Comparing Digital Therapeutic Intervention with an Intensive Obesity Management Program: Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.2.1. Eligibility
2.2.2. Recruitment
2.3. Study Procedures
2.4. Intervention
2.5. Comparator
2.6. Outcome Measurement
2.7. Sample Size
2.8. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Effects on Body Weight
3.3. Effects on Anthropometabolic Parameters
3.4. Effects on Parameters of Glucose Metabolism
3.5. Effects on Lipid Parameters
3.6. Effects on Liver Enzymes
3.7. Adherence to Digital Therapy
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A Screenshots of the Vitadio Application
References
- Pi-Sunyer, X. The Medical Risks of Obesity. Postgrad. Med. 2009, 121, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Kotsis, V.; Martinez, F.; Trakatelli, C.; Redon, J. Impact of Obesity in Kidney Diseases. Nutrients 2021, 13, 4482. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. The IDF Consensus Worldwide Definition of Metabolic Syndrome; International Diabetes Federation: Brussels, Belgium, 2006. [Google Scholar]
- Fukumoto, Y. Nutrition and Cardiovascular Diseases. Nutrients 2022, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Tuomilehto, J.; Lindström, J.; Eriksson, J.G.; Valle, T.T.; Hämäläinen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; et al. Prevention of Type 2 Diabetes mellitus by Changes in Lifestyle among Subjects with Impaired Glucose Tolerance. N. Engl. J. Med. 2001, 344, 1343–1350. [Google Scholar] [CrossRef]
- Look AHEAD Research Group; Pi-Sunyer, X.; Blackburn, G.; Brancati, F.L.; Bray, G.A.; Bright, R.; Clark, J.M.; Curtis, J.M.; Espeland, M.A.; Foreyt, J.P.; et al. Reduction in Weight and Cardiovascular Disease Risk Factors in Individuals with Type 2 Diabetes: One-Year Results of the Look AHEAD Trial. Diabetes Care 2007, 30, 1374–1383. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Pei, J.-H.; Kuang, J.; Chen, H.-M.; Chen, Z.; Li, Z.-W.; Yang, H.-Z. Effect of Lifestyle Intervention in Patients with Type 2 Diabetes: A Meta-Analysis. Metabolism 2015, 64, 338–347. [Google Scholar] [CrossRef]
- Rippe, J.M.; Crossley, S.; Ringer, R. Obesity as a Chronic Disease: Modern Medical and Lifestyle Management. J. Am. Diet. Assoc. 1998, 98, S9–S15. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Yao, J.; Ji, G.; Qian, L.; Wang, J.; Zhang, G.; Tian, J.; Nie, Y.; Zhang, Y.E.; et al. Obesity: Pathophysiology and Intervention. Nutrients 2014, 6, 5153–5183. [Google Scholar] [CrossRef] [Green Version]
- Wiechert, M.; Holzapfel, C. Nutrition Concepts for the Treatment of Obesity in Adults. Nutrients 2022, 14, 169. [Google Scholar] [CrossRef]
- American Diabetes Association. Obesity Management for the Treatment of Type 2 Diabetes. Diabetes Care 2016, 39 (Suppl. S1), S47–S51. [Google Scholar] [CrossRef] [Green Version]
- Hassan, Y.; Head, V.; Jacob, D.; Bachmann, M.O.; Diu, S.; Ford, J. Lifestyle Interventions for Weight Loss in Adults with Severe Obesity: A Systematic Review. Clin. Obes. 2016, 6, 395–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio-Valera, M.; Pons-Vigués, M.; Martínez-Andrés, M.; Moreno-Peral, P.; Berenguera, A.; Fernández, A. Barriers and Facilitators for the Implementation of Primary Prevention and Health Promotion Activities in Primary Care: A Synthesis through Meta-Ethnography. PLoS ONE 2014, 9, e89554. [Google Scholar] [CrossRef] [PubMed]
- Kebbe, M.; Perez, A.; Buchholz, A.; McHugh, T.-L.F.; Scott, S.S.; Richard, C.; Mohipp, C.; Dyson, M.P.; Ball, G.D.C. Barriers and Enablers for Adopting Lifestyle Behavior Changes in Adolescents with Obesity: A Multi-Centre, Qualitative Study. PLoS ONE 2018, 13, e0209219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, E.; Munn, Z.; Jennings, C. Experiences of Providers in Delivering Nutrition-Focused Lifestyle Interventions for Adults with Obesity or Metabolic Syndrome in Primary Healthcare Settings: A Qualitative Systematic Review Protocol. JBI Evid. Synth. 2020, 18, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Patalano, R.; De Luca, V.; Vogt, J.; Birov, S.; Giovannelli, L.; Carruba, G.; Pivonello, C.; Stroetmann, V.; Triassi, M.; Colao, A.; et al. An Innovative Approach to Designing Digital Health Solutions Addressing the Unmet Needs of Obese Patients in Europe. Int. J. Environ. Res. Public Health 2021, 18, E579. [Google Scholar] [CrossRef]
- Dallinga, J.M.; Mennes, M.; Alpay, L.; Bijwaard, H.; Baart de la Faille-Deutekom, M. App Use, Physical Activity and Healthy Lifestyle: A Cross Sectional Study. BMC Public Health 2015, 15, 833. [Google Scholar] [CrossRef] [Green Version]
- Shcherbina, A.; Hershman, S.G.; Lazzeroni, L.; King, A.C.; O’Sullivan, J.W.; Hekler, E.; Moayedi, Y.; Pavlovic, A.; Waggott, D.; Sharma, A.; et al. The Effect of Digital Physical Activity Interventions on Daily Step Count: A Randomised Controlled Crossover Substudy of the MyHeart Counts Cardiovascular Health Study. Lancet Digit. Health 2019, 1, e344–e352. [Google Scholar] [CrossRef] [Green Version]
- Timpel, P.; Oswald, S.; Schwarz, P.E.H.; Harst, L. Mapping the Evidence on the Effectiveness of Telemedicine Interventions in Diabetes, Dyslipidemia, and Hypertension: An Umbrella Review of Systematic Reviews and Meta-Analyses. J. Med. Internet Res. 2020, 22, e16791. [Google Scholar] [CrossRef]
- Byambasuren, O.; Sanders, S.; Beller, E.; Glasziou, P. Prescribable MHealth Apps Identified from an Overview of Systematic Reviews. NPJ Digit. Med. 2018, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Fleming, G.A.; Petrie, J.R.; Bergenstal, R.M.; Holl, R.W.; Peters, A.L.; Heinemann, L. Diabetes Digital App Technology: Benefits, Challenges, and Recommendations. A Consensus Report by the European Association for the Study of Diabetes (EASD) and the American Diabetes Association (ADA) Diabetes Technology Working Group. Diabetes Care 2020, 43, 250–260. [Google Scholar] [CrossRef] [Green Version]
- Haffner, S.M.; Miettinen, H.; Stern, M.P. The Homeostasis Model in the San Antonio Heart Study. Diabetes Care 1997, 20, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.H. Die Enzymatische Bestimmung von Glucose Und Fructose Nebeneinander. Klin. Wochenschr. 1961, 39, 1244–1247. [Google Scholar] [CrossRef] [PubMed]
- Arslan Ince, F.D.; Atay, A.; Köseoğlu, M.; Yeşil, M.; Deveci, E. Relationship between Severity of Coronary Artery Disease and Apolipoprotein E Gene Polymorphism. Anadolu Kardiyol. Derg. 2010, 10, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Committee for Medicinal Products for Human Use; Efficacy Working Party. Committee for Release for Consultation Committee for Medicinal Products for Human Use (CHMP) Guideline on the Choice of the Non-Inferiority Margin. Stat. Med. 2006, 25, 1628–1638. [Google Scholar] [CrossRef]
- Franz, M.J.; VanWormer, J.J.; Crain, A.L.; Boucher, J.L.; Histon, T.; Caplan, W.; Bowman, J.D.; Pronk, N.P. Weight-Loss Outcomes: A Systematic Review and Meta-Analysis of Weight-Loss Clinical Trials with a Minimum 1-Year Follow-Up. J. Am. Diet. Assoc. 2007, 107, 1755–1767. [Google Scholar] [CrossRef]
- Meyerowitz-Katz, G.; Ravi, S.; Arnolda, L.; Feng, X.; Maberly, G.; Astell-Burt, T. Rates of Attrition and Dropout in App-Based Interventions for Chronic Disease: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2020, 22, e20283. [Google Scholar] [CrossRef]
- Cheal, K.L.; Abbasi, F.; Lamendola, C.; McLaughlin, T.; Reaven, G.M.; Ford, E.S. Relationship to Insulin Resistance of the Adult Treatment Panel III Diagnostic Criteria for Identification of the Metabolic Syndrome. Diabetes 2004, 53, 1195–1200. [Google Scholar] [CrossRef] [Green Version]
- Spring, B.; Duncan, J.M.; Janke, E.A.; Kozak, A.T.; McFadden, H.G.; DeMott, A.; Pictor, A.; Epstein, L.H.; Siddique, J.; Pellegrini, C.A.; et al. Integrating Technology into Standard Weight Loss Treatment: A Randomized Controlled Trial. JAMA Intern. Med. 2013, 173, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Ryan, D.H.; Yockey, S.R. Weight Loss and Improvement in Comorbidity: Differences at 5%, 10%, 15%, and Over. Curr. Obes. Rep. 2017, 6, 187–194. [Google Scholar] [CrossRef]
- Willoughby, D.; Hewlings, S.; Kalman, D. Body Composition Changes in Weight Loss: Strategies and Supplementation for Maintaining Lean Body Mass, a Brief Review. Nutrients 2018, 10, E1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulloo, A.G.; Jacquet, J.; Montani, J.-P. How Dieting Makes Some Fatter: From a Perspective of Human Body Composition Autoregulation. Proc. Nutr. Soc. 2012, 71, 379–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balkau, B.; Picard, P.; Vol, S.; Fezeu, L.; Eschwège, E.; DESIR Study Group. Consequences of Change in Waist Circumference on Cardiometabolic Risk Factors over 9 Years: Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 2007, 30, 1901–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St George, A.; Bauman, A.; Johnston, A.; Farrell, G.; Chey, T.; George, J. Effect of a Lifestyle Intervention in Patients with Abnormal Liver Enzymes and Metabolic Risk Factors. J. Gastroenterol. Hepatol. 2009, 24, 399–407. [Google Scholar] [CrossRef]
- Esteghamati, A.; Ashraf, H.; Esteghamati, A.-R.; Meysamie, A.; Khalilzadeh, O.; Nakhjavani, M.; Abbasi, M. Optimal Threshold of Homeostasis Model Assessment for Insulin Resistance in an Iranian Population: The Implication of Metabolic Syndrome to Detect Insulin Resistance. Diabetes Res. Clin. Pract. 2009, 84, 279–287. [Google Scholar] [CrossRef]
- Perrin, A.; Anderson, M. Share of U.S. Adults Using Social Media, Including Facebook, Is Mostly Unchanged since 2018; Pew Research Center: Washington, DC, USA, 2019. [Google Scholar]
Randomized (n = 100) | |
---|---|
Treatment (n = 50) | Control (n = 50) |
3-month follow-up | |
|
|
6-month follow-up | |
|
|
Characteristics | Overall | Intervention Group | Control Group | p-Value between Groups |
---|---|---|---|---|
n | 100 | 50 | 50 | |
Men (%) | 29% | 32% | 26% | 0.66 |
Age (years) | 43.3 ± 9.5 | 43.3 ± 10.5 | 43.3 ± 8.4 | 0.99 |
Education | ||||
Primary | 5 | 3 | 2 | 0.12 |
High school | 75 | 33 | 42 | |
College | 20 | 14 | 6 | |
Diabetes progression | ||||
Type 2 diabetes | 10 | 5 | 5 | 0.24 |
Prediabetes | 23 | 15 | 8 | |
Insulin resistance | 67 | 30 | 37 | |
Diabetes pharmacotherapy (Type 2 diabetes and Prediabetes participants only) | ||||
None | 23 | 15 | 8 | |
Metformin | 7 | 3 | 4 | |
Sulfonylureas | 1 | 1 | 0 | 0.6 |
Other | 2 | 1 | 1 | |
Metabolic parameters | ||||
Body weight (kg) | 117.6 ± 20.9 | 117.5 ± 21.0 | 117.8 ± 21.0 | 0.94 |
BMI (kg/m2) | 40.1 ± 6.1 | 40.5 ± 7.1 | 39.7 ± 5.1 | 0.51 |
Waist circumference (cm) | 116.8 ± 14.7 | 118.1 ± 15.4 | 115.4 ± 14.0 | 0.36 |
Muscle mass (kg) | 35.8 ± 7.5 | 35.8 ± 7.3 | 35.8 ± 7.9 | 1 |
Body fat (kg) | 53.6 ± 13.4 | 53.0 ± 15.3 | 54.3 ± 11.3 | 0.62 |
Total cholesterol (mmol/L) | 4.9 ± 0.8 | 4.8 ± 0.9 | 4.9 ± 0.7 | 0.74 |
TAG (mmol/L) | 2.1 ± 1.2 | 2.1 ± 0.9 | 2.0 ± 1.5 | 0.70 |
HDL (mmol/L) | 1.1 ± 0.2 | 1.1 ± 0.2 | 1.2 ± 0.2 | 0.21 |
LDL (mmol/L) | 2.8 ± 0.7 | 2.8 ± 0.8 | 2.9 ± 0.7 | 0.58 |
FG (mmol/L) | 5.7 ± 1.3 | 5.9 ± 1.5 | 5.6 ± 1.1 | 0.30 |
HbA1c (%) | 5.6 ± 0.7 | 5.6 ± 0.7 | 5.5 ± 0.7 | 0.52 |
HOMA-IR | 5.6 ± 4.0 | 6.3 ± 4.8 | 4.9 ± 2.8 | 0.06 |
ALT (µkat/L) | 0.8 ± 0.5 | 0.8 ± 0.6 | 0.7 ± 0.4 | 0.36 |
AST (µkat/L) | 0.5 ± 0.3 | 0.5 ± 0.4 | 0.5 ± 0.3 | 0.77 |
GGT (µkat/L) | 0.7 ± 0.6 | 0.7 ± 0.4 | 0.7 ± 0.8 | 0.57 |
Intervention Group (n = 28) | Control Group (n = 23) | Repeated Measures ANOVA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | 3 Months | 6 Months | Baseline | 3 Months | 6 Months | F | p | Partial η2 | ||
Weight (kg) | 114.3 ± 20.0 | 107.8 ± 19.0 * | 106.6 ± 19.8 ^ | 117.6 ± 22.3 | 111.6 ± 23.2 * | 109.3 ± 23.8 *,^ | Interaction | 0.22 | 0.70 | 0.00 |
Group | 0.30 | 0.59 | 0.01 | |||||||
Time | 52.34 | <0.001 | 0.52 | |||||||
Waist circumference (cm) | 117.6 ± 16.3 | 112.6 ± 15.3 * | 111.3 ± 16.4 ^ | 114.4 ± 16.6 | 109.5 ± 16.3 * | 107.5 ± 16.4 *,^ | Interaction | 0.19 | 0.76 | 0.00 |
Group | 0.56 | 0.46 | 0.01 | |||||||
Time | 57.95 | <0.001 | 0.54 | |||||||
Muscle mass (kg) | 35.4 ± 6.9 | 35.7 ± 6.9 | 35.5 ± 7.1 | 36.1 ± 8.4 | 35.7 ± 8.4 | 35.6 ± 8.6 | Interaction | 0.88 | 0.38 | 0.02 |
Group | 0.01 | 0.91 | 0.00 | |||||||
Time | 0.32 | 0.64 | 0.01 | |||||||
Body fat (kg) | 50.8 ± 15.6 | 44.5 ± 16.2 * | 43.3 ± 17.6 ^ | 53.7 ± 11.1 | 48.6 ± 11.1 * | 46.2 ± 11.8 *,^ | Interaction | 0.43 | 0.57 | 0.01 |
Group | 0.69 | 0.41 | 0.01 | |||||||
Time | 54.2 | <0.001 | 0.53 |
Parameter | Intervention Group (n = 40) | Control Group (n = 38) | p-Value between Groups | ||||
---|---|---|---|---|---|---|---|
Baseline Values | 3-Month Follow-Up | Change | Baseline Values | 3-Month Follow-Up | Change | ||
Body weight (kg) | 119.5 ± 21.4 | 112.4 ± 20.7 | −7.1 ± 6.5 ** | 116.3 ± 20.7 | 111.5 ± 21.1 | −4.8 ± 5.8 ** | 0.10 |
Body weight (%) | - | - | −5.9 ± 5.0 ** | - | - | −4.2 ± 5.0 ** | 0.12 |
BMI (kg/m2) | 41.1 ± 7.5 | 38.9 ± 7.2 | −2.2 ± 2.2 ** | 39.3 ± 4.9 | 37.7 ± 5.0 | −1.6 ± 2.1 ** | 0.21 |
Waist circumference (cm) | 119.1 ± 16.5 | 113.5 ± 14.9 | −5.6 ± 6.5 ** | 114.7 ± 14.7 | 110.7 ± 14.8 | −4.1 ± 4.3 ** | 0.21 |
Muscles (kg) | 36.1 ± 7.0 | 36.2 ± 6.9 | +0.1 ± 2.2 | 35.7 ± 7.8 | 35.3 ± 7.7 | −0.3 ± 1.4 | 0.25 |
Fat (kg) | 54.2 ± 16.4 | 47.5 ± 16.7 | −6.7 ± 5.2 ** | 53.1 ± 10.6 | 49.0 ± 10.9 | −4.1 ± 4.5 ** | 0.02 * |
Parameter | Intervention Group (n = 33) | Control Group (n = 25) | p-Value between Groups | ||||
---|---|---|---|---|---|---|---|
Baseline Values | 3-Month Follow-Up | Change | Baseline Values | 3-Month Follow-Up | Change | ||
Overall | n = 33 | n = 25 | |||||
HOMA-IR | 6.5 ± 5.3 | 4.0 ± 2.7 | −2.5 ± 5.2 ** | 4.6 ± 1.9 | 5.6 ± 5.9 | +1.0 ± 5.7 | 0.02 * |
HbA1c (%) | 5.7 ± 0.8 | 5.5 ± 0.4 | −0.2 ± 0.5 * | 5.6 ± 0.9 | 5.4 ± 0.7 | −0.2 ± 0.4 * | 0.88 |
FG (mmol/L) | 6.0 ± 1.8 | 5.5 ± 0.9 | −0.5 ± 1.5 * | 5.7 ± 1.5 | 5.7 ± 1.5 | −0.0 ± 0.6 | 0.09 |
Nondiabetics | n = 29 | n= 21 | |||||
HOMA-IR | 5.6 ± 3.8 | 4.1 ± 2.8 | −1.6 ± 3.4 * | 4.6 ± 1.9 | 5.3 ± 6.2 | +0.8 ± 5.9 | 0.11 |
HbA1c (%) | 5.5 ± 0.4 | 5.4 ± 0.3 | −0.1 ± 0.2 | 5.4 ± 0.3 | 5.3 ± 0.2 | −0.1 ± 0.3 | 0.61 |
FG (mmol/L) | 5.6 ± 0.7 | 5.3 ± 0.5 | −0.3 ± 0.5 ** | 5.3 ± 0.5 | 5.3 ± 0.6 | −0.0 ± 0.6 | 0.12 |
Type 2 diabetes | n = 4 | n = 4 | |||||
HOMA-IR | 12.6 ± 10.3 | 3.5 ± 2.2 | −9.1 ± 10.5 | 4.8 ± 2.1 | 6.8 ± 4.5 | +2.0 ± 5.1 | 0.13 |
HbA1c (%) | 7.2 ± 1.3 | 6.2 ± 0.6 | −1 ± 1.3 | 6.7 ± 1.9 | 6.3 ± 1.4 | −0.5 ± 0.7 | 0.61 |
FG (mmol/L) | 9.3 ± 3.7 | 7.1 ± 1.1 | −2.2 ± 4.0 | 7.9 ± 2.8 | 7.8 ± 2.8 | −0.1 ± 0.6 | 0.12 |
Parameter | Intervention Group (n = 33) | Control Group (n = 25) | p-Value between Groups | ||||
---|---|---|---|---|---|---|---|
Baseline Values | 3-Month Follow-Up | Change | Baseline Values | 3-Month Follow-Up | Change | ||
Lipid profile | |||||||
Cholesterol (mmol/L) | 4.9 ± 0.9 | 4.8 ± 0.9 | −0.1 ± 0.8 | 4.9 ± 0.9 | 4.9 ± 1.2 | −0.1 ± 0.7 | 0.79 |
TAG (mmol/L) | 2.2 ± 1.0 | 1.6 ± 0.7 | −0.6 ± 0.9 ** | 2.3 ± 2.0 | 1.6 ± 0.7 | −0.7 ± 1.6 | 0.86 |
LDL (mmol/L) | 2.9 ± 0.8 | 2.9 ± 0.9 | +0.1 ± 0.7 | 2.9 ± 0.8 | 3.1 ± 1.0 | +0.2 ± 0.6 | 0.44 |
HDL (mmol/L) | 1.1 ± 0.2 | 1.2 ± 0.3 | +0.1 ± 0.1 * | 1.2 ± 0.3 | 1.2 ± 0.3 | 0.0 ± 0.2 | 0.15 |
Liver enzymes | |||||||
ALT (µkat/L) | 0.8 ± 0.7 | 0.7 ± 0.5 | −0.1 ± 0.4 | 0.8 ± 0.3 | 0.7 ± 0.3 | −0.1 ± 0.2 * | 0.57 |
AST (µkat/L) | 0.6 ± 0.4 | 0.4 ± 0.2 | −0.1 ± 0.4 * | 0.6 ± 0.3 | 0.5 ± 0.4 | −0.1 ± 0.2 | 0.31 |
GGT (µkat/L) | 0.7 ± 0.4 | 0.7 ± 0.4 | −0.1 ± 0.2 | 0.7 ± 1.0 | 0.7 ± 0.9 | −0.1 ± 0.2 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moravcová, K.; Karbanová, M.; Bretschneider, M.P.; Sovová, M.; Ožana, J.; Sovová, E. Comparing Digital Therapeutic Intervention with an Intensive Obesity Management Program: Randomized Controlled Trial. Nutrients 2022, 14, 2005. https://doi.org/10.3390/nu14102005
Moravcová K, Karbanová M, Bretschneider MP, Sovová M, Ožana J, Sovová E. Comparing Digital Therapeutic Intervention with an Intensive Obesity Management Program: Randomized Controlled Trial. Nutrients. 2022; 14(10):2005. https://doi.org/10.3390/nu14102005
Chicago/Turabian StyleMoravcová, Katarína, Martina Karbanová, Maxi Pia Bretschneider, Markéta Sovová, Jaromír Ožana, and Eliška Sovová. 2022. "Comparing Digital Therapeutic Intervention with an Intensive Obesity Management Program: Randomized Controlled Trial" Nutrients 14, no. 10: 2005. https://doi.org/10.3390/nu14102005
APA StyleMoravcová, K., Karbanová, M., Bretschneider, M. P., Sovová, M., Ožana, J., & Sovová, E. (2022). Comparing Digital Therapeutic Intervention with an Intensive Obesity Management Program: Randomized Controlled Trial. Nutrients, 14(10), 2005. https://doi.org/10.3390/nu14102005