Associations between Early-Life Food Deprivation and Risk of Frailty of Middle-Age and Elderly People: Evidence from the China Health and Retirement Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Subjects
2.2. Measurement of Frailty
2.3. Measurement of Childhood Food Deprivation
- (1)
- Self-reported FD experience before age 12;
- (2)
- Born and brought up in famine-affected areas and in famine periods shown below;
- (3)
- Born and brought up in the Great Famine and had either their immediate families or siblings starved to death, with delayed conception, with the inability to conceive a child, or having had an abortion in the Great Famine.
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Subjects Characteristics
3.2. FD in Childhood and Risk of (pre)Frailty over Aging
3.3. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Sicsic, J.; Rapp, T. Frailty transitions and health care use in Europe. Health Serv. Res. 2019, 54, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Puts, M.; Jiang, F.; Zhou, C.; Tang, S.; Chen, S. Physical frailty and its associated factors among elderly nursing home residents in China. BMC Geriatr. 2020, 20, 294. [Google Scholar] [CrossRef] [PubMed]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef]
- Anand, P.; Behrman, J.R.; Dang, H.H.; Jones, S. Varied patterns of catch-up in child growth: Evidence from Young Lives. Soc. Sci. Med. 2018, 214, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Hanlon, P.; Nicholl, B.I.; Jani, B.D.; Lee, D.; McQueenie, R.; Mair, F.S. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: A prospective analysis of 493 737 UK Biobank participants. Lancet Public Health 2018, 3, e323–e332. [Google Scholar] [CrossRef]
- Chang, S.F.; Lin, P.L. Frail phenotype and mortality prediction: A systematic review and meta-analysis of prospective cohort studies. Int. J. Nurs. Stud. 2015, 52, 1362–1374. [Google Scholar] [CrossRef]
- Shamliyan, T.; Talley, K.M.; Ramakrishnan, R.; Kane, R.L. Association of frailty with survival: A systematic literature review. Ageing Res. Rev. 2013, 12, 719–736. [Google Scholar] [CrossRef]
- He, B.; Ma, Y.; Wang, C.; Jiang, M.; Geng, C.; Chang, X.; Ma, B.; Han, L. Prevalence and Risk Factors for Frailty among Community-Dwelling Older People in China: A Systematic Review and Meta-Analysis. J. Nutr. Health Aging 2019, 23, 442–450. [Google Scholar] [CrossRef]
- Fan, J.; Yu, C.; Guo, Y.; Bian, Z.; Sun, Z.; Yang, L.; Chen, Y.; Du, H.; Li, Z.; Lei, Y.; et al. Frailty index and all-cause and cause-specific mortality in Chinese adults: A prospective cohort study. Lancet Public Health 2020, 5, e650–e660. [Google Scholar] [CrossRef]
- Alvarado, B.E.; Zunzunegui, M.V.; Beland, F.; Bamvita, J.M. Life course social and health conditions linked to frailty in Latin American older men and women. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 1399–1406. [Google Scholar] [CrossRef] [Green Version]
- Pavela, G.; Latham, K. Childhood Conditions and Multimorbidity Among Older Adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 2016, 71, 889–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohn-Schwartz, E.; Weinstein, G. Early-life food deprivation and cognitive performance among older Europeans. Maturitas 2020, 141, 26–32. [Google Scholar] [CrossRef]
- Lynch, J.; Smith, G.D. A life course approach to chronic disease epidemiology. Annu. Rev. Public Health 2005, 26, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Dannefer, D. Cumulative advantage/disadvantage and the life course: Cross-fertilizing age and social science theory. J. Gerontol. B Psychol. Sci. Soc. Sci. 2003, 58, S327–S337. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, K.F.; Shippee, T.P. Aging and cumulative inequality: How does inequality get under the skin? Gerontologist 2009, 49, 333–343. [Google Scholar] [CrossRef]
- Lu, J.; Li, M.; Xu, Y.; Bi, Y.; Qin, Y.; Li, Q.; Wang, T.; Hu, R.; Shi, L.; Su, Q.; et al. Early Life Famine Exposure, Ideal Cardiovascular Health Metrics, and Risk of Incident Diabetes: Findings From the 4C Study. Diabetes Care 2020, 43, 1902–1909. [Google Scholar] [CrossRef]
- Koupil, I.; Shestov, D.B.; Sparen, P.; Plavinskaja, S.; Parfenova, N.; Vagero, D. Blood pressure, hypertension and mortality from circulatory disease in men and women who survived the siege of Leningrad. Eur. J. Epidemiol. 2007, 22, 223–234. [Google Scholar] [CrossRef]
- Sparen, P.; Vagero, D.; Shestov, D.B.; Plavinskaja, S.; Parfenova, N.; Hoptiar, V.; Paturot, D.; Galanti, M.R. Long term mortality after severe starvation during the siege of Leningrad: Prospective cohort study. BMJ 2004, 328, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portrait, F.; Teeuwiszen, E.; Deeg, D. Early life undernutrition and chronic diseases at older ages: The effects of the Dutch famine on cardiovascular diseases and diabetes. Soc. Sci. Med. 2011, 73, 711–718. [Google Scholar] [CrossRef]
- Stephan, A.J.; Strobl, R.; Schwettmann, L.; Meisinger, C.; Ladwig, K.H.; Linkohr, B.; Thorand, B.; Peters, A.; Grill, E. Being born in the aftermath of World War II increases the risk for health deficit accumulation in older age: Results from the KORA-Age study. Eur. J. Epidemiol. 2019, 34, 675–687. [Google Scholar] [CrossRef]
- Smil, V. China’s great famine: 40 years later. BMJ 1999, 319, 1619–1621. [Google Scholar] [CrossRef] [Green Version]
- Van Der Linden, B.W.A.; Sieber, S.; Cheval, B.; Orsholits, D.; Guessous, I.; Gabriel, R.; Von Arx, M.; Kelly-Irving, M.; Aartsen, M.; Blane, D.; et al. Life-Course Circumstances and Frailty in Old Age Within Different European Welfare Regimes: A Longitudinal Study With SHARE. J. Gerontol. B Psychol. Sci. Soc. Sci. 2020, 75, 1326–1335. [Google Scholar] [CrossRef]
- Stolz, E.; Mayerl, H.; Waxenegger, A.; Rasky, E.; Freidl, W. Impact of socioeconomic position on frailty trajectories in 10 European countries: Evidence from the Survey of Health, Ageing and Retirement in Europe (2004–2013). J. Epidemiol. Community Health 2017, 71, 73–80. [Google Scholar] [CrossRef]
- Li, Y.; Xue, Q.L.; Odden, M.C.; Chen, X.; Wu, C. Linking early life risk factors to frailty in old age: Evidence from the China Health and Retirement Longitudinal Study. Age Ageing 2020, 49, 208–217. [Google Scholar] [CrossRef]
- Zhao, Y.; Strauss, J.; Yang, G.; Giles, J.; Hu, P.; Hu, Y.; Lei, X.; Liu, M.; Park, A.; James, P.S.; et al. China Health and Retirement Longitudinal Study: 2011–2012 National Baseline User’s Guide; National School of Development, Peking University: Beijing, China, 2013. [Google Scholar]
- Zhao, Y.; Hu, Y.; Smith, J.P.; Strauss, J.; Yang, G. Cohort profile: The China Health and Retirement Longitudinal Study (CHARLS). Int. J. Epidemiol. 2014, 43, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Faller, J.W.; Pereira, D.D.N.; de Souza, S.; Nampo, F.K.; Orlandi, F.S.; Matumoto, S. Instruments for the detection of frailty syndrome in older adults: A systematic review. PLoS ONE 2019, 14, e0216166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, L.; Qiao, X.; Tian, X.; Liu, N.; Jin, Y.; Si, H.; Wang, C. Cross-Cultural Adaptation and Validation of the FRAIL Scale in Chinese Community-Dwelling Older Adults. J. Am. Med. Dir. Assoc. 2018, 19, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Abellan van Kan, G.; Rolland, Y.M.; Morley, J.E.; Vellas, B. Frailty: Toward a clinical definition. J. Am. Med. Dir. Assoc. 2008, 9, 71–72. [Google Scholar] [CrossRef]
- Wenhai, L. The Research of Disasters of China in Modern Times; People’s Publishing House: Beijing, China, 2020. [Google Scholar]
- Ash, R. Penny Kane: Famine in China 1959-61—Demographic and Social Implications. Bull. Sch. Orient. Afr. Stud. 1992, 55, 591–592. [Google Scholar] [CrossRef]
- Chen, C.; Lu, F.C.; Department of Disease Control Ministry of Health, P.R.C. The guidelines for prevention and control of overweight and obesity in Chinese adults. Biomed Environ Sci. 2004, 17, 1–36. [Google Scholar] [PubMed]
- Boisgontier, M.P.; Cheval, B. The anova to mixed model transition. Neurosci. Biobehav. Rev. 2016, 68, 1004–1005. [Google Scholar] [CrossRef]
- Santos-Eggimann, B.; Cuenoud, P.; Spagnoli, J.; Junod, J. Prevalence of frailty in middle-aged and older community-dwelling Europeans living in 10 countries. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.J.; Xu, W.; Li, J.Q.; Cao, X.P.; Tan, L.; Yu, J.T. Early-Life Risk Factors for Dementia and Cognitive Impairment in Later Life: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2019, 67, 221–229. [Google Scholar] [CrossRef]
- Volkmar, M.; Dedeurwaerder, S.; Cunha, D.A.; Ndlovu, M.N.; Defrance, M.; Deplus, R.; Calonne, E.; Volkmar, U.; Igoillo-Esteve, M.; Naamane, N.; et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J. 2012, 31, 1405–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uauy, R.; Kain, J.; Corvalan, C. How can the Developmental Origins of Health and Disease (DOHaD) hypothesis contribute to improving health in developing countries? Am. J. Clin. Nutr. 2011, 94, 1759S–1764S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoet, J.J. The role of fetal and infant growth and nutrition in the causality of diabetes and cardiovascular disease in later life. SCN News 1997, 14, 10–13. [Google Scholar]
- Wilson, D.; Jackson, T.; Sapey, E.; Lord, J.M. Frailty and sarcopenia: The potential role of an aged immune system. Ageing Res. Rev. 2017, 36, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, J.; Shen, S.; Hong, X.; Zeng, X.; Yang, Y.; Liu, Z.; Chen, L.; Chen, X. Association Between Body Composition and Frailty in Elder Inpatients. Clin. Interv. Aging 2020, 15, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Mink, J.; Boutron-Ruault, M.C.; Charles, M.A.; Allais, O.; Fagherazzi, G. Associations between early-life food deprivation during World War II and risk of hypertension and type 2 diabetes at adulthood. Sci. Rep. 2020, 10, 5741. [Google Scholar] [CrossRef] [Green Version]
- Elias, S.G.; Keinan-Boker, L.; Peeters, P.H.; Van Gils, C.H.; Kaaks, R.; Grobbee, D.E.; Van Noord, P.A. Long term consequences of the 1944-1945 Dutch famine on the insulin-like growth factor axis. Int. J. Cancer 2004, 108, 628–630. [Google Scholar] [CrossRef] [Green Version]
- Qipeng, S. Time and Structure in Institutional Changes: The Evolution of the Household Registration System in China. Comp. Econ. Soc. Syst. 2019, 181–191. [Google Scholar]
- Weibin, G. On the Reform of Household Registration System in the Process of Rural Revitalization from Historical Perspective. J. Chin. Acad. Gov. 2018, 152–153. [Google Scholar] [CrossRef]
- Chan, K.W. The household registration system and migrant labor in China: Notes on a debate. Popul. Dev. Rev. 2010, 36, 357–364. [Google Scholar] [CrossRef]
- Bruyere, O.; Buckinx, F.; Beaudart, C.; Reginster, J.Y.; Bauer, J.; Cederholm, T.; Cherubini, A.; Cooper, C.; Cruz-Jentoft, A.J.; Landi, F.; et al. How clinical practitioners assess frailty in their daily practice: An international survey. Aging Clin. Exp. Res. 2017, 29, 905–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Overall 11,615 | Non-Frailty 6544 | Pre-Frailty 4492 | Frailty 579 |
---|---|---|---|---|
Age, years (SD) | 61.6 (9.6) | 60.3 (9.3) | 62.6 (9.8) | 67.2 (9.3) |
Gender | ||||
Male | 5388 (46.39%) | 3241 (49.53%) | 1872 (41.67%) | 175 (3.9%) |
Female | 6227 (53.61%) | 3203 (48.95%) | 2620 (58.33%) | 404 (8.99%) |
Education | ||||
Illiterate | 3234 (27.84%) | 1465 (22.39%) | 1487 (33.1%) | 282 (48.7%) |
Can read and write | 2265 (19.5%) | 1152 (17.6%) | 994 (22.13%) | 119 (20.55%) |
Primary school | 2636 (22.69%) | 1517 (23.18%) | 10013 (222.91%) | 106 (18.31%) |
Junior middle school | 2307 (19.86%) | 1535 (23.46%) | 723 (16.1%) | 49 (8.46%) |
High school and above | 1173 (10.1%) | 875 (13.37%) | 275 (6.12%) | 23 (3.97%) |
Marital status | ||||
Married | 9553 (82.25%) | 5530 (84.5%) | 3590 (79.92%) | 433 (74.78%) |
Divorced | 593 (5.11%) | 330 (5.04%) | 244 (5.43%) | 19 (3.28%) |
Widowed | 1389 (11.96%) | 647 (9.89%) | 618 (13.76%) | 124 (21.42%) |
Never married | 80 (0.69%) | 37 (0.57%) | 40 (0.89%) | 3 (0.52%) |
Residence | ||||
Urban | 4102 (35.32%) | 2584 (39.49%) | 1348 (30.01%) | 170 (29.36%) |
Rural | 7513 (64.68%) | 3960 (60.51%) | 3144 (69.99%) | 409 (70.64%) |
BMI 1 | ||||
<18.5 | 747 (6.43%) | 355 (5.42%) | 332 (7.39%) | 60 (10.36%) |
18.5–24 | 5843 (50.31%) | 3383 (51.7%) | 2242 (49.91%) | 218 (37.65%) |
24–28 | 3612 (31.1%) | 2100 (32.09%) | 1327 (29.54%) | 185 (31.95%) |
≥28 | 1413 (12.17%) | 706 (10.79%) | 591 (13.16%) | 116 (20.03%) |
Smoking | 5015 (43.18%) | 2935 (44.85%) | 1871 (41.65%) | 209 (36.1%) |
Drinking | 2987 (25.72%) | 1944 (29.71%) | 977 (21.75%) | 66 (11.4%) |
Age (Years) | Model 1 OR (95% CI) | Model 2 OR (95% CI) | Model 3 OR (95% CI) |
---|---|---|---|
Age 0–6 | 1.14 (1.06–1.18) * | 1.12 (1.06–1.18) * | 1.12 (1.06–1.18) * |
Age 6–12 | 1.17 (1.14–1.21) ** | 1.16 (1.12–1.20) ** | 1.15 (1.09–1.22) ** |
Age 0–6 * age 6–12 | 1.10 (1.03–1.17) | 1.09 (1.02–1.16) | 1.09 (1.02–1.18) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, C.; Aihemaitijiang, S.; Wang, R.; Halimulati, M.; Zhang, Z. Associations between Early-Life Food Deprivation and Risk of Frailty of Middle-Age and Elderly People: Evidence from the China Health and Retirement Longitudinal Study. Nutrients 2021, 13, 3066. https://doi.org/10.3390/nu13093066
Ye C, Aihemaitijiang S, Wang R, Halimulati M, Zhang Z. Associations between Early-Life Food Deprivation and Risk of Frailty of Middle-Age and Elderly People: Evidence from the China Health and Retirement Longitudinal Study. Nutrients. 2021; 13(9):3066. https://doi.org/10.3390/nu13093066
Chicago/Turabian StyleYe, Chen, Sumiya Aihemaitijiang, Ruoyu Wang, Mairepaiti Halimulati, and Zhaofeng Zhang. 2021. "Associations between Early-Life Food Deprivation and Risk of Frailty of Middle-Age and Elderly People: Evidence from the China Health and Retirement Longitudinal Study" Nutrients 13, no. 9: 3066. https://doi.org/10.3390/nu13093066
APA StyleYe, C., Aihemaitijiang, S., Wang, R., Halimulati, M., & Zhang, Z. (2021). Associations between Early-Life Food Deprivation and Risk of Frailty of Middle-Age and Elderly People: Evidence from the China Health and Retirement Longitudinal Study. Nutrients, 13(9), 3066. https://doi.org/10.3390/nu13093066