Potassium Intake—(Un)Expected Non-Predictor of Higher Serum Potassium Levels in Hemodialysis DASH Diet Consumers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Sample Size
2.3. Inclusion and Exclusion Criteria
2.4. Data Analysis
2.5. Food Frequency Questionnaire (FFQ)
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fouque, D.; Vennegoor, M.; ter Wee, P.; Wanner, C.; Basci, A.; Canaud, B.; Haage, P.; Konner, K.; Kooman, J.; Martin-Malo, A.; et al. EBPG guideline on nutrition. Nephrol. Dial. Transplant. 2007, 22 (Suppl. S2), ii45–ii87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopple, J.D. National kidney foundation K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am. J. Kidney Dis. 2001, 37 (Suppl. S2), S66–S70. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, E.N.M.; Dekker, F.W.; Le Cessie, S.; Hoorn, E.J.; de Fijter, J.W.; Hoogeveen, E.K. Netherlands Cooperative Study on the Adequacy of Dialysis-2 Study G: Serum Potassium and Mortality Risk in Hemodialysis Patients: A Cohort Study. Kidney Med. 2022, 4, 100379. [Google Scholar] [CrossRef] [PubMed]
- Lehnhardt, A.; Kemper, M.J. Pathogenesis, diagnosis and management of hyperkalemia. Pediatr. Nephrol. 2011, 26, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spodick, D.H. Effects of severe hyperkalemia. Am. Heart Hosp. J. 2008, 6, 68. [Google Scholar] [CrossRef] [PubMed]
- Pirklbauer, M. Hemodialysis treatment in patients with severe electrolyte disorders: Management of hyperkalemia and hyponatremia. Hemodial. Int. 2020, 24, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Belmar Vega, L.; Galabia, E.R.; Bada da Silva, J.; Bentanachs Gonzalez, M.; Fernandez Fresnedo, G.; Pinera Haces, C.; Palomar Fontanet, R.; Ruiz San Millan, J.C.; de Francisco, A.L.M. Epidemiology of hyperkalemia in chronic kidney disease. Nefrología 2019, 39, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P.; Appel, L.J.; Grams, M.E.; Gutekunst, L.; McCullough, P.A.; Palmer, B.F.; Pitt, B.; Sica, D.A.; Townsend, R.R. Potassium Homeostasis in Health and Disease: A Scientific Workshop Cosponsored by the National Kidney Foundation and the American Society of Hypertension. Am. J. Kidney Dis. 2017, 70, 844–858. [Google Scholar] [CrossRef]
- Cupisti, A.; Kovesdy, C.P.; D’Alessandro, C.; Kalantar-Zadeh, K. Dietary Approach to Recurrent or Chronic Hyperkalaemia in Patients with Decreased Kidney Function. Nutrients 2018, 10, 261. [Google Scholar] [CrossRef] [Green Version]
- Carrero, J.J.; Gonzalez-Ortiz, A.; Avesani, C.M.; Bakker, S.J.L.; Bellizzi, V.; Chauveau, P.; Clase, C.M.; Cupisti, A.; Espinosa-Cuevas, A.; Molina, P.; et al. Plant-based diets to manage the risks and complications of chronic kidney disease. Nat. Rev. Nephrol. 2020, 16, 525–542. [Google Scholar] [CrossRef]
- Clase, C.M.; Carrero, J.J.; Ellison, D.H.; Grams, M.E.; Hemmelgarn, B.R.; Jardine, M.J.; Kovesdy, C.P.; Kline, G.A.; Lindner, G.; Obrador, G.T.; et al. Potassium homeostasis and management of dyskalemia in kidney diseases: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2020, 97, 42–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, T.; Crews, D.C.; Tuot, D.S.; Pavkov, M.E.; Burrows, N.R.; Stack, A.G.; Saran, R.; Bragg-Gresham, J.; Powe, N.R.; Centers for Disease Control and Prevention Chronic Kidney Disease Surveillance Team. Poor accordance to a DASH dietary pattern is associated with higher risk of ESRD among adults with moderate chronic kidney disease and hypertension. Kidney Int. 2019, 95, 1433–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, C.; Aro, A.; Azevedo, A.; Ramos, E.; Barros, H. Lopes C, Aro A, Azevedo A, Ramos E, Barros H: Intake and adipose tissue composition of fatty acids and risk of myocardial infarction in a male Portuguese community sample. J. Am. Diet Assoc. 2007, 107, 276–286. [Google Scholar] [CrossRef]
- Lopes, C. Reprodutibilidade e Validação de um questionário semiquantitativo de frequência alimentar. Dissertac¸~ao de Doutoramento. In Alimentação e Enfarte Agudo do Miocárdio; Estudo caso-controlo de base comunitária, Universidade de Lisboa: Lisbon, Portugal, 2000. [Google Scholar]
- Ferreira, F.; Graça, M. Tabela de composição de alimentos portugueses. 2a Edição; Jorge IN de SDR, ed.; Editorial do Ministério da Educação: Lisbon, Portugal, 1985. [Google Scholar]
- Miller, P.E.; Cross, A.J.; Subar, A.F.; Krebs-Smith, S.M.; Park, Y.; Powell-Wiley, T.; Hollenbeck, A.; Reedy, J. Comparison of 4 established DASH diet indexes: Examining associations of index scores and colorectal cancer. Am. J. Clin. Nutr. 2013, 98, 794–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Health, Lung, and Blood Institute U.S. Department of Health and Human Services. Your Guide to Lowering Your Blood Pressure with Dash, 2006th ed.; NIH Publication: Bethesda, MD, USA, 2006; p. 06-4082. [Google Scholar]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76 (Suppl. S1), S1–S107. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Fouque, D. Nutritional Management of Chronic Kidney Disease. N. Engl. J. Med. 2017, 377, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- Jindal, K.; Chan, C.T.; Deziel, C.; Hirsch, D.; Soroka, S.D.; Tonelli, M.; Culleton, B.F.; Canadian Society of Nephrology Committee for Clinical Practice G. Hemodialysis clinical practice guidelines for the Canadian Society of Nephrology. J. Am. Soc. Nephrol. 2006, 17 (Suppl. S1), S1–S27. [Google Scholar]
- Noori, N.; Kalantar-Zadeh, K.; Kovesdy, C.P.; Murali, S.B.; Bross, R.; Nissenson, A.R.; Kopple, J.D. Dietary potassium intake and mortality in long-term hemodialysis patients. Am. J. Kidney Dis. 2010, 56, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Ramos, C.I.; Gonzalez-Ortiz, A.; Espinosa-Cuevas, A.; Avesani, C.M.; Carrero, J.J.; Cuppari, L. Does dietary potassium intake associate with hyperkalemia in patients with chronic kidney disease? Nephrol. Dial. Transplant. 2021, 36, 2049–2057. [Google Scholar] [CrossRef]
- St-Jules, D.E.; Goldfarb, D.S.; Sevick, M.A. Nutrient Non-equivalence: Does Restricting High-Potassium Plant Foods Help to Prevent Hyperkalemia in Hemodialysis Patients? J. Ren. Nutr. 2016, 26, 282–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naismith, D.J.; Braschi, A. An investigation into the bioaccessibility of potassium in unprocessed fruits and vegetables. Int. J. Food Sci. Nutr. 2008, 59, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Melse-Boonstra, A. Bioavailability of Micronutrients from Nutrient-Dense Whole Foods: Zooming in on Dairy, Vegetables, and Fruits. Front. Nutr. 2020, 7, 101. [Google Scholar] [CrossRef]
- Stephen, A.M.; Champ, M.M.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.P., Jr.; McLeod, M.E.; Robinson, R.R. An extravenal mechanism for the maintenance of potassium balance in severe chronic renal failure. Trans. Assoc. Am. Physicians 1967, 80, 207–216. [Google Scholar]
- Batlle, D.; Boobes, K.; Manjee, K.G. The Colon as the Potassium Target: Entering the Colonic Age of Hyperkalemia Treatment? EBioMedicine 2015, 2, 1562–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, M.; Lifschitz, M.D. The Unappreciated Role of Extrarenal and Gut Sensors in Modulating Renal Potassium Handling: Implications for Diagnosis of Dyskalemias and Interpreting Clinical Trials. Kidney Int. Rep. 2016, 1, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Blumberg, A.; Weidmann, P.; Ferrari, P. Effect of prolonged bicarbonate administration on plasma potassium in terminal renal failure. Kidney Int. 1992, 41, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Aronson, P.S.; Giebisch, G. Effects of pH on potassium: New explanations for old observations. J. Am. Soc. Nephrol. 2011, 22, 1981–1989. [Google Scholar] [CrossRef]
- Smyth, A.; Griffin, M.; Yusuf, S.; Mann, J.F.; Reddan, D.; Canavan, M.; Newell, J.; O’Donnell, M. Diet and Major Renal Outcomes: A Prospective Cohort Study. The NIH-AARP Diet and Health Study. J. Ren. Nutr. 2016, 26, 288–298. [Google Scholar] [CrossRef]
- Niemczyk, L.; Schneditz, D.; Wojtecka, A.; Szamotulska, K.; Smoszna, J.; Niemczyk, S. Glucose tolerance in patients with and without type 2 diabetes mellitus during hemodialysis. Diabetes Res. Clin. Pract. 2021, 173, 108694. [Google Scholar] [CrossRef] [PubMed]
- Liamis, G.; Liberopoulos, E.; Barkas, F.; Elisaf, M. Diabetes mellitus and electrolyte disorders. World J. Clin. Cases 2014, 2, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H.; Funazaki, S.; Kakei, M.; Hara, K.; Ishikawa, S.E. Diabetic ketoacidosis producing extreme hyperkalemia in a patient with type 1 diabetes on hemodialysis. Endocrinol. Diabetes Metab. Case Rep. 2017, 17-0068, 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Individual Components | Fung’s Dash Index (Sex Specific) | Score |
---|---|---|
Total Fruit | Fifth quintile | 1—lowest quintile → to 5—highest quintile. |
Vegetables (Excluding potatoes) | Fifth quintile | 1—lowest quintile → to 5—highest quintile. |
Whole grains | Fifth quintile | 1—lowest quintile → to 5—highest quintile. |
Low-fat dairy products | Fifth quintile | 1—lowest quintile → to 5—highest quintile. |
Nuts, seeds and legumes | Fifth quintile | 1—lowest quintile → to 5—highest quintile. |
Red and Processed meat | First quintile | 1—highest quintile → to 5—lowest quintile. |
Sugar-sweetened beverages | First quintile | 1—highest quintile→ to 5—lowest quintile. |
Sodium | First quintile | 1—highest quintile → to 5—lowest quintile. |
Total score (points) | 8–40 |
Parameter | Low Adherence (T1; n = 212) | Moderate Adherence (T2; n = 227) | High Adherence (T3; n = 143) | p |
---|---|---|---|---|
Age (years) | 65 ± 16 | 68 ± 13 | 71 ± 10 | <0.001 |
Gender—Women (%) | 32.1 | 42.7 | 53.8 | <0.001 |
Diabetes Mellitus (%) | 24.5 | 28.6 | 46.9 | <0.001 |
BMI (Kg/m2) | 25.0 (22.1–28.2) | 25.5 (22.5–28.8) | 26.9 (23.8–31.1) | 0.002 |
Biochemical parameters | ||||
Potassium (mEq/L) | 5.3 ± 0.7 | 5.3 ± 0.6 | 5.1 ± 0.7 | 0.021 |
Phosphorus (mg/dL) | 4.3 ± 1.2 | 4.4 ± 1.2 | 4.2 ± 1.1 | 0.277 |
Sodium (mmol/L) | 139.5 ± 2.9 | 139.2 ± 2.6 | 138.6 ± 2.9 | 0.028 |
Bicarbonate (mEq/L) | 21.9 ± 2.0 | 21.8 ± 1.8 | 22.2 ± 2.0 | 0.784 |
Calcium (mg/dL) | 8.9 ± 0.7 | 9.0 ± 0.8 | 8.9 ± 0.7 | 0.333 |
Hemoglobin (g/dL) | 11.2 (10.6–12.0) | 11.3 (10.6–11.8) | 11.2 (10.7–11.8) | 0.870 |
Albumin (g/dL) | 4.1 (3.9–4.3) | 4.1 (3.9–4.3) | 4.0 (3.8–4.2) | 0.030 |
C-reactive Protein (mg/L) | 10.3 ± 12.2 | 9.3 ± 14.3 | 13.0 ± 17.3 | 0.559 |
Dietary intake | ||||
Energy intake (Kcal/day) | 1903 (1496–2362) | 1668 (1347–2082) | 1873 (1532–2411) | 0.001 |
Protein (%E) | 16.9 (15.4–18.7) | 16.7 (15.3–19.1) | 16.5 (15.2–17.8) | 0.208 |
Total Fat (%E) | 30.5 (26.4–33.9) | 29.0 (25.1–32.4) | 27.9 (24.9–31.7) | 0.001 |
Carbohydrates (%E) | 51.2 (46.0–56.3) | 52.8 (47.7–56.8) | 55.5 (51.2–59.0) | <0.001 |
Fiber (g/day) | 17.2 (13.3–22.8) | 18.1 (13.8–23.5) | 26.3 (19.4–33.1) | <0.001 |
Phosphorus (mg/day) | 1091 (842–1379) | 980 (762–1282) | 1169 (873–1533) | <0.001 |
Potassium (mg/day) | 2249 (1774–2808) | 2170 (1694–2662) | 2765 (2115–3453) | <0.001 |
Sodium (mg/day) | 2469 (1904–3157) | 1978 (1526–2603) | 2106 (1618–2717) | <0.001 |
Calcium (mg/day) | 647 (442–915) | 601 (443–828) | 749 (545–1018) | <0.001 |
Dialysis-related parameters | ||||
HD vintage (months) | 65 (42–112) | 69 (44–104) | 63 (42–91) | 0.340 |
Potassium binders (mg/week) | 10.2 ± 37.7 | 11.6 ± 35.1 | 22.7 ± 141.2 | 0.280 |
Kt/V | 1.68 (1.47–1.88) | 1.72 (1.50–1.88) | 1.72 (1.49–1.96) | 0.688 |
IDWG (%) | 3.2 (2.4–4.1) | 3.1 (2.3–4-1) | 3.0 (2.2–3.9) | 0.231 |
Diuresis ≥200 mL/day—Yes (%) | 55.7 | 58.0 | 67.6 | 0.068 |
Dependent Variable | Independent Variable | B | 95% CIa * | p |
---|---|---|---|---|
Serum potassium | Adherence to DASH Index | −0.026 | (−)0.047–(−0.005) | 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garagarza, C.; Valente, A.; Caetano, C.; Ramos, I.; Sebastião, J.; Pinto, M.; Oliveira, T.; Ferreira, A.; Sousa Guerreiro, C. Potassium Intake—(Un)Expected Non-Predictor of Higher Serum Potassium Levels in Hemodialysis DASH Diet Consumers. Nutrients 2022, 14, 2071. https://doi.org/10.3390/nu14102071
Garagarza C, Valente A, Caetano C, Ramos I, Sebastião J, Pinto M, Oliveira T, Ferreira A, Sousa Guerreiro C. Potassium Intake—(Un)Expected Non-Predictor of Higher Serum Potassium Levels in Hemodialysis DASH Diet Consumers. Nutrients. 2022; 14(10):2071. https://doi.org/10.3390/nu14102071
Chicago/Turabian StyleGaragarza, Cristina, Ana Valente, Cristina Caetano, Inês Ramos, Joana Sebastião, Mariana Pinto, Telma Oliveira, Aníbal Ferreira, and Catarina Sousa Guerreiro. 2022. "Potassium Intake—(Un)Expected Non-Predictor of Higher Serum Potassium Levels in Hemodialysis DASH Diet Consumers" Nutrients 14, no. 10: 2071. https://doi.org/10.3390/nu14102071