Next Article in Journal
Pathogenesis of Musculoskeletal Deficits in Children and Adults with Inflammatory Bowel Disease
Previous Article in Journal
Diet Intervention Study through Telemedicine Assistance for Systemic Nickel Allergy Syndrome Patients during the COVID-19 Pandemic
 
 
Article

Oxygen Sparing Effect of Bacteriotherapy in COVID-19

1
Department of Public Health and Infectious Diseases Sapienza, University of Rome, 00185 Rome, Italy
2
Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
3
Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
4
Department of Clinical Internal Anesthesiologic and Cardiovascular Sciences Sapienza, University of Rome, 00185 Rome, Italy
5
Department of Anesthesia and Intensive Care Medicine, Sapienza University of Rome, 00185 Rome, Italy
*
Author to whom correspondence should be addressed.
Academic Editor: Leyuan Li
Nutrients 2021, 13(8), 2898; https://doi.org/10.3390/nu13082898
Received: 11 July 2021 / Revised: 20 August 2021 / Accepted: 21 August 2021 / Published: 23 August 2021
(This article belongs to the Topic Probiotics, Prebiotics and Postbiotics in Human Health)
Background: We previously reported that severe COVID-19 patients had higher chances of survival and a reduced risk of developing respiratory failure when administered with the probiotic formulation SLAB51. This study aimed to investigate further bacteriotherapy mechanisms and how early they are activated. Methods: We performed an analysis on the blood oxygenation parameters collected in sixty-nine severe COVID-19 patients requiring non-invasive oxygen therapy and presenting a CT lung involvement ≥50%. Twenty-nine patients received low-molecular-weight heparin, azithromycin and Remdesivir. In addition, forty subjects received SLAB51. Blood gas analyses were performed before the beginning of treatments and at 24 h. Results: The patients receiving only standard therapy needed significantly increased oxygen amounts during the 24 h observation period. Furthermore, they presented lower blood levels of pO2, O2Hb and SaO2 than the group also supplemented with oral bacteriotherapy. In vitro data suggest that SLAB51 can reduce nitric oxide synthesis in intestinal cells. Conclusions: SARS-CoV-2 infected patients may present lesions in the lungs compromising their gas exchange capability. The functionality of the organs essential for these patients’ survival depends mainly on the levels of pO2, O2Hb and SaO2. SLAB51 contains enzymes that could reduce oxygen consumption in the intestine, making it available for the other organs. View Full-Text
Keywords: COVID-19; SLAB51; probiotics; nitric oxide; hypoxia COVID-19; SLAB51; probiotics; nitric oxide; hypoxia
Show Figures

Figure 1

MDPI and ACS Style

Ceccarelli, G.; Marazzato, M.; Celani, L.; Lombardi, F.; Piccirilli, A.; Mancone, M.; Trinchieri, V.; Pugliese, F.; Mastroianni, C.M.; d’Ettorre, G. Oxygen Sparing Effect of Bacteriotherapy in COVID-19. Nutrients 2021, 13, 2898. https://doi.org/10.3390/nu13082898

AMA Style

Ceccarelli G, Marazzato M, Celani L, Lombardi F, Piccirilli A, Mancone M, Trinchieri V, Pugliese F, Mastroianni CM, d’Ettorre G. Oxygen Sparing Effect of Bacteriotherapy in COVID-19. Nutrients. 2021; 13(8):2898. https://doi.org/10.3390/nu13082898

Chicago/Turabian Style

Ceccarelli, Giancarlo, Massimiliano Marazzato, Luigi Celani, Francesca Lombardi, Alessandra Piccirilli, Massimo Mancone, Vito Trinchieri, Francesco Pugliese, Claudio M. Mastroianni, and Gabriella d’Ettorre. 2021. "Oxygen Sparing Effect of Bacteriotherapy in COVID-19" Nutrients 13, no. 8: 2898. https://doi.org/10.3390/nu13082898

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop