Number of Days Required to Estimate Habitual Vegetable Variety: A Cross-Sectional Analysis Using Dietary Records for 7 Consecutive Days
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. Data Analysis
3. Results
4. Discussion
Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.-Y.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit. Rev. Food Sci. Nutr. 2020, 60, 2174–2211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Global Strategy on Diet, Physical Activity and Health; World Health Organization: Geneva, Switzerland, 2004.
- Keim, N.L.; Forester, S.M.; Lyly, M.; Aaron, G.J.; Townsend, M.S. Vegetable variety is a key to improved diet quality in low-income women in California. J. Acad. Nutr. Diet. 2014, 114, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Bhupathiraju, S.N.; Tucker, K.L. Variety in fruit and vegetable intake and cognitive function in middle-aged and older Puerto Rican adults. Br. J. Nutr. 2013, 109, 503–510. [Google Scholar] [CrossRef]
- Cooper, A.J.; Sharp, S.J.; Lentjes, M.A.H.; Luben, R.N.; Khaw, K.-T.; Wareham, N.J.; Forouhi, N.G. A prospective study of the association between quantity and variety of fruit and vegetable intake and incident type 2 diabetes. Diabetes Care 2012, 35, 1293–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Büchner, F.L.; Bueno-de-Mesquita, H.B.; Ros, M.M.; Overvad, K.; Dahm, C.C.; Hansen, L.; Tjønneland, A.; Clavel-Chapelon, F.; Boutron-Ruault, M.-C.; Touillaud, M.; et al. Variety in fruit and vegetable consumption and the risk of lung cancer in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 2278–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans 2020–2025; USDA Publication and HHS Publication: Washington, DC, USA, 2020.
- National Health and Medical Research Council. Australian Dietary Guidelines; National Health and Medical Research Council: Canberra, Australia, 2013.
- Marshall, A.N.; van den Berg, A.; Ranjit, N.; Hoelscher, D.M. A scoping review of the operationalization of fruit and vegetable variety. Nutrients 2020, 12, 2868. [Google Scholar] [CrossRef] [PubMed]
- Willett, W. Food frequency methods. In Nutritional Epidemiology, 3rd ed.; Willett, W.C., Ed.; Oxford University Press: New York, NY, USA, 2013; pp. 70–95. [Google Scholar]
- Ministry of Health, Labour and Welfare. The National Health and Nutrition Survey in Japan. 2019. Available online: https://www.mhlw.go.jp/content/000710991.pdf (accessed on 10 November 2021).
- Drewnowski, A.; Henderson, S.A.; Driscoll, A.; Rolls, B.J. The dietary variety score: Assessing diet quality in healthy young and older adults. J. Am. Diet. Assoc. 1997, 97, 266–271. [Google Scholar] [CrossRef]
- Asato, L.; Hiroi, Y.; Shirota, T.; Toyokawa, H.; Shinjo, S.; Yamamto, S. Analyses of food intake by female college students and their dietary habits: Saturation curve of number of consumed food items accompanying increase of number of meals. Jpn. J. Nutr. Diet. 1992, 50, 275–283. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Forestry and Fisheries. 2015 Census of Agriculture and Forestry in Japan Report and Data on the Results. Available online: https://www.maff.go.jp/j/tokei/census/afc2015/280624.html (accessed on 10 November 2021).
- Baranowski, T. 24-hour recall and diet record methods. In Nutritional Epidemiology, 3rd ed.; Willett, W.C., Ed.; Oxford University Press: New York, NY, USA, 2013; pp. 49–69. [Google Scholar]
- Ministry of Education, Culture, Sports, Science and Technology. Standards Tables of Food Composition in Japan-2015-(Seventh Revised Edition). Available online: https://www.mext.go.jp/en/policy/science_technology/policy/title01/detail01/1374030.htm (accessed on 10 November 2021).
- Meengs, J.S.; Roe, L.S.; Rolls, B.J. Vegetable variety: An effective strategy to increase vegetable intake in adults. J. Acad. Nutr. Diet. 2012, 112, 1211–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, M.; Blekkenhorst, L.C.; Lewis, J.R.; Bondonno, C.P.; Devine, A.; Zhu, K.; Woodman, R.J.; Prince, R.L.; Hodgson, J.M. Vegetable diversity, injurious falls, and fracture risk in older women: A prospective cohort study. Nutrients 2018, 10, 1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashton, L.; Williams, R.; Wood, L.; Schumacher, T.; Burrows, T.; Rollo, M.; Pezdirc, K.; Callister, R.; Collins, C.E. The comparative validity of a brief diet screening tool for adults: The Fruit and Vegetable VAriety index (FAVVA). Clin. Nutr. ESPEN 2019, 29, 189–197. [Google Scholar] [CrossRef]
- Kushida, O.; Murayama, N.; Iriyama, Y.; Horikoshi, K.; Takemi, Y.; Yoshiike, N. An algorithm for assessing changes in vegetable intake behavior in adult male in Japan. Jpn. J. Nutr. Diet. 2011, 69, 294–303. [Google Scholar] [CrossRef]
- Dowd, J.E.; Riggs, D.S. A comparison of estimates of michaelis-menten kinetic constants from various linear transformations. J. Biol. Chem. 1965, 240, 863–869. [Google Scholar] [CrossRef]
- Azadbakht, L.; Mirmiran, P.; Azizi, F. Variety scores of food groups contribute to the specific nutrient adequacy in Tehranian men. Eur. J. Clin. Nutr. 2005, 59, 1233–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandevijvere, S.; De Vriese, S.; Huybrechts, I.; Moreau, M.; Van Oyen, H. Overall and within-food group diversity are associated with dietary quality in Belgium. Public Health Nutr. 2010, 13, 1965–1973. [Google Scholar] [CrossRef] [Green Version]
- Giskes, K.; Turrell, G.; Patterson, C.; Newman, B. Socio-economic differences in fruit and vegetable consumption among Australian adolescents and adults. Public Health Nutr. 2002, 5, 663–669. [Google Scholar] [CrossRef] [Green Version]
- Conklin, A.I.; Forouhi, N.G.; Suhrcke, M.; Surtees, P.; Wareham, N.J.; Monsivais, P. Variety more than quantity of fruit and vegetable intake varies by socioeconomic status and financial hardship. Findings from older adults in the EPIC cohort. Appetite 2014, 83, 248–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinther, J.L.; Conklin, A.I.; Wareham, N.J.; Monsivais, P. Marital transitions and associated changes in fruit and vegetable intake: Findings from the population-based prospective EPIC-Norfolk cohort, UK. Soc. Sci. Med. 2016, 157, 120–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulkerson, J.A.; Larson, N.; Horning, M.; Neumark-Sztainer, D. A review of associations between family or shared meal frequency and dietary and weight status outcomes across the lifespan. J. Nutr. Educ. Behav. 2014, 46, 2–19. [Google Scholar] [CrossRef]
- Kennedy, G.; Ballard, T.; Dop, M.C. Guidelines for Measuring Household and Individual Dietary Diversity; Food and Agriculture Organization of the United Nation: Rome, Italy, 2013. [Google Scholar]
- Sasaki, S.; Takahashi, T.; Iitoi, Y.; Iwase, Y.; Kobayashi, M.; Ishihara, J.; Akabane, M.; Tsugane, S. Food and nutrient intakes assessed with dietary records for the validation study of a self-administered food frequency questionnaire in JPHC Study Cohort I. J. Epidemiol. 2003, 13, 23–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conklin, A.I.; Monsivais, P.; Khaw, K.T.; Wareham, N.J.; Forouhi, N.G. Dietary diversity, diet cost, and incidence of type 2 diabetes in the United Kingdom: A prospective cohort study. PLoS Med. 2016, 13, e1002123. [Google Scholar] [CrossRef] [PubMed]
Item No. 1 | Food and Description 1 | Ex. 1 | Ex. 2 | Ex. 3 | Ex. 4 |
---|---|---|---|---|---|
(Peas) | |||||
Pea sprouts | |||||
06019 | Stem and leaves, raw | ||||
06329 | Sprouts, raw | ||||
06330 | Sprouts, boiled | v | |||
06331 | Sprouts, sautéed | ||||
Snow peas | |||||
06020 | Immature pods, raw | ||||
06021 | Immature pods, boiled | v | |||
Snap peas | |||||
06022 | Immature pods, raw | ||||
Green peas | |||||
06023 | Raw | ||||
06024 | Boiled | v | |||
06025 | Frozen | v | |||
06026 | Canned in brine | ||||
(Japanese radish, Daikon) | |||||
Daikon, sprouts | |||||
06128 | Sprouts, raw | v | |||
Daikon, cultivar for leaf use | |||||
06129 | Leaves, raw | ||||
Daikon | |||||
06130 | Leaves, raw | ||||
06131 | Leaves, boiled | v | |||
06132 | Root with skin, raw | v | |||
06133 | Root with skin, boiled | ||||
06134 | Root without skin, raw | ||||
06135 | Root without skin, boiled | ||||
Kiriboshi-daikon 2 | |||||
06136 | Raw | ||||
06334 | Rehydrated and boiled | v | |||
06335 | Rehydrated and sautéed | ||||
Pickles | |||||
06137 | Nukamiso-zuke 3 | v | |||
06138 | Takuan-zuke 4 | ||||
Total Items | 2 | 1 | 2 | 1 |
Total (n = 60) | Rural Residents (n = 16) | General Students (n = 17) | Nutrition Students (n = 27) | p 1 | |
---|---|---|---|---|---|
Age (year) | 31.3 (18.6) | 59.4 (14.7) a | 20.2 (0.8) b | 21.7 (0.7) b | <0.001 |
Women (n) | 35 (58.3) | 8 (50.0) | 5 (29.4) a | 22 (81.5) b | 0.002 |
BMI (kg/m2) | 21.5 (2.5) | 23.1 (2.8) a | 22.5 (2.0) a | 19.9 (1.7) b | <0.001 |
Living alone (n) | 26 (43.3) | 0 (0.0) a | 13 (76.5) b | 13 (48.1) b | <0.001 |
No. of V servings/day | a | b | b | 0.015 | |
Very few (n) | 4 (6.7) | 0 (0.0) | 2 (11.8) | 2 (7.4) | |
1–2 servings (n) | 32 (53.3) | 5 (31.3) | 10 (58.8) | 17 (63.0) | |
3–4 servings (n) | 21 (35.0) | 9 (56.3) | 4 (23.5) | 8 (29.6) | |
5–6 servings (n) | 2 (3.3) | 1 (6.3) | 1 (5.9) | 0 (0.0) | |
≥7 servings (n) | 1 (1.7) | 1 (6.3) | 0 (0.0) | 0 (0.0) |
Total (n = 60) | Rural Residents (n = 16) | General Students (n = 17) | Nutrition Students (n = 27) | p 1 | |
---|---|---|---|---|---|
No. of V consumed | a | b | b | 0.013 | |
1 days | 6.0 (3.4) | 7.9 (3.9) | 5.3 (3.9) | 5.4 (2.4) | |
2 days | 9.2 (4.3) | 12.1 (3.7) | 8.4 (4.1) | 8.0 (4.0) | |
3 days | 11.8 (4.5) | 14.4 (4.5) | 10.5 (4.0) | 11.1 (4.3) | |
4 days | 13.8 (4.5) | 16.5 (4.5) | 12.7 (4.2) | 12.9 (4.2) | |
5 days | 15.3 (5.0) | 18.3 (5.6) | 14.1 (4.7) | 14.2 (4.2) | |
6 days | 16.7 (5.4) | 19.5 (5.7) | 15.9 (5.8) | 15.4 (4.3) | |
7 days | 17.9 (5.4) | 20.6 (5.9) | 17.2 (5.6) | 16.6 (4.5) | |
(reference value) | |||||
Max theoretical No. | 24.8 | 27.0 | 24.8 | 24.0 | |
Capture proportion | |||||
1 days/7 days | 33.5 (15.6) | 37.2 (12.7) | 29.2 (18.2) | 34.0 (15.3) | 0.334 |
2 days/7 days | 51.3 (17.1) | 59.3 (10.9) | 48.0 (17.5) | 48.6 (18.8) | 0.091 |
3 days/7 days | 66.0 (13.9) | 70.2 (11.2) | 61.8 (14.0) | 66.2 (14.8) | 0.221 |
4 days/7 days | 77.5 (11.5) | 80.8 (9.1) | 74.7 (11.8) | 77.4 (12.4) | 0.315 |
5 days/7 days | 85.6 (9.6) | 88.5 (6.8) | 82.4 (11.3) | 85.9 (9.7) | 0.190 |
6 days/7 days | 93.1 (7.3) | 94.6 (6.1) | 92.0 (9.3) | 93.0 (6.6) | 0.609 |
(reference value) | |||||
7 days/Max days 2 | 71.9 | 76.3 | 69.4 | 69.2 | |
Correlation coefficient | |||||
1 days–7 days | 0.62 *** | 0.78 *** | 0.69 ** | 0.21 | |
2 days–7 days | 0.72 *** | 0.89 *** | 0.72 ** | 0.51 ** | |
3 days–7 days | 0.84 *** | 0.93 *** | 0.79 *** | 0.78 *** | |
4 days–7 days | 0.91 *** | 0.95 *** | 0.91 *** | 0.87 *** | |
5 days–7 days | 0.94 *** | 0.98 *** | 0.90 *** | 0.92 *** | |
6 days–7 days | 0.98 *** | 0.98 *** | 0.98 *** | 0.97 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurisaki, R.; Kushida, O. Number of Days Required to Estimate Habitual Vegetable Variety: A Cross-Sectional Analysis Using Dietary Records for 7 Consecutive Days. Nutrients 2022, 14, 56. https://doi.org/10.3390/nu14010056
Kurisaki R, Kushida O. Number of Days Required to Estimate Habitual Vegetable Variety: A Cross-Sectional Analysis Using Dietary Records for 7 Consecutive Days. Nutrients. 2022; 14(1):56. https://doi.org/10.3390/nu14010056
Chicago/Turabian StyleKurisaki, Ryoko, and Osamu Kushida. 2022. "Number of Days Required to Estimate Habitual Vegetable Variety: A Cross-Sectional Analysis Using Dietary Records for 7 Consecutive Days" Nutrients 14, no. 1: 56. https://doi.org/10.3390/nu14010056
APA StyleKurisaki, R., & Kushida, O. (2022). Number of Days Required to Estimate Habitual Vegetable Variety: A Cross-Sectional Analysis Using Dietary Records for 7 Consecutive Days. Nutrients, 14(1), 56. https://doi.org/10.3390/nu14010056