Hydrogen and Methane Breath Test in the Diagnosis of Lactose Intolerance
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vandenplas, Y. Lactose intolerance. Asia Pac. J. Clin. Nutr. 2015, 24 (Suppl. 1), S9–S13. [Google Scholar] [CrossRef]
- Berni Canani, R.; Pezzella, V.; Amoroso, A.; Cozzolino, T.; Di Scala, C.; Passariello, A. Diagnosing and Treating Intolerance to Carbohydrates in Children. Nutrients 2016, 8, 157. [Google Scholar] [CrossRef]
- Christl, S.U.; Murgatroyd, P.R.; Gibson, G.R.; Cummings, J.H. Production, metabolism, and excretion of hydrogen in the large intestine. Gastroenterology 1992, 102, 1269–1277. [Google Scholar] [CrossRef]
- Simrén, M.; Stotzer, P.O. Use and abuse of hydrogen breath tests. Gut 2006, 55, 297–303. [Google Scholar] [CrossRef]
- Di Camillo, M.; Marinaro, V.; Argnani, F.; Foglietta, T.; Vernia, P. Hydrogen breath test for diagnosis of lactose malabsorption: the importance of timing and the number of breath samples. Can. J. Gastroenterol. 2006, 20, 265–268. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Romagnuolo, J.; Schiller, D.; Bailey, R.J. Using breath tests wisely in a gastroenterology practice: an evidence-based review of indications and pitfalls in interpretation. Am. J. Gastroenterol. 2002, 97, 1113–1126. [Google Scholar] [CrossRef] [PubMed]
- Marton, A.; Xue, X.; Szilagyi, A. Meta-analysis: the diagnostic accuracy of lactose breath hydrogen or lactose tolerance tests for predicting the North European lactase polymorphism C/T-13910. Aliment. Pharmacol. Ther. 2012, 35, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Gasbarrini, A.; Corazza, G.R.; Gasbarrini, G.; Montalto, M.; Di Stefano, M.; Basilisco, G.; Parodi, A.; Usai-Satta, P.; Satta, P.U.; Vernia, P.; et al. Methodology and indications of H2-breath testing in gastrointestinal diseases: the Rome Consensus Conference. Aliment. Pharmacol. Ther. 2009, 29 (Suppl. 1), 1–49. [Google Scholar] [CrossRef] [PubMed]
- Kerber, M.; Oberkanins, C.; Kriegshäuser, G.; Kollerits, B.; Dossenbach-Glaninger, A.; Fuchs, D.; Ledochowski, M. Hydrogen breath testing versus LCT genotyping for the diagnosis of lactose intolerance: A matter of age? Clin. Chim. Acta 2007, 383, 91–96. [Google Scholar] [CrossRef]
- Eisenmann, A.; Amann, A.; Said, M.; Datta, B.; Ledochowski, M. Implementation and interpretation of hydrogen breath tests. J. Breath Res. 2008, 2, 046002. [Google Scholar] [CrossRef]
- Lee, M.; Barrie, S. Breath testing in intestinal disaccharidase deficiency and bacterial overgrowth of the small intestine. J. Nutr. Environ. Med. 1996, 6, 43–54. [Google Scholar] [CrossRef]
- Wolin, M.J. Fermentation in the rumen and human large intestine. Science 1981, 213, 1463–1468. [Google Scholar] [CrossRef]
- Vernia, P.; Camillo, M.D.; Marinaro, V.; Caprilli, R. Effect of predominant methanogenic flora on the outcome of lactose breath test in irritable bowel syndrome patients. Eur. J. Clin. Nutr. 2003, 57, 1116–1119. [Google Scholar] [CrossRef] [PubMed]
- Medow, M.S.; Glassman, M.S.; Schwarz, S.M.; Newman, L.J. Respiratory methane excretion in children with lactose intolerance. Dig. Dis. Sci. 1993, 38, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Corazza, G.R.; Benati, G.; Strocchi, A.; Malservisi, S.; Gasbarrini, G. The possible role of breath methane measurement in detecting carbohydrate malabsorption. J. Lab. Clin. Med. 1994, 124, 695–700. [Google Scholar] [PubMed]
- Waud, J.P.; Matthews, S.B.; Campbell, A.K. Measurement of breath hydrogen and methane, together with lactase genotype, defines the current best practice for investigation of lactose sensitivity. Ann. Clin. Biochem. 2008, 45, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Khin, M.; Bolin, T.D.; Oo, K.-M.; Oo, T.; Kyaw-Hla, S.; Thein-Myint, T. Ineffectiveness of breath methane excretion as a diagnostic test for lactose malabsorption. J. Pediatr. Gastroenterol. Nutr. 1999, 28, 474–479. [Google Scholar] [CrossRef]
- Catanzaro, R.; Sciuto, M.; Marotta, F. Lactose intolerance: An update on its pathogenesis, diagnosis, and treatment. Nutr. Res. 2021, 89, 23–34. [Google Scholar] [CrossRef]
- Rezaie, A.; Buresi, M.; Lembo, A.; Lin, H.; McCallum, R.; Rao, S.; Schmulson, M.; Valdovinos, M.; Zakko, S.; Pimentel, M. Hydrogen and Methane-Based Breath Testing in Gastrointestinal Disorders: The North American Consensus. Am. J. Gastroenterol. 2017, 112, 775–784. [Google Scholar] [CrossRef]
- Houben, E.; De Preter, V.; Billen, J.; Van Ranst, M.; Verbeke, K. Additional Value of CH4 Measurement in a Combined (13)C/H2 Lactose Malabsorption Breath Test: A Retrospective Analysis. Nutrients 2015, 7, 7469–7485. [Google Scholar] [CrossRef]
- Peron, G.; Dall’Acqua, S.; Sorrenti, V.; Carrara, M.; Fortinguerra, S.; Zorzi, G.; Buriani, A. Retrospective analysis of a lactose breath test in a gastrointestinal symptomatic population of Northeast Italy: use of (H2+2CH4) versus H2 threshold. Clin. Exp. Gastroenterol. 2018, 11, 243–248. [Google Scholar] [CrossRef]
- De Lacy Costello, B.P.; Ledochowski, M.; Ratcliffe, N.M. The importance of methane breath testing: a review. J. Breath Res. 2013, 7, 024001. [Google Scholar] [CrossRef] [PubMed]
- Ruzsanyi, V.; Heinz-Erian, P.; Entenmann, A.; Karall, D.; Müller, T.; Schimkowitsch, A.; Amann, A.; Scholl-Bürgi, S. Diagnosing lactose malabsorption in children: Difficulties in interpreting hydrogen breath test results. J. Breath Res. 2016, 10, 016015. [Google Scholar] [CrossRef] [PubMed]
- Hovde, Ø.; Farup, P.G. A comparison of diagnostic tests for lactose malabsorption--which one is the best? BMC Gastroenterol. 2009, 9, 82. [Google Scholar] [CrossRef]
- Tormo, R.; Bertaccini, A.; Conde, M.; Infante, D.; Cura, I. Methane and hydrogen exhalation in normal children and in lactose malabsorption. Early Hum. Dev. 2001, 65, S165–S172. [Google Scholar] [CrossRef]
- Bond, J.H.; Engel, R.R.; Levitt, M.D. Factors influencing pulmonary methane excretion in man. An indirect method of studying the in situ metabolism of the methane-producing colonic bacteria. J. Exp. Med. 1971, 133, 572–588. [Google Scholar] [CrossRef]
- Basseri, R.J.; Basseri, B.; Pimentel, M.; Chong, K.; Youdim, A.; Low, K.; Hwang, L.; Soffer, E.; Chang, C.; Mathur, R. Intestinal methane production in obese individuals is associated with a higher body mass index. Gastroenterol. Hepatol. 2012, 8, 22–28. [Google Scholar]
- Hammer, K.; Hasanagic, H.; Memaran, N.; Huber, W.D.; Hammer, J. Relevance of Methane and Carbon Dioxide Evaluation in Breath Tests for Carbohydrate Malabsorption in a Paediatric Cohort. J. Pediatr. Gastroenterol. Nutr. 2021, 72, e71–e77. [Google Scholar] [CrossRef]
- Schneider, C.; Wutzke, K.D.; Däbritz, J. Methane breath tests and blood sugar tests in children with suspected carbohydrate malabsorption. Sci. Rep. 2020, 10, 18972. [Google Scholar] [CrossRef]
- Kunkel, D.; Basseri, R.J.; Makhani, M.D.; Chong, K.; Chang, C.; Pimentel, M. Methane on breath testing is associated with constipation: a systematic review and meta-analysis. Dig. Dis. Sci. 2011, 56, 1612–1618. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Deepinder, F.; Morales, W.; Hwang, L.; Weitsman, S.; Chang, C.; Gunsalus, R.; Pimentel, M. Methanobrevibacter smithii is the predominant methanogen in patients with constipation-predominant IBS and methane on breath. Dig. Dis. Sci. 2012, 57, 3213–3218. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, K.; Le, C.; Wacher, V.; Sliman, J.; Cruz, C.; Porter, T.; Carter, S. Selection of a cut-off for high- and low-methane producers using a spot-methane breath test: results from a large north American dataset of hydrogen, methane and carbon dioxide measurements in breath. Gastroenterol. Rep. 2017, 5, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Pimentel, M.; Chen, J. Intestinal transit is slowed by luminal methane. Neurogastroenterol. Motil. 2002, 14, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Furnari, M.; Savarino, E.; Bruzzone, L.; Moscatelli, A.; Gemignani, L.; Giannini, E.G.; Zentilin, P.; Dulbecco, P.; Savarino, V. Reassessment of the role of methane production between irritable bowel syndrome and functional constipation. J. Gastrointest. Liver Dis. 2012, 21, 157–163. [Google Scholar]
- Polag, D.; Leiß, O.; Keppler, F. Age dependent breath methane in the German population. Sci. Total Environ. 2014, 481, 582–587. [Google Scholar] [CrossRef]
- Triantafyllou, K.; Chang, C.; Pimentel, M. Methanogens, methane and gastrointestinal motility. J. Neurogastroenterol. Motil. 2014, 20, 31–40. [Google Scholar] [CrossRef]
- Mello, C.S.; Tahan, S.; Melli, L.C.; Rodrigues, M.S.; de Mello, R.M.; Scaletsky, I.C.; de Morais, M.B. Methane production and small intestinal bacterial overgrowth in children living in a slum. World J. Gastroenterol. 2012, 18, 5932–5939. [Google Scholar] [CrossRef]
- Conway de Macario, E.; Macario, A.J. Methanogenic archaea in health and disease: a novel paradigm of microbial pathogenesis. Int. J. Med. Microbiol. 2009, 299, 99–108. [Google Scholar] [CrossRef]
- Szabó, A.; Ruzsanyi, V.; Unterkofler, K.; Mohácsi, Á.; Tuboly, E.; Boros, M.; Szabó, G.; Hinterhuber, H.; Amann, A. Exhaled methane concentration profiles during exercise on an ergometer. J. Breath Res. 2015, 9, 016009. [Google Scholar] [CrossRef]
- Bond, J.; Engel, R.; Levitt, M. Methane production in man. Gastroenterology 1970, 58, 1035. [Google Scholar]
- Peled, Y.; Gilat, T.; Liberman, E.; Bujanover, Y. The development of methane production in childhood and adolescence. J. Pediatr. Gastroenterol. Nutr. 1985, 4, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Sahakian, A.B.; Jee, S.R.; Pimentel, M. Methane and the gastrointestinal tract. Dig. Dis. Sci. 2010, 55, 2135–2143. [Google Scholar] [CrossRef] [PubMed]
- Belson, A.; Shetty, A.K.; Yorgin, P.D.; Bujanover, Y.; Peled, Y.; Dar, M.H.; Reif, S. Colonic hydrogen elimination and methane production in infants with and without infantile colic syndrome. Dig. Dis. Sci. 2003, 48, 1762–1766. [Google Scholar] [CrossRef] [PubMed]
- Levitt, M.D.; Furne, J.K.; Kuskowski, M.; Ruddy, J. Stability of human methanogenic flora over 35 years and a review of insights obtained from breath methane measurements. Clin. Gastroenterol. Hepatol. 2006, 4, 123–129. [Google Scholar] [CrossRef]
H2 + | H2 − | Total | |
---|---|---|---|
CH4 + | 31 (14.8%) M: 3 I: 28 | 12 (5.7%) M: 6 I: 6 | 43 (20.6%) |
CH4 − | 65 (31.1%) M: 13 I: 52 | 101 (48.3%) | 166 (79.4%) |
Total | 96 (46.0%) | 113 (54.0%) | 209 |
H2 + | H2 − | CH4 + | CH4 − | |
---|---|---|---|---|
Baseline H2 | 21.3 (±22.1) | 18.5 (±19.9) | 15.1 (±12.5) | 21.2 (±22.8) |
Max H2 level | 142.4 (±101) | 21.2 (±21.4) | 120.0 (±106.6) | 59.3 (±80.8) |
Delta H2 | 121 (±95.9) | 2.7 (±14.7) | 104.6 (±106.5) | 38.1 (±72.9) |
Baseline CH4 | 17.5 (±8.9) | 18.8 (±12.7) | 21.4 (±15.1) | 17.2 (±9.3) |
Max CH4 | 26.4 (±13.6) | 22.0 (±15.9) | 36.4 (±20.8) | 19.8 (±9.5) |
Delta CH4 | 8.9 (±8.9) | 3.2 (±6.3) | 15.0 (±10.7) | 2.6 (±3.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Geyter, C.; Van de Maele, K.; Hauser, B.; Vandenplas, Y. Hydrogen and Methane Breath Test in the Diagnosis of Lactose Intolerance. Nutrients 2021, 13, 3261. https://doi.org/10.3390/nu13093261
De Geyter C, Van de Maele K, Hauser B, Vandenplas Y. Hydrogen and Methane Breath Test in the Diagnosis of Lactose Intolerance. Nutrients. 2021; 13(9):3261. https://doi.org/10.3390/nu13093261
Chicago/Turabian StyleDe Geyter, Charlotte, Kris Van de Maele, Bruno Hauser, and Yvan Vandenplas. 2021. "Hydrogen and Methane Breath Test in the Diagnosis of Lactose Intolerance" Nutrients 13, no. 9: 3261. https://doi.org/10.3390/nu13093261
APA StyleDe Geyter, C., Van de Maele, K., Hauser, B., & Vandenplas, Y. (2021). Hydrogen and Methane Breath Test in the Diagnosis of Lactose Intolerance. Nutrients, 13(9), 3261. https://doi.org/10.3390/nu13093261