Coping Strategies Influence Cardiometabolic Risk Factors in Chronic Psychological Stress: A Post Hoc Analysis of A Randomized Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Questionnaires: The Perceived Stress Questionnaire (PSQ30) and the Psychological Neurological Questionnaire (PNF)
2.2. Participants
2.3. Study Design
2.4. Anthropometric and Clinical Measurements
2.5. Biochemical Analysis
2.6. Statistical Analysis
3. Results
3.1. Participants
3.2. Anthropometric, Clinical, and Biochemical Parameters
3.3. Inflammation, Indirect Markers of Oxidative Stress, Antioxidative Parameters and the Cardiometabolic Risk Profile
3.4. Coping Strategies and Cardiometabolic Risk
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Assembly. Follow-Up to the Political Declaration of the High-Level Meeting of the General Assembly on the Prevention and Control of Non-Communicable Diseases. 2013. Available online: https://apps.who.int/iris/handle/10665/150161 (accessed on 14 September 2021).
- Cohen, B.E.; Edmondson, D.; Kronish, I.M. State of the Art Review: Depression, Stress, Anxiety, and Cardiovascular Disease. Am. J. Hypertens. 2015, 28, 1295–1302. [Google Scholar] [CrossRef] [Green Version]
- Wirtz, P.H.; von Känel, R. Psychological Stress, Inflammation, and Coronary Heart Disease. Curr. Cardiol. Rep. 2017, 19, 111. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Panahi, Y.; Sahraei, H.; Johnston, T.P.; Sahebkar, A. The impact of stress on body function: A review. EXCLI J. 2017, 16, 1057–1072. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.S.; McEwen, B. Allostasis, homeostats, and the nature of stress. Stress 2002, 5, 55–58. [Google Scholar] [CrossRef]
- McEwen, B.S. Neurobiological and Systemic Effects of Chronic Stress. Chronic Stress 2017, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- McEwen, B.S.; Eiland, L.; Hunter, R.G.; Miller, M.M. Stress and anxiety: Structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology 2012, 62, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coffman, J.A. Chronic stress, physiological adaptation and developmental programming of the neuroendocrine stress system. Future Neurol. 2020, 15, FNL39. [Google Scholar] [CrossRef]
- McEwen, B.S. The brain is the central organ of stress and adaptation. NeuroImage 2009, 47, 911–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juster, R.-P.; McEwen, B.S.; Lupien, S.J. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci. Biobehav. Rev. 2010, 35, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.S. Stress, allostatic load, catecholamines, and other neurotransmitters in neurodegenerative diseases. Cell. Mol. Neurobiol. 2012, 32, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Ebner, K.; Singewald, N. Individual differences in stress susceptibility and stress inhibitory mechanisms. Curr. Opin. Behav. Sci. 2017, 14, 54–64. [Google Scholar] [CrossRef]
- Wüst, S.; Federenko, I.; Hellhammer, D.H.; Kirschbaum, C. Genetic factors, perceived chronic stress, and the free cortisol response to awakening. Psychoneuroendocrinology 2000, 25, 707–720. [Google Scholar] [CrossRef]
- Epel, E.S.; Crosswell, A.D.; Mayer, S.E.; Prather, A.A.; Slavich, G.M.; Puterman, E.; Mendes, W.B. More than a feeling: A unified view of stress measurement for population science. Front. Neuroendocrinol. 2018, 49, 146–169. [Google Scholar] [CrossRef] [PubMed]
- Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014, 140, 774–815. [Google Scholar] [CrossRef] [PubMed]
- Stransfeld, S.; Bridget, C. Psychosocial work environment and mental health—A meta-analytic review. Scand. J. Environ. Health 2006, 32, 443–462. [Google Scholar] [CrossRef]
- Hapke, U.; Maske, U.E.; Scheidt-Nave, C.; Bode, L.; Schlack, R.; Busch, M.A. Chronic stress among adults in Germany. Results of the German Health Interview and Examination Survey for Adults (DEGS1). Bundesgesundheitsblatt 2013, 56, 749–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiegner, L.; Hange, D.; Björkelund, C.; Ahlborg, G. Prevalence of perceived stress and associations to symptoms of exhaustion, depression and anxiety in a working age population seeking primary care--an observational study. BMC Fam. Prac. 2015, 16, 38. [Google Scholar] [CrossRef] [PubMed]
- Klatzkin, R.R.; Baldassaro, A.; Hayden, E. The impact of chronic stress on the predictors of acute stress-induced eating in women. Appetite 2018, 123, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Sara, J.D.; Prasad, M.; Eleid, M.F.; Zhang, M.; Widmer, R.J.; Lerman, A. Association Between Work-Related Stress and Coronary Heart Disease: A Review of Prospective Studies Through the Job Strain, Effort-Reward Balance, and Organizational Justice Models. J. Am. Heart Assoc. 2018, 7, e008073. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, M.; Jokela, M.; Lallukka, T.; Hanson, L.M.; Pentti, J.; Nyberg, S.T.; Alfredsson, L.; Batty, G.D.; Casini, A.; Clays, E.; et al. Long working hours and change in body weight: Analysis of individual-participant data from 19 cohort studies. Int. J. Obes. 2020, 44, 1368–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenk, J.; Mátrai, P.; Hegyi, P.; Rostás, I.; Garami, A.; Szabó, I.; Hartmann, P.; Pétervári, E.; Czopf, L.; Hussain, A.; et al. Perceived stress correlates with visceral obesity and lipid parameters of the metabolic syndrome: A systematic review and meta-analysis. Psychoneuroendocrinology 2018, 95, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chico-Barba, G.; Jiménez-Limas, K.; Sánchez-Jiménez, B.; Sámano, R.; Rodríguez-Ventura, A.L.; Castillo-Pérez, R.; Tolentino, M. Burnout and Metabolic Syndrome in Female Nurses: An Observational Study. Int. J. Environ. Res. Public Health 2019, 16, 1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capistrant, B.D.; Moon, J.R.; Berkman, L.F.; Glymour, M.M. Current and long-term spousal caregiving and onset of cardiovascular disease. J. Epidemiol. Commun. Health 2012, 66, 951–956. [Google Scholar] [CrossRef]
- Capistrant, B.D. Caregiving for Older Adults and the Caregivers’ Health: An Epidemiologic Review. Curr. Epidemiol. Rep. 2016, 3, 72–80. [Google Scholar] [CrossRef]
- Schulz, R.; Beach, S.R.; Czaja, S.J.; Martire, L.M.; Monin, J.K. Family Caregiving for Older Adults. Annu. Rev. Psychol. 2020, 71, 635–659. [Google Scholar] [CrossRef]
- Peters, A.; Schweiger, U.; Pellerin, L.; Hubold, C.; Oltmanns, K.M.; Conrad, M.; Schultes, B.; Born, J.; Fehm, H. The selfish brain: Competition for energy resources. Neurosci. Biobehav. Rev. 2004, 28, 143–180. [Google Scholar] [CrossRef]
- Peters, A.; McEwen, B.S. Stress habituation, body shape and cardiovascular mortality. Neurosci. Biobehav. Rev. 2015, 56, 139–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, A. The selfish brain: Competition for energy resources. Am. J. Hum. Biol. 2011, 23, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Kubera, B.; Hubold, C.; Langemann, D. The selfish brain: Stress and eating behavior. Front. Neurosci. 2011, 5, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, A.; McEwen, B.S.; Friston, K. Uncertainty and stress: Why it causes diseases and how it is mastered by the brain. Prog. Neurobiol. 2017, 156, 164–188. [Google Scholar] [CrossRef]
- Kubera, B.; Leonhard, C.; Rößler, A.; Peters, A. Stress-Related Changes in Body Form: Results from the Whitehall II Study. Obesity 2017, 25, 1625–1632. [Google Scholar] [CrossRef] [Green Version]
- Kirschbaum, C.; Prüssner, J.C.; Stone, A.A.; Federenko, I.; Gaab, J.; Lintz, D.; Schommer, N.; Hellhammer, D. Persistent high cortisol responses to repeated psychological stress in a subpopulation of healthy men. Psychosom. Med. 1995, 57, 468–474. [Google Scholar] [CrossRef]
- Xu, X.; Bao, H.; Strait, K.; Spertus, J.A.; Lichtman, J.H.; D’Onofrio, G.; Spatz, E.; Bucholz, E.M.; Geda, M.; Lorenze, N.P.; et al. Sex differences in perceived stress and early recovery in young and middle-aged patients with acute myocardial infarction. Circulation 2015, 131, 614–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epel, E.S.; McEwen, B.; Seeman, T.; Matthews, K.; Castellazzo, G.; Brownell, K.D.; Bell, J.; Ickovics, J.R. Stress and Body Shape: Stress-Induced Cortisol Secretion Is Consistently Greater Among Women With Central Fat. Psychosom. Med. 2000, 62, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Aschbacher, K.; Kornfeld, S.; Picard, M.; Puterman, E.; Havel, P.J.; Stanhope, K.; Lustig, R.H.; Epel, E. Chronic stress increases vulnerability to diet-related abdominal fat, oxidative stress, and metabolic risk. Psychoneuroendocrinology 2014, 46, 14–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Björntorp, P.; Rosmond, R. Neuroendocrine abnormalities in visceral obesity. Int. J. Obes. 2000, 24, S80–S85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomiyama, A.J. Stress and Obesity. Annu. Rev. Psychol. 2019, 70, 703–718. [Google Scholar] [CrossRef] [Green Version]
- Schaeuble, D.; Packard, A.E.B.; McKlveen, J.M.; Morano, R.; Fourman, S.; Smith, B.L.; Scheimann, J.R.; Packard, B.A.; Wilson, S.P.; James, J.; et al. Prefrontal Cortex Regulates Chronic Stress-Induced Cardiovascular Susceptibility. J. Am. Heart Assoc. 2019, 8, e014451. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, E.F.C. Obesity and cortisol: New perspectives on an old theme. Obesity 2017, 25, 500–501. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Liu, X.; Yu, Y. Depression and Chronic Liver Diseases: Are There Shared Underlying Mechanisms? Front. Mol. Neurosci. 2017, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Von Känel, R.; Abbas, C.C.; Begré, S.; Gander, M.-L.; Saner, H.; Schmid, J.-P. Association between posttraumatic stress disorder following myocardial infarction and liver enzyme levels: A prospective study. Dig. Dis. Sci. 2010, 55, 2614–2623. [Google Scholar] [CrossRef] [Green Version]
- Stefan, N.; Kantartzis, K.; Machann, J.; Schick, F.; Thamer, C.; Rittig, K.; Balletshofer, B.; Machicao, F.; Fritsche, A.; Häring, H.U. Identification and Characterization of Metabolically Benign Obesity in Humans. Arch. Intern. Med. 2008, 168, 1609–1616. [Google Scholar] [CrossRef] [PubMed]
- Wildman, R.P.; Muntner, P.; Reynolds, K. The Obese Without Cardiometabolic Risk Factor Clustering and the Normal Weight With Cardiometabolic Risk Factor Clustering: Prevalence and Correlates of 2 Phenotypes Among the US Population (NHANES 1999–2004). Arch. Intern. Med. 2008, 168, 1617–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blüher, M. Metabolically Healthy Obesity. Endocr. Rev. 2020, 41, 405–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefan, N. Causes, consequences, and treatment of metabolically unhealthy fat distribution. Lancet Diabetes Endocrinol. 2020, 8, 616–627. [Google Scholar] [CrossRef]
- Carver, C.S.; Scheier, M.F.; Weintraub, J.K. Assessing Coping Strategies: A Theoretically Based Approach. J. Personal. Soc. Psychol. 1989, 56, 267–283. [Google Scholar] [CrossRef]
- Lazarus, R.S. The psychology of stress and coping. Issues Ment. Health Nurs. 1985, 7, 399–418. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.E.; Stanton, A.L. Coping resources, coping processes, and mental health. Annu. Rev. Clin. Psychol. 2007, 3, 377–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizi, M. Effects of Doing Physical Exercises on Stress-Coping Strategies and the Intensity of the Stress Experienced by University Students in Zabol, Southeastern Iran. Proc. Soc. Behav. Sci. 2011, 30, 372–375. [Google Scholar] [CrossRef] [Green Version]
- Armborst, D.; Metzner, C.; Alteheld, B.; Bitterlich, N.; Rösler, D.; Siener, R. Impact of a Specific Amino Acid Composition with Micronutrients on Well-Being in Subjects with Chronic Psychological Stress and Exhaustion Conditions: A Pilot Study. Nutrients 2018, 10, 551. [Google Scholar] [CrossRef] [Green Version]
- Kocalevent, R.-D.; Hinz, A.; Brähler, E.; Klapp, B.F. Regionale und individuelle Faktoren von Stresserleben in Deutschland: Ergebnisse einer repräsentativen Befragung mit dem Perceived Stress Questionnaire (PSQ). Gesundheitswesen 2011, 73, 829–834. [Google Scholar] [CrossRef]
- Schneider, H.; Wall, H.; Zeller, H.J. The psychologiconeurological questionnaire—A screeining method for examinations of ability and control. Z. fur Klin. Med.-ZKM 1988, 43, 1321–1322. [Google Scholar]
- Schneiderman, N.; Ironson, G.; Siegel, S.D. Stress and health: Psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol. 2005, 1, 607–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmann, N.; Gyntelberg, F.; Faber, J. The appraisal of chronic stress and the development of the metabolic syndrome: A systematic review of prospective cohort studies. Endocr. Connect. 2014, 3, R55–R80. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, L.; Herrmann-Lingen, C.; Hapke, U.; Neuhauser, H.; Scheidt-Nave, C.; Meyer, T. Association between chronic stress and blood pressure: Findings from the German Health Interview and Examination Survey for Adults 2008-2011. Psychosom. Med. 2015, 77, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Roy, B.; Riley, C.; Sinha, R. Emotion regulation moderates the association between chronic stress and cardiovascular disease risk in humans: A cross-sectional study. Stress 2018, 21, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Björntorp, P. Do stress reactions cause abdominal obesity and comorbidities? Obes. Rev. 2001, 2, 73–86. [Google Scholar] [CrossRef]
- Peters, A.; Kubera, B.; Hubold, C.; Langemann, D. The corpulent phenotype-how the brain maximizes survival in stressful environments. Front. Syst. Neurosci. 2013, 7, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, L.E.; Kitlinska, J.B.; Tilan, J.U.; Li, L.; Baker, S.B.; Johnson, M.D.; Lee, E.W.; Burnett, M.S.; Fricke, S.T.; Kvetnansky, R.; et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat. Med. 2007, 13, 803–811. [Google Scholar] [CrossRef]
- Hirsch, D.; Zukowska, Z. NPY and stress 30 years later: The peripheral view. Cell. Mol. Neurobiol. 2012, 32, 645–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steptoe, A.; Wardle, J. Cardiovascular stress responsivity, body mass and abdominal adiposity. Int. J. Obes. 2005, 29, 1329–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefan, N.; Häring, H.-U.; Hu, F.B.; Schulze, M.B. Metabolically healthy obesity: Epidemiology, mechanisms, and clinical implications. Lancet Diabetes Endocrinol. 2013, 1, 152–162. [Google Scholar] [CrossRef]
- Stefan, N.; Schick, F.; Häring, H.-U. Causes, Characteristics, and Consequences of Metabolically Unhealthy Normal Weight in Humans. Cell Metab. 2017, 26, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Razzoli, M.; Bartolomucci, A. The Dichotomous Effect of Chronic Stress on Obesity. Trends Endocrinol. Metab. 2016, 27, 504–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chávez-Castillo, M.; Martínez, M.S.; Calvo, M.J.; Rojas, M.; Núñez, V.; Lameda, V.A.; Ramírez, P.; Rojas-Quintero, J.; Velasco, M.; Bermúdez, V. Chronic State of Systemic Stress: The Link between Depression and Cardiovascular Disease? SM J. Clin. Med. 2017, 3, 2–7. [Google Scholar]
- Dallman, M.F.; Pecoraro, N.; Akana, S.F.; la Fleur, S.E.; Gomez, F.; Houshyar, H.; Bell, M.E.; Bhatnagar, S.; Laugero, K.D.; Manalo, S. Chronic stress and obesity: A new view of “comfort food”. Proc. Natl. Acad. Sci. USA 2003, 100, 11696–11701. [Google Scholar] [CrossRef] [Green Version]
- Sominsky, L.; Spencer, S.J. Eating behavior and stress: A pathway to obesity. Front. Psychol. 2014, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mensink, G.B.M.; Schienkiewitz, A.; Haftenberger, M.; Lampert, T.; Ziese, T.; Scheidt-Nave, C. Übergewicht und Adipositas in Deutschland: Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1). Bundesgesundheitsblatt 2013, 56, 786–794. [Google Scholar] [CrossRef] [Green Version]
- Fahrngruber-Velasquez, C.; Duszka, K.; König, J. The Impact of Chronic Stress and Eating Concern on Acylated Ghrelin Following Acute Psychological Stress in Healthy Men. Stresses 2021, 1, 3. [Google Scholar] [CrossRef]
- Richardson, A.S.; Arsenault, J.E.; Cates, S.C.; Muth, M.K. Perceived stress, unhealthy eating behaviors, and severe obesity in low-income women. Nutr. J. 2015, 14, 122. [Google Scholar] [CrossRef] [Green Version]
- Geschwind, N.; Peeters, F.; Jacobs, N.; Delespaul, P.; Derom, C.; Thiery, E.; van Os, J.; Wichers, M. Meeting risk with resilience: High daily life reward experience preserves mental health. Acta Psychiatr. Scand. 2010, 122, 129–138. [Google Scholar] [CrossRef]
- Lawless, M.H.; Harrison, K.A.; Grandits, G.A.; Eberly, L.E.; Allen, S.S. Perceived stress and smoking-related behaviors and symptomatology in male and female smokers. Addict. Behav. 2015, 51, 80–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balkan, B.; Pogun, S. Nicotinic Cholinergic System in the Hypothalamus Modulates the Activity of the Hypothalamic Neuropeptides During the Stress Response. Curr Neuropharmacol. 2018, 16, 371–387. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef] [PubMed]
- Caliri, A.W.; Tommasi, S.; Besaratinia, A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat. Res. Mutat. Res. 2021, 787, 108365. [Google Scholar] [CrossRef] [PubMed]
- Schilling, R.; Colledge, F.; Ludyga, S.; Pühse, U.; Brand, S.; Gerber, M. Does Cardiorespiratory Fitness Moderate the Association between Occupational Stress, Cardiovascular Risk, and Mental Health in Police Officers? Int. J. Environ. Res. Public Health 2019, 16, 2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandola, A.; Ashdown-Franks, G.; Hendrikse, J.; Sabiston, C.M.; Stubbs, B. Physical activity and depression: Towards understanding the antidepressant mechanisms of physical activity. Neurosci. Biobehav. Rev. 2019, 107, 525–539. [Google Scholar] [CrossRef]
- Schultz, N.S.; Chui, K.K.H.; Economos, C.D.; Lichtenstein, A.H.; Volpe, S.L.; Sacheck, J.M. Impact of physical activity, diet quality and stress on cardiometabolic health in school employees. Prev. Med. Rep. 2020, 20, 101243. [Google Scholar] [CrossRef]
- Stults-Kolehmainen, M.A.; Sinha, R. The effects of stress on physical activity and exercise. Sports Med. 2014, 44, 81–121. [Google Scholar] [CrossRef]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimers, A.K.; Knapp, G.; Reimers, C.-D. Effects of Exercise on the Resting Heart Rate: A Systematic Review and Meta-Analysis of Interventional Studies. J. Clin. Med. 2018, 7, 503. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Shen, X.; Qi, X. Resting heart rate and all-cause and cardiovascular mortality in the general population: A meta-analysis. Can. Med Assoc. J. 2016, 188, E53–E63. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ramie, J.J.; Barber, J.L.; Sarzynski, M.A. Effects of exercise on HDL functionality. Curr. Opin. Lipidol. 2019, 30, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ma, C.; Wang, X.; Wang, Q.; Song, W.; Li, C.; Zhai, C.; Qi, Y.; Fan, S.; Cheng, F. Impact of chronic psychological stress on nonalcoholic fatty liver disease. Int. J. Clin. Exp. Med. 2019, 12, 7991–7998. [Google Scholar]
- Kang, D.; Zhao, D.; Ryu, S.; Guallar, E.; Cho, J.; Lazo, M.; Shin, H.; Chang, Y.; Sung, E. Perceived stress and non-alcoholic fatty liver disease in apparently healthy men and women. Sci. Rep. 2020, 10, 38. [Google Scholar] [CrossRef]
- Madhu, S.V.; Siddiqui, A.; Desai, N.G.; Sharma, S.B.; Bansal, A.K. Chronic stress, sense of coherence and risk of type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2019, 13, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Sirois, F.M.; Molnar, D.S.; Hirsch, J.K. Self-Compassion, Stress, and Coping in the Context of Chronic Illness. Self Identity 2014, 14, 334–347. [Google Scholar] [CrossRef] [Green Version]
- McEwen, B.S. In pursuit of resilience: Stress, epigenetics, and brain plasticity. Ann. N. Y. Acad. Sci. 2016, 1373, 56–64. [Google Scholar] [CrossRef]
- Gouin, J.-P.; Glaser, R.; Malarkey, W.B.; Beversdorf, D.; Kiecolt-Glaser, J. Chronic stress, daily stressors, and circulating inflammatory markers. Health Psychol. 2012, 31, 264–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggio, M.; Guralnik, J.M.; Longo, D.L.; Ferrucci, L. Interleukin-6 in Aging and Chronic Disease: A Magnificent Pathway. J. Gerontol. 2006, 61, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Wium-Andersen, M.K.; Ørsted, D.D.; Nielsen, S.F.; Nordestgaard, B.G. Elevated C-reactive protein levels, psychological distress, and depression in 73 131 individuals. JAMA Psychiatry 2013, 70, 176–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques-Vidal, P.; Bastardot, F.; von Känel, R.; Paccaud, F.; Preisig, M.; Waeber, G.; Vollenweider, P. Association between circulating cytokine levels, diabetes and insulin resistance in a population-based sample (CoLaus study). Clin. Endocrinol. 2013, 78, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.V.; Abbasi, A.; Master, V.A. Systematic review of the evidence of a relationship between chronic psychosocial stress and C-reactive protein. Mol. Diagn. Ther. 2013, 17, 147–164. [Google Scholar] [CrossRef]
- Lee, S.J.; Oh, B.K.; Sung, K.-C. Uric acid and cardiometabolic diseases. Clin. Hypertens. 2020, 26, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Sharaf El Din, U.A.A.; Salem, M.M.; Abdulazim, D.O. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: A review. J. Adv. Res. 2017, 8, 537–548. [Google Scholar] [CrossRef]
- Yuan, H.; Yu, C.; Li, X.; Sun, L.; Zhu, X.; Zhao, C.; Zhang, Z.; Yang, Z. Serum Uric Acid Levels and Risk of Metabolic Syndrome: A Dose-Response Meta-Analysis of Prospective Studies. J. Clin. Endocrinol. Metab. 2015, 100, 4198–4207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto, F.J.; Iribarren, C.; Gross, M.D.; Comstock, G.W.; Cutler, R.G. Uric acid and serum antioxidant capacity: A reaction to atherosclerosis? Atherosclerosis 2000, 148, 131–139. [Google Scholar] [CrossRef]
- Joshi, R.; Adhikari, S.; Patro, B.S.; Chattopadhyay, S.; Mukherjee, T. Free radical scavenging behavior of folic acid: Evidence for possible antioxidant activity. Free Radic. Biol. Med. 2001, 30, 1390–1399. [Google Scholar] [CrossRef]
- Neeland, I.J.; Ross, R.; Després, J.-P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef]
- Iqbal, U.; Perumpail, B.J.; Akhtar, D.; Kim, D.; Ahmed, A. The Epidemiology, Risk Profiling and Diagnostic Challenges of Nonalcoholic Fatty Liver Disease. Medicines 2019, 6, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, J.S.; Cannaday, J.J.; Barlow, C.E.; Mitchell, T.L.; Cooper, K.H.; FitzGerald, S.J. Relation of the number of metabolic syndrome risk factors with all-cause and cardiovascular mortality. Am. J. Cardiol. 2008, 102, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Kuo, W.-C.; Bratzke, L.C.; Oakley, L.D.; Kuo, F.; Wang, H.; Brown, R.L. The association between psychological stress and metabolic syndrome: A systematic review and meta-analysis. Obes. Rev. 2019, 20, 1651–1664. [Google Scholar] [CrossRef] [PubMed]
ITT Population n = 61 Mean ± SD n (%) | HS Group (1) n = 31 Mean ± SD n (%) | VHS Group (2) n = 30 Mean ± SD n (%) | HS vs. VHS p Value | |
---|---|---|---|---|
Age (years) | 44.6 ± 12.1 | 45.3 ± 12.1 | 43.7 ± 12.3 | 0.559 |
Women | 43 (70.5%) | 21 (67.7%) | 22 (73.3%) | 0.780 |
Men | 18 (29.5%) | 10 (32.3%) | 8 (26.7%) | |
Smokers | 15 (24.6%) | 12 (38.7%) | 3 (10.0%) | 0.016 |
Total PSQ30 score | 0.671 ± 0.118 | 0.573 ± 0.057 | 0.771 ± 0.069 | <0.001 |
PNF (total) | 51.3 ± 12.1 | 46.2 ± 10.9 | 56.6 ± 11.2 | <0.001 |
Marital status (3): | ||||
Married/cohabitation | 31 (50.8%) | 14 (45.2%) | 17 (56.7%) | 0.373 |
Single | 17 (27.9%) | 11 (35.5%) | 6 (20.0%) | |
Separated | 12 (19.7%) | 6 (19.4%) | 6 (20.0%) | |
Children (3): | ||||
0 children | 32 (52.5%) | 16 (51.6%) | 16 (53.3%) | 0.445 |
1 child | 15 (24.6%) | 10 (32.3%) | 5 (16.7%) | |
2 children | 9 (14.8%) | 3 (9.7%) | 6 (20.0%) | |
≥3 children | 4 (6.6%) | 2 (6.5%) | 2 (6.7%) | |
Care for a family member in need (4): | ||||
Yes | 17 (27.9%) | 9 (29.0%) | 8 (26.7%) | 1.000 |
No | 42 (68.9%) | 21 (67.7%) | 21 (70.0%) | |
Work in shifts: | ||||
Yes | 14 (23.0%) | 6 (19.4%) | 8 (26.7%) | 0.554 |
No | 47 (77.0%) | 25 (80.6%) | 22 (73.3%) | |
Regular physical activity: | ||||
No | 14 (23.0%) | 10 (32.3%) | 4 (13.3%) | 0.127 |
Yes | 47 (77.0%) | 21 (67.7%) | 26 (86.7%) | |
Yes: athletic and endurance sports (jogging, bicycling, swimming, fitness studio or horse-riding) | 20 (32.8%) | 8 (25.8%) | 12 (41.4%) | 0.283 |
Yes: low-intensity endurance sports (Nordic walking or going for a walk) | 21 (34.4%) | 9 (29.0%) | 12 (40.0%) | 0.426 |
Yes: autogenous training or yoga | 6 (9.8%) | 4 (12.9%) | 2 (6.7%) | 0.671 |
ITT Population n = 61 Mean ± SD n (%) | HS Group (1) n = 31 Mean ± SD n (%) | VHS Group (2) n = 30 Mean ± SD n (%) | HS vs. VHS p Value | |
---|---|---|---|---|
Anthropometric and clinical parameters | ||||
BMI (kg/m2) | 25.5 ± 5.1 | 26.6 ± 6.0 | 24.4 ± 3.71 | 0.169 |
WC (cm)_women | 86.3 ± 12.4 | 89.7 ± 14.3 | 83.4 ± 9.44 | 0.079 |
WC (cm)_men | 101.7 ± 13.6 | 106.1 ± 16.3 | 96.2 ± 6.67 | 0.051 |
BP systolic (mmHg) | 112.1 ± 14.2 | 115.2 ± 14.7 | 109.0 ± 13.1 | 0.094 |
BP diastolic (mmHg) | 75.2 ± 8.5 | 76.6 ± 8.7 | 73.7 ± 8.2 | 0.141 |
Resting heart rate (1/min) | 66.5 ± 8.5 | 66.2 ± 7.7 | 66.9 ± 9.5 | 0.906 |
Cardiometabolic risk parameters | ||||
BMI ≥ 30.0 kg/m2 | 11 (18.0%) | 8 (25.8%) | 3 (10.0%) | 0.182 |
WC ≥ 88 cm (w/≥ 102 cm (m)) | 28 (45.9%) | 20 (64.5%) | 8 (26.7%) | 0.005 |
BP ≥ 130/85 mmHg | 11 (18.0%) | 9 (29.0%) | 2 (6.7%) | 0.043 |
TC (mg/dL) | 212.2 ± 46.9 | 217.0 ± 45.4 | 207.2 ± 48.8 | 0.372 |
TC > 200 | 35 (57.4%) | 21 (67.7%) | 14 (46.7%) | 0.124 |
HDL-C (mg/dL) | 64.7 ± 19.8 | 60.2 ± 17.1 | 69.4 ± 21.6 | 0.117 |
HDL-C < 50 (w)/< 40 (m) | 14 (23.0%) | 7 (22.6%) | 7 (23.3%) | 1.000 |
LDL-C (mg/dL) | 134.2 ± 41.6 | 140.1 ± 39.4 | 128.1 ± 43.6 | 0.261 |
LDL-C ≥ 175 | 11 (18.0%) | 6 (19.4%) | 5 (16.7%) | 1.000 |
TG (mg/dL) | 100.1 ± 53.7 | 111.8 ± 68.4 | 88.1 ± 28.9 | 0.249 |
TG ≥ 150 | 6 (9.8%) | 5 (16.1%) | 1 (3.3%) | 0.195 |
Fasting plasma glucose (mg/dL) | 89.7 ± 17.1 | 91.7 ± 22.2 | 87.7 ± 9.2 | 0.923 |
FPG ≥ 100 (mg/dL) | 7 (11.5%) | 5 (16.1%) | 2 (6.7%) | 0.425 |
HbA1c (%) | 5.5 ± 0.6 | 5.6 ± 0.7 | 5.4 ± 0.3 | 0.179 |
HOMA index | 1.7 ± 1.5 | 2.1 ± 2.0 | 1.3 ± 0.6 | 0.184 |
Insulin–ECLIA (μU/mL) | 7.3 ± 4.2 | 8.3 ± 4.9 | 6.2 ± 3.0 | 0.107 |
Metabolic syndrome (NCEP [41]) | 6 (9.8%) | 6 (19.4%) | 0 (0%) | 0.024 |
ALAT (U/L) | 23.7 ± 12.0 | 24.94 ± 12.8 | 22.5 ± 11.1 | 0.540 |
ASAT (U/L) | 25.2 ± 12.6 | 26.8 ± 17.2 | 23.5 ± 4.1 | 0.860 |
FLI | 33.5 ± 28.4 | 42.5 ± 31.9 | 24.1 ± 21.1 | 0.045 |
FLI ≥ 30 | 28 (45.9%) | 19 (61.3%) | 9 (30.0%) | 0.021 |
FLI ≥ 60 | 14 (23.0%) | 10 (32.3%) | 4 (13.3%) | 0.127 |
Atherogenic dyslipoproteinemia | 3 (4.9%) | 3 (9.7%) | 0 (0%) | 0.238 |
TC/HDL-C | 3.5 ± 1.2 | 3.9 ± 1.4 | 3.2 ± 0.9 | 0.022 |
LDL-C/HDL-C | 2.3 ± 1.0 | 2.5 ± 1.0 | 2.0 ± 0.8 | 0.030 |
Serum serotonin and salivary cortisol | ||||
Serum serotonin (μg/L) | 144.3 ± 69.2 | 135.4 ± 47.8 | 153.4 ± 85.8 | 0.734 |
Cortisol_morning (ng/mL) | 13.8 ± 5.7 | 14.0 ± 6.0 | 13.6 ± 5.5 | 0.783 |
Cortisol_evening (ng/mL) | 2.5 ± 3.8 | 2.7 ± 3.7 | 2.3 ± 3.9 | 0.544 |
Δ cortisol (m–e) (ng/mL) | 11.3 ± 6.0 | 11.3 ± 6.9 | 11.3 ± 5.1 | 0.997 |
Oxidative stress markers and antioxidative status | ||||
CRP sensitive (mg/L) | 2.2 ± 3.4 | 2.0 ± 2.9 | 2.4 ± 3.9 | 0.821 |
Ferritin (ng/mL) | 114.9 ± 106.9 | 116.6 ± 132.5 | 113.1 ± 74.2 | 0.458 |
GGT (U/L) | 22.2 ± 13.2 | 25.1 ± 15.0 | 19.3 ± 10.6 | 0.142 |
Folic acid (ng/mL) (3) | 9.6 ± 3.6 | 9.4 ± 3.8 | 9.8 ± 3.4 | 0.438 |
Uric acid (mg/dL) | 4.8 ± 1.1 | 5.0 ± 1.1 | 4.6 ± 1.1 | 0.179 |
CRP (mg/L) | Uric Acid (mg/dL) | FLI | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ITT Population | HS Group (1) | VHS Group (2) | ITT Population | HS Group (1) | VHS Group (2) | ITT Population | HS Group (1) | VHS Group (2) | ||||||||||
RCB | p Value | RCB | p Value | RCB | p Value | RCB | p Value | RCB | p Value | RCB | p Value | RCB | p Value | RCB | p Value | RCB | p Value | |
Weight (kg) | 0.054 | 0.033 | 0.054 | 0.057 | 0.073 | 0.160 | 0.038 | <0.001 | 0.036 | 0.001 | 0.040 | 0.003 | 1.366 | <0.001 | 1.298 | <0.001 | 1.255 | <0.001 |
WC (cm) | 0.066 | 0.045 | 0.081 | 0.022 | 0.072 | 0.328 | 0.039 | <0.001 | 0.036 | 0.010 | 0.045 | 0.020 | 1.805 | <0.001 | 1.720 | <0.001 | 1.722 | <0.001 |
BMI (kg/m2) | 0.204 | 0.020 | 0.185 | 0.052 | 0.370 | 0.072 | 0.090 | 0.001 | 0.082 | 0.029 | 0.101 | 0.070 | 4.694 | <0.001 | 4.228 | <0.001 | 5.053 | <0.001 |
Syst. BD (mmHg) | 0.019 | 0.568 | −0.010 | 0.810 | 0.055 | 0.342 | 0.036 | <0.001 | 0.019 | 0.262 | 0.052 | <0.001 | 0.834 | 0.001 | 0.513 | 0.216 | 0.726 | 0.014 |
Diast. BD (mmHg) | 0.058 | 0.277 | 0.009 | 0.894 | 0.121 | 0.189 | 0.041 | 0.017 | 0.011 | 0.689 | 0.065 | 0.006 | 1.428 | <0.001 | 1.089 | 0.086 | 1.249 | 0.008 |
Heart rate (1/min) | 0.108 | 0.038 | 0.003 | 0.965 | 0.180 | 0.021 | 0.012 | 0.497 | 0.004 | 0.890 | 0.016 | 0.466 | 0.812 | 0.049 | 1.179 | 0.084 | 0.426 | 0.326 |
Insulin (μU/mL) | 0.279 | 0.007 | 0.158 | 0.157 | 0.779 | 0.001 | 0.095 | 0.005 | 0.091 | 0.036 | 0.082 | 0.245 | 3.738 | <0.001 | 3.773 | <0.001 | 1.524 | 0.271 |
HOMA index | 0.494 | 0.088 | 0.283 | 0.294 | 3.495 | 0.002 | 0.250 | 0.007 | 0.202 | 0.054 | 0.509 | 0.118 | 9.889 | <0.001 | 8.583 | <0.001 | 8.555 | 0.184 |
FPG (mg/dL) | 0.017 | 0.527 | 0.016 | 0.530 | 0.038 | 0.670 | 0.022 | 0.013 | 0.017 | 0.077 | 0.043 | 0.072 | 0.801 | <0.001 | 0.767 | <0.001 | 0.619 | 0.190 |
HbA1c (%) | 0.454 | 0.572 | 0.373 | 0.613 | 2.447 | 0.451 | 0.437 | 0.093 | 0.274 | 0.345 | 1.703 | 0.046 | 17.633 | 0.004 | 15.368 | 0.025 | 27.970 | 0.100 |
TG (mg/dL) | 0.027 | 0.001 | 0.031 | <0.001 | 0.032 | 0.223 | 0.007 | 0.006 | 0.006 | 0.076 | 0.013 | 0.075 | 0.290 | <0.001 | 0.226 | 0.003 | 0.354 | 0.008 |
HDL-C (mg/dL) | −0.066 | 0.004 | −0.086 | 0.004 | −0.068 | 0.073 | −0.029 | <0.001 | −0.022 | 0.079 | −0.033 | 0.001 | −0.903 | <0.001 | −1.100 | <0.001 | −0.548 | 0.005 |
Serotonin (μg/L) | −0.006 | 0.399 | −0.015 | 0.214 | −0.003 | 0.704 | −0.005 | 0.029 | −0.008 | 0.075 | −0.003 | 0.199 | −0.112 | 0.029 | −0.082 | 0.492 | −0.088 | 0.560 |
Vitamin E (mg) | 0.061 | 0.338 | 0.029 | 0.746 | 0.076 | 0.436 | 0.029 | 0.165 | 0.024 | 0.507 | 0.034 | 0.198 | 0.512 | 0.308 | 0.374 | 0.671 | 0.426 | 0.417 |
Vitamin C (mg) | 0.002 | 0.658 | −0.005 | 0.639 | 0.004 | 0.575 | 0.001 | 0.398 | 0.002 | 0.651 | 0.002 | 0.385 | 0.029 | 0.486 | −0.004 | 0.965 | 0.049 | 0.187 |
Folic acid (ng/mL) (3) | −0.049 | 0.705 | −0.257 | 0.076 | 0.202 | 0.386 | 0.001 | 0.349 | −0.017 | 0.768 | 0.120 | 0.044 | 0.980 | 0.340 | 0.140 | 0.923 | 2.397 | 0.043 |
PFA (g) | −0.013 | 0.835 | 0.016 | 0.864 | −0.044 | 0.644 | 0.025 | 0.206 | 0.037 | 0.304 | 0.025 | 0.329 | 0.498 | 0.308 | 0.594 | 0.499 | 0.460 | 0.362 |
Vitamin B12 (µg) | 0.034 | 0.789 | 0.267 | 0.100 | −0.136 | 0.511 | 0.066 | 0.114 | 0.156 | 0.012 | −0.022 | 0.697 | 1.917 | 0.055 | 3.714 | 0.015 | −0.065 | 0.954 |
Total PSQ30 score | −0.008 | 0.998 | −1.960 | 0.848 | −8.574 | 0.439 | −1.918 | 0.123 | −6.943 | 0.078 | 1.049 | 0.729 | −63.95 | 0.032 | −102.2 | 0.297 | 16.23 | 0.785 |
ITT Population Mean ± SD | HS Group (1) Mean ± SD | VHS Group (2) Mean ± SD | |||||||
---|---|---|---|---|---|---|---|---|---|
Coping strategy: ‘Allostatic load’ resulting in visceral adiposit | |||||||||
With visceral adiposity n = 28 | Without visceral adiposity n = 33 | p value | With visceral adiposity n = 20 | Without visceral adiposity n = 11 | p value | With visceral adiposity n = 8 | Without visceral adiposity n = 22 | p value | |
PSQ30 score | 0.619 ± 0.093 | 0.714 ± 0.120 | 0.003 | 0.573 ± 0.058 | 0.574 ± 0.058 | 0.992 | 0.735 ± 0.053 | 0.784 ± 0.070 | 0.072 |
FLI | 51.8 ± 25.8 | 17.9 ± 20.3 | <0.001 | 56.1 ± 26.7 | 17.7 ± 25.5 | <0.001 | 40.9 ± 21.2 | 18.1 ± 17.9 | 0.005 |
HOMA index | 2.3 ± 2.1 | 1.2 ± 0.5 | 0.002 | 2.7 ± 2.3 | 0.9 ± 0.4 | <0.001 | 1.4 ± 0.9 | 1.3 ± 0.5 | 0.738 |
HbA1c (%) | 5.7 ± 0.8 | 5.4 ± 0.3 | 0.050 | 5.7 ± 0.9 | 5.5 ± 0.3 | 0.830 | 5.6 ± 0.2 | 5.3 ± 0.3 | 0.034 |
CRP (mg/L) | 2.6 ± 3.6 | 1.8 ± 3.3 | 0.024 | 2.1 ± 2.0 | 1.8 ± 4.2 | 0.012 | 3.9 ± 6.0 | 1.8 ± 2.8 | 0.510 |
Coping strategy: Smoking | |||||||||
Smokers n = 15 | Non- smokers n = 46 | p value | Smokers n = 12 | Non- smokers n = 19 | p value | Smokers n = 3 | Non- smokers n = 27 | p value | |
PSQ30 score | 0.602 ± 0.091 | 0.693 ± 0.118 | 0.008 | 0.567 ± 0.054 | 0.578 ± 0.060 | 0.437 | 0.744 ± 0.062 | 0.774 ± 0.070 | 0.563 |
HbA1c (%) | 5.7 ± 1.0 | 5.4 ± 0.3 | 0.643 | 5.9 ± 1.1 | 5.4 ± 0.3 | 0.270 | 5.1 ± 0.1 | 5.4 ± 0.3 | 0.024 |
Uric acid (mg/dL) | 4.8 ± 1.1 | 4.8 ± 1.1 | 0.990 | 5.2 ± 1.0 | 4.9 ± 1.2 | 0.515 | 3.4 ± 0.3 | 4.7 ± 1.1 | 0.031 |
CRP (mg/L) | 3.1 ± 3.8 | 1.9 ± 3.3 | 0.091 | 3.5 ± 4.2 | 1.1 ± 0.8 | 0.071 | 1.6 ± 1.2 | 2.5 ± 4.1 | 0.778 |
Coping strategy: Physical activity | |||||||||
With physical activity n = 47 | Without physical activity n = 14 | p value | With physical activity n = 21 | Without physical activity n = 10 | p value | With physical activity n = 26 | Without physical activity n = 4 | p value | |
PSQ30 score | 0.687 ± 0.116 | 0.614 ± 0.109 | 0.039 | 0.581 ± 0.058 | 0.558 ± 0.052 | 0.306 | 0.773 ± 0.069 | 0.755 ± 0.076 | 0.670 |
HbA1c (%) | 5.4 ± 0.3 | 5.8 ± 1.0 | 0.060 | 5.4 ± 0.3 | 6.0 ± 1.2 | 0.194 | 5.4 ± 0.3 | 5.5 ± 0.2 | 0.293 |
HDL-C (mg/dL) | 67.5 ± 17.4 | 55.2 ± 24.8 | 0.006 | 64.5 ± 16.9 | 51.1 ± 14.3 | 0.030 | 70.0 ± 17.7 | 65.4 ± 43.1 | 0.298 |
Resting heart rate (1/min) | 65.0 ± 8.5 | 71.6 ± 6.7 | 0.008 | 63.6 ± 6.7 | 71.7 ± 6.8 | 0.006 | 66.2 ± 9.7 | 71.3 ± 7.4 | 0.305 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armborst, D.; Bitterlich, N.; Alteheld, B.; Rösler, D.; Metzner, C.; Siener, R. Coping Strategies Influence Cardiometabolic Risk Factors in Chronic Psychological Stress: A Post Hoc Analysis of A Randomized Pilot Study. Nutrients 2022, 14, 77. https://doi.org/10.3390/nu14010077
Armborst D, Bitterlich N, Alteheld B, Rösler D, Metzner C, Siener R. Coping Strategies Influence Cardiometabolic Risk Factors in Chronic Psychological Stress: A Post Hoc Analysis of A Randomized Pilot Study. Nutrients. 2022; 14(1):77. https://doi.org/10.3390/nu14010077
Chicago/Turabian StyleArmborst, Deborah, Norman Bitterlich, Birgit Alteheld, Daniela Rösler, Christine Metzner, and Roswitha Siener. 2022. "Coping Strategies Influence Cardiometabolic Risk Factors in Chronic Psychological Stress: A Post Hoc Analysis of A Randomized Pilot Study" Nutrients 14, no. 1: 77. https://doi.org/10.3390/nu14010077
APA StyleArmborst, D., Bitterlich, N., Alteheld, B., Rösler, D., Metzner, C., & Siener, R. (2022). Coping Strategies Influence Cardiometabolic Risk Factors in Chronic Psychological Stress: A Post Hoc Analysis of A Randomized Pilot Study. Nutrients, 14(1), 77. https://doi.org/10.3390/nu14010077