-stage mealworm (Tenebrio molitor) powder on qualities of bread. Int. J. Agric. Technol. 2020, 16, 283–296. [Google Scholar]
- Kowalczewski, P.Ł.; Gumienna, M.; Rybicka, I.; Górna, B.; Sarbak, P.; Dziedzic, K.; Kmiecik, D. Nutritional Value and Biological Activity of Gluten-Free Bread Enriched with Cricket Powder. Molecules 2021, 26, 1184. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat bread supplementation with various edible insect flours. Influence of chemical composition on nutritional and technological aspects. LWT 2022, 159, 113220. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Cardinali, F.; Roncolini, A.; Garofalo, C.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; Raffaelli, N.; et al. Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation. Innov. Food Sci. Emerg. Technol. 2018, 48, 150–163. [Google Scholar] [CrossRef]
- Roncolini, A.; Milanović, V.; Cardinali, F.; Osimani, A.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; et al. Protein fortification with mealworm (Tenebrio molitor L.) powder: Effect on textural, microbiological, nutritional and sensory features of bread. PLoS ONE 2019, 14, e0211747. [Google Scholar] [CrossRef] [Green Version]
- Biró, B.; Fodor, R.; Szedljak, I.; Pásztor-Huszár, K.; Gere, A. Buckwheat-pasta enriched with silkworm powder: Technological analysis and sensory evaluation. LWT 2019, 116, 108542. [Google Scholar] [CrossRef]
- Çabuk, B.; Yılmaz, B. Fortification of traditional egg pasta (erişte) with edible insects: Nutritional quality, cooking properties and sensory characteristics evaluation. J. Food Sci. Technol. 2020, 57, 2750–2757. [Google Scholar] [CrossRef] [PubMed]
- Carcea, M. Quality and Nutritional/Textural Properties of Durum Wheat Pasta Enriched with Cricket Powder. Foods 2020, 9, 1298. [Google Scholar] [CrossRef]
- Duda, A.; Adamczak, J.; Chełmińska, P.; Juszkiewicz, J.; Kowalczewski, P. Quality and Nutritional/Textural Properties of Durum Wheat Pasta Enriched with Cricket Powder. Foods 2019, 8, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megido, R.C.; Gierts, C.; Blecker, C.; Brostaux, Y.; Haubruge, É.; Alabi, T.; Francis, F. Consumer acceptance of insect-based alternative meat products in Western countries. Food Qual. Prefer. 2016, 52, 237–243. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Kim, T.-K.; Choi, H.-D.; Park, J.-D.; Sung, J.-M.; Jeon, K.-H.; Paik, H.-D.; Kim, Y.-B. Optimization of Replacing Pork Meat with Yellow Worm (Tenebrio molitor L.) for Frankfurters. Korean J. Food Sci. Anim. Resour. 2017, 37, 617–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lammers, P.; Ullmann, L.M.; Fiebelkorn, F. Acceptance of insects as food in Germany: Is it about sensation seeking, sustainability consciousness, or food disgust? Food Qual. Prefer. 2019, 77, 78–88. [Google Scholar] [CrossRef]
- Adámek, M.; Adámková, A.; Mlček, J.; Borkovcová, M.; Bednářová, M. Acceptability and sensory evaluation of energy bars and protein bars enriched with edible insect. Potravin. Slovak J. Food Sci. 2018, 12, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Cicatiello, C.; Vitali, A.; Lacetera, N. How does it taste? Appreciation of insect-based snacks and its determinants. Int. J. Gastron. Food Sci. 2020, 21, 100211. [Google Scholar] [CrossRef]
- Gurdian, C.E.; Torrico, D.D.; Li, B.; Tuuri, G.; Prinyawiwatkul, W.; Guinard, J.-X. Effect of Informed Conditions on Sensory Expectations and Actual Perceptions: A Case of Chocolate Brownies Containing Edible-Cricket Protein. Foods 2021, 10, 1480. [Google Scholar] [CrossRef]
- Sogari, G.; Bogueva, D.; Marinova, D. Australian Consumers’ Response to Insects as Food. Agriculture 2019, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Abid, S.; Anis, M.K.; Azam, Z.; Jafri, W.; Lindberg, G. Satiety drinking tests: Effects of caloric content, drinking rate, gender, age, and body mass index. Scand. J. Gastroenterol. 2009, 44, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Karalus, M.; Vickers, Z. Satiation and satiety sensations produced by eating oatmeal vs. oranges. a comparison of different scales. Appetite 2016, 99, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Lesdéma, A.; Marsset-Baglieri, A.; Talbot, L.; Arlotti, A.; Delarue, J.; Fromentin, G.; Marcuz, M.-C.; Vinoy, S. When satiety evaluation is inspired by sensory analysis: A new approach. Food Qual. Prefer. 2016, 49, 106–118. [Google Scholar] [CrossRef]
- Holt, S.; Brand-Miller, J.; Soveny, C.; Hansky, J. Relationship of satiety to postprandial glycaemic, insulin and cholecystokinin responses. Appetite 1992, 18, 129–141. [Google Scholar] [CrossRef]
- Holliday, A.; Batey, C.; Eves, F.F.; Blannin, A.K. A novel tool to predict food intake: The Visual Meal Creator. Appetite 2014, 79, 68–75. [Google Scholar] [CrossRef]
- Association of Official Analysis Chemists International. Official Methods of Analysis of AOAC International. 2005. Available online: https://www.aoac.org/scientific-solutions/standards-and-official-methods/ (accessed on 30 November 2021).
- Harper, A.; James, A.; Flint, A.; Astrup, A. Increased satiety after intake of a chocolate milk drink compared with a carbonated beverage, but no difference in subsequent ad libitum lunch intake. Br. J. Nutr. 2007, 97, 579–583. [Google Scholar] [CrossRef] [Green Version]
- Weigle, D.S.; Breen, P.A.; Matthys, C.C.; Callahan, H.S.; Meeuws, K.E.; Burden, V.R.; Purnell, J.Q. A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am. J. Clin. Nutr. 2005, 82, 41–48. [Google Scholar] [CrossRef]
- Blundell, J.; De Graaf, C.; Hulshof, T.; Jebb, S.; Livingstone, B.; Lluch, A.; Mela, D.; Salah, S.; Schuring, E.; Van Der Knaap, H.; et al. Appetite control: Methodological aspects of the evaluation of foods. Obes. Rev. 2010, 11, 251–270. [Google Scholar] [CrossRef] [Green Version]
- Flint, A.; Raben, A.; Blundell, J.E.; Astrup, A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. 2000, 24, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Chaput, J.-P.; Gilbert, J.-A.; Gregersen, N.T.; Pedersen, S.D.; Sjödin, A.M. Comparison of 150-mm versus 100-mm visual analogue scales in free living adult subjects. Appetite 2010, 54, 583–586. [Google Scholar] [CrossRef]
- Lim, J.J.; Poppitt, S.D. How Satiating Are the ‘Satiety’ Peptides: A Problem of Pharmacology versus Physiology in the Development of Novel Foods for Regulation of Food Intake. Nutrients 2019, 11, 1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, W.L.; Millward, D.J.; Long, S.J.; Morgan, L.M. Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br. J. Nutr. 2003, 89, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Poppitt, S.D.; Proctor, J.; McGill, A.-T.; Wiessing, K.R.; Falk, S.; Xin, L.; Budgett, S.C.; Darragh, A.; Hall, R.S. Low-dose whey protein-enriched water beverages alter satiety in a study of overweight women. Appetite 2011, 56, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Marciani, L. Assessment of gastrointestinal motor functions by MRI: A comprehensive review. Neurogastroenterol. Motil. 2011, 23, 399–407. [Google Scholar] [CrossRef]
- Bayham, B.E.; Greenway, F.L.; Johnson, W.D.; Dhurandhar, N.V. A randomized trial to manipulate the quality instead of quantity of dietary proteins to influence the markers of satiety. J. Diabetes its Complicat. 2014, 28, 547–552. [Google Scholar] [CrossRef]
- Leidy, H.J.; Carnell, N.S.; Mattes, R.D.; Campbell, W.W. Higher Protein Intake Preserves Lean Mass and Satiety with Weight Loss in Pre-obese and Obese Women*. Obesity 2007, 15, 421–429. [Google Scholar] [CrossRef]
- Kondrashina, A.; Brodkorb, A.; Giblin, L. Dairy-derived peptides for satiety. J. Funct. Foods 2020, 66, 103801. [Google Scholar] [CrossRef]
- Onvani, S.; Haghighatdoost, F.; Surkan, P.J.; Azadbakht, L. Dairy products, satiety and food intake: A meta-analysis of clinical trials. Clin. Nutr. 2017, 36, 389–398. [Google Scholar] [CrossRef]
- López-Nicolás, R.; Finlayson, G.; Gibbons, C.; Halford, J.; Harrold, J.; Leal, C.; Ros-Berruezo, G. SATIN. SATiety INnovation. Development of a Satiety App to be used in different electronic hardware (smartphone or tablet) along human studies. Appetite 2015, 91, 433. [Google Scholar] [CrossRef]
- Meinert, L.; Kehlet, U.; Aaslyng, M.D. Consuming pork proteins at breakfast reduces the feeling of hunger before lunch. Appetite 2012, 59, 201–203. [Google Scholar] [CrossRef]
Insect Species | Protein | Fat | Ash | Fibre | Energy kcal/kJ/100 g |
---|---|---|---|---|---|
Tenebrio molitor | 45.31 ± 0.02 a | 27.31 ± 0.45 c | 1.65 ± 0.05 b | 8.52 ± 0.05 a | 550 ± 2.3 |
Alphitobius diaperinus | 58.62 ± 0.01 b | 16.52 ± 0.08 a | 1.54 ± 0.05 b | 6.24 ± 0.07 c | 484 ± 3.0 |
Acheta domesticus | 69.17 ± 0.05 c | 10.71 ± 0.32 b | 2.78 ± 0.05 b | 9.75 ± 0.11 b | 458 ± 2.1 |
Sample | Weight (g) | Protein (%) | Fat (%) | Carbo- hydrates (%) | Ash (%) | Fibre (%) | Moisture (%) | |
---|---|---|---|---|---|---|---|---|
Control | C | 94 | 8.13 ± 0.19 b | 7.93 ± 0.1 ac | 34.23 ± 0.88 a | 0.98 ± 0.05 c | 1.38 ± 0.06 a | 40.34 ± 1.23 a |
Tenebrio molitor larvae | 10% Mw | 91 | 9.29 ± 0.54 b | 9.15 ± 0.12 c | 29.39 ± 0.76 a | 0.96 ± 0.01 c | 2.03 ± 0.01 b | 40.69 ± 0.98 b |
20% Mw | 89 | 10.53 ± 0.68 b | 10.84 ± 0.52 d | 24.33 ± 0.45 d | 0.96 ± 0.01 c | 2.54 ± 0.01 b | 42.96 ± 0.97 b | |
30% Mw | 87 | 11.73 ± 0.38 ac | 12.37 ± 0.22 d | 19.65 ± 0.66 bc | 0.97 ± 0.05 c | 3.10 ± 0.04 ac | 41.46 ± 1.01 ac | |
Alphitobius diaperinus larvae | 10% Bw | 92 | 9.98 ± 0.16 b | 8.70 ± 0.37 b | 29.73 ± 0.43 a | 0.91 ± 0.02 c | 1.96 ± 0.05 b | 40.75 ± 1.28 a |
20% Bw | 92 | 11.99 ± 0.85 a | 9.96 ± 0.45 ad | 25.05 ± 0.33 d | 0.87 ± 0.04 c | 2.40 ± 0.05 bc | 40.66 ± 1.22 a | |
30% Bw | 90 | 14.00 ± 0.29 abc | 11.10 ± 0.10 ab | 20.55 ± 0.77 b | 0.86 ± 0.04 c | 2.89 ± 0.04 ac | 40.81 ± 0.65 bc | |
Acheta domesticus imago | 10% Cr | 92 | 10.48 ± 0.44 a | 8.50 ± 0.19 b | 29.64 ± 0.55 a | 0.99 ± 0.05 c | 2.12 ± 0.01 de | 39.06 ± 0.45 c |
20% Cr | 92 | 13.05 ± 0.34 c | 9.54 ± 0.29 cd | 24.69 ± 0.88 d | 1.12 ± 0.04 c | 2.72 ± 0.01 e | 40.54 ± 0.67 ac | |
30% Cr | 92 | 15.66 ± 0.66 c | 10.46 ± 0.18 bc | 19.94 ± 0.26 c | 1.21 ± 0.06 c | 3.37 ± 0.08 d | 42.93 ± 0.98 ab |
Item | Control | |||
Before ingestion | mean (SD) | 71.8 (8.3) | ||
After ingestion | mean (SD) | 17.6 (6.1) | ||
After 180 min | mean (SD) | 76.0 (8.2) | ||
Item | Tenebrio molitor 10% | Tenebrio molitor 20% | Tenebrio molitor 30% | |
Before ingestion | mean (SD) | 68.0 (9.9) | 73.0 (6.6) | 70.1 (10.2) |
After ingestion | mean (SD) | 17.7 (5.8) | 22.4 (6.8) | 22.2 (8.8) |
After 180 min | mean (SD) | 76.6 (8.1) | 72.7 (8.8) | 64.2 (9.3) |
Item | Alphitobius diaperinus 10% | Alphitobius diaperinus 20% | Alphitobius diaperinus 30% | |
Before ingestion | mean (SD) | 69.3 (9.8) | 71.1 (8.2) | 69.31 (0.8) |
After ingestion | mean (SD) | 17.8 (9.1) | 19.4 (8.5) | 15.7 (7.8) |
After 180 min | mean (SD) | 74.5 (8.3) | 64.9 (9.3) | 53.7 (9.7) |
Item | Acheta domesticus 10% | Acheta domesticus 20% | Acheta domesticus 30% | |
Before ingestion | mean (SD) | 71.8 (9.5) | 71.5 (7.2) | 74.9 (6.2) |
After ingestion | mean (SD) | 22.7 (8.2) | 22.7 (6.0) | 23.8 (5.8) |
After 180 min | mean (SD) | 54.8 (9.0) | 50.4 (7.2) | 49.3 (9.2) |
Sample | Hunger AUC (SD) | Satiety AUC (SD) |
---|---|---|
Control | 149.89 (9.2) * | 151.32 (8.2) * |
10% Mw | 147.33 (6.9) * | 151.76 (9.5) * |
20% Mw | 146.07 (8.9) * | 155.85 (7.7) * |
30% Mw | 136.28 (10.3) | 165.12 (11.1) |
10% Bw | 141.74 (9.1) * | 160.75 (5.6) * |
20% Bw | 128.46 (7.7) | 175.52 (3.3) |
30% Bw | 106.87 (6.7) ** | 196.55 (8.9) ** |
10% Cr | 124.94 (6.2) | 176.90 (8.1) |
20% Cr | 116.00 (7.4) ** | 182.84 (6.7) ** |
30% Cr | 114.00 (6.8) ** | 186.84 (6.50) ** |
Item | Control | ||
Before ingestion | mean (SD) | 27.4 (8.20) | |
After ingestion | mean (SD) | 81.0 (5.6) | |
After 180 min | mean (SD) | 21.4 (8.00) | |
Item | Tenebrio molitor 10% | Tenebrio molitor 20% | |
Before ingestion | mean (SD) | 29.6 (9.9) | 26.4 (6.5) |
After ingestion | mean (SD) | 79.7 (5.5) | 76.1 (6.6) |
After 180 min | mean (SD) | 22.3 (9.0) | 25.5 (8.1) |
Item | Alphitobius diaperinus 10% | Alphitobius diaperinus 20% | |
Before ingestion | mean (SD) | 29.9 (9.5) | 27.9 (8.9) |
After ingestion | mean (SD) | 81.2 (9.2) | 79.7 (7.7) |
After 180 min | mean (SD) | 24.7 (10.0) | 34.2 (8.8) |
Item | Acheta domesticus 10% | Acheta domesticus 20% | |
Before ingestion | mean (SD) | 26.9 (8.8) | 27.3 (6.9) |
After ingestion | mean (SD) | 76.3 (7.7) | 75.6 (5.7) |
After 180 min | mean (SD) | 42.3 (8.7) | 47.2 (5.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skotnicka, M.; Mazurek, A.; Karwowska, K.; Folwarski, M. Satiety of Edible Insect-Based Food Products as a Component of Body Weight Control. Nutrients 2022, 14, 2147. https://doi.org/10.3390/nu14102147
Skotnicka M, Mazurek A, Karwowska K, Folwarski M. Satiety of Edible Insect-Based Food Products as a Component of Body Weight Control. Nutrients. 2022; 14(10):2147. https://doi.org/10.3390/nu14102147
Chicago/Turabian StyleSkotnicka, Magdalena, Aleksandra Mazurek, Kaja Karwowska, and Marcin Folwarski. 2022. "Satiety of Edible Insect-Based Food Products as a Component of Body Weight Control" Nutrients 14, no. 10: 2147. https://doi.org/10.3390/nu14102147
APA StyleSkotnicka, M., Mazurek, A., Karwowska, K., & Folwarski, M. (2022). Satiety of Edible Insect-Based Food Products as a Component of Body Weight Control. Nutrients, 14(10), 2147. https://doi.org/10.3390/nu14102147