Indirect Predictors of Visceral Adipose Tissue in Women with Polycystic Ovary Syndrome: A Comparison of Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. DXA Measurements
2.2. Anthropometric Measurements
2.3. Study Population
2.4. Laboratory Tests
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marinou, K.; Hodson, L.; Vasan, S.K.; Fielding, B.A.; Banerjee, R.; Brismar, K.; Koutsilieris, M.; Clark, A.; Neville, M.J.; Karpe, F. Structural and functional properties of deep abdominal subcutaneous adipose tissue explain its association with insulin resistance and cardiovascular risk in men. Diabetes Care 2014, 37, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Durmus, U.; Duran, C.; Ecirli, S. Visceral adiposity index levels in overweight and/or obese, and non-obese patients with polycystic ovary syndrome and its relationship with metabolic and inflammatory parameters. J. Endocrinol. Investig. 2017, 40, 487–497. [Google Scholar] [CrossRef]
- Dutkowska, A.; Konieczna, A.; Breska-Kruszewska, J.; Sendrakowska, M.; Kowalska, I.; Rachon, D. Recomendations on non-pharmacological interventions in women with PCOS to reduce body weight and improve metabolic disorders [Zalecenia dotyczace postepowania niefarmakologicznego u kobiet z PCOS celem zmniejszenia masy ciala i poprawy zaburzen metabolicznych]. Endokrynol. Pol. 2019, 70, 198–212. [Google Scholar] [CrossRef] [PubMed]
- Rotterdam, E.A.-S.P.C.W.G. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar]
- Ching, Y.K.; Chin, Y.S.; Appukutty, M.; Gan, W.Y.; Ramanchadran, V.; Chan, Y.M. Prevalence of Metabolic Syndrome and Its Associated Factors among Vegetarians in Malaysia. Int. J. Environ. Res. Public Health 2018, 15, 2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elffers, T.W.; de Mutsert, R.; Lamb, H.J.; de Roos, A.; Willems van Dijk, K.; Rosendaal, F.R.; Jukema, J.W.; Trompet, S. Body fat distribution, in particular visceral fat, is associated with cardiometabolic risk factors in obese women. PLoS ONE 2017, 12, e0185403. [Google Scholar] [CrossRef] [Green Version]
- Tchernof, A.; Despres, J.P. Pathophysiology of human visceral obesity: An update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef]
- Silveira, E.A.; Kliemann, N.; Noll, M.; Sarrafzadegan, N.; de Oliveira, C. Visceral obesity and incident cancer and cardiovascular disease: An integrative review of the epidemiological evidence. Obes. Rev. 2021, 22, e13088. [Google Scholar] [CrossRef] [PubMed]
- Shuster, A.; Patlas, M.; Pinthus, J.H.; Mourtzakis, M. The clinical importance of visceral adiposity: A critical review of methods for visceral adipose tissue analysis. Br. J. Radiol. 2012, 85, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neeland, I.J.; Grundy, S.M.; Li, X.; Adams-Huet, B.; Vega, G.L. Comparison of visceral fat mass measurement by dual-X-ray absorptiometry and magnetic resonance imaging in a multiethnic cohort: The Dallas Heart Study. Nutr. Diabetes 2016, 6, e221. [Google Scholar] [CrossRef] [PubMed]
- Frossing, S.; Nylander, M.C.; Chabanova, E.; Kistorp, C.; Skouby, S.O.; Faber, J. Quantification of visceral adipose tissue in polycystic ovary syndrome: Dual-energy X-ray absorptiometry versus magnetic resonance imaging. Acta Radiol. 2018, 59, 13–17. [Google Scholar] [CrossRef]
- Vasan, S.K.; Osmond, C.; Canoy, D.; Christodoulides, C.; Neville, M.J.; Di Gravio, C.; Fall, C.H.D.; Karpe, F. Comparison of regional fat measurements by dual-energy X-ray absorptiometry and conventional anthropometry and their association with markers of diabetes and cardiovascular disease risk. Int. J. Obes. 2018, 42, 850–857. [Google Scholar] [CrossRef] [Green Version]
- Bouchi, R.; Nakano, Y.; Ohara, N.; Takeuchi, T.; Murakami, M.; Asakawa, M.; Sasahara, Y.; Numasawa, M.; Minami, I.; Izumiyama, H.; et al. Clinical relevance of dual-energy X-ray absorptiometry (DXA) as a simultaneous evaluation of fatty liver disease and atherosclerosis in patients with type 2 diabetes. Cardiovasc. Diabetol. 2016, 15, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-Velez, R.; Correa-Bautista, J.E.; Sanders-Tordecilla, A.; Ojeda-Pardo, M.L.; Cobo-Mejia, E.A.; Castellanos-Vega, R.D.P.; Garcia-Hermoso, A.; Gonzalez-Jimenez, E.; Schmidt-RioValle, J.; Gonzalez-Ruiz, K. Percentage of Body Fat and Fat Mass Index as a Screening Tool for Metabolic Syndrome Prediction in Colombian University Students. Nutrients 2017, 9, 1009. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Schutz, Y.; Dupertuis, Y.M.; Pichard, C. Body composition interpretation. Contributions of the fat-free mass index and the body fat mass index. Nutrition 2003, 19, 597–604. [Google Scholar] [CrossRef]
- Swainson, M.G.; Batterham, A.M.; Tsakirides, C.; Rutherford, Z.H.; Hind, K. Prediction of whole-body fat percentage and visceral adipose tissue mass from five anthropometric variables. PLoS ONE 2017, 12, e0177175. [Google Scholar] [CrossRef]
- Ching, Y.K.; Chin, Y.S.; Appukutty, M.; Gan, W.Y.; Chan, Y.M. Comparisons of conventional and novel anthropometric obesity indices to predict metabolic syndrome among vegetarians in Malaysia. Sci. Rep. 2020, 10, 20861. [Google Scholar] [CrossRef] [PubMed]
- Jena, D.; Choudhury, A.K.; Mangaraj, S.; Singh, M.; Mohanty, B.K.; Baliarsinha, A.K. Study of Visceral and Subcutaneous Abdominal Fat Thickness and Its Correlation with Cardiometabolic Risk Factors and Hormonal Parameters in Polycystic Ovary Syndrome. Indian J. Endocrinol. Metab. 2018, 22, 321–327. [Google Scholar] [CrossRef]
- Ribeiro, V.B.; Kogure, G.S.; Lopes, I.P.; Silva, R.C.; Pedroso, D.C.C.; Ferriani, R.A.; Furtado, C.L.M.; Reis, R.M.D. Association of measures of central fat accumulation indices with body fat distribution and metabolic, hormonal, and inflammatory parameters in women with polycystic ovary syndrome. Arch. Endocrinol. Metab. 2019, 63, 417–426. [Google Scholar] [CrossRef]
- Satyaraddi, A.; Cherian, K.E.; Kapoor, N.; Kunjummen, A.T.; Kamath, M.S.; Thomas, N.; Paul, T.V. Body Composition, Metabolic Characteristics, and Insulin Resistance in Obese and Nonobese Women with Polycystic Ovary Syndrome. J. Hum. Reprod. Sci. 2019, 12, 78–84. [Google Scholar] [CrossRef]
- Vaughan, C.; Attlmayr, B.; Dalton, L.; Upile, N.; Xie, C.; De, S. Assessment of Smell Function in Syndromic Craniosynostosis Patients. J. Craniofac. Surg. 2016, 27, 1598–1599. [Google Scholar] [CrossRef]
- Ofenheimer, A.; Breyer-Kohansal, R.; Hartl, S.; Burghuber, O.C.; Krach, F.; Schrott, A.; Wouters, E.F.M.; Franssen, F.M.E.; Breyer, M.K. Reference values of body composition parameters and visceral adipose tissue (VAT) by DXA in adults aged 18-81 years-results from the LEAD cohort. Eur. J. Clin. Nutr. 2020, 74, 1181–1191. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008. World Health Organization. Available online: https://apps.who.int/iris/handle/10665/44583 (accessed on 11 January 2021).
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J.; International, P.N. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef] [Green Version]
- Deb, S.; Austin, P.C.; Tu, J.V.; Ko, D.T.; Mazer, C.D.; Kiss, A.; Fremes, S.E. A Review of Propensity-Score Methods and Their Use in Cardiovascular Research. Can. J. Cardiol. 2016, 32, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Perna, S.; Spadaccini, D.; Nichetti, M.; Avanzato, I.; Faliva, M.A.; Rondanelli, M. Osteosarcopenic Visceral Obesity and Osteosarcopenic Subcutaneous Obesity, Two New Phenotypes of Sarcopenia: Prevalence, Metabolic Profile, and Risk Factors. J. Aging Res. 2018, 2018, 6147426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaluzna, M.; Czlapka-Matyasik, M.; Wachowiak-Ochmanska, K.; Moczko, J.; Kaczmarek, J.; Janicki, A.; Piatek, K.; Ruchala, M.; Ziemnicka, K. Effect of Central Obesity and Hyperandrogenism on Selected Inflammatory Markers in Patients with PCOS: A WHtR-Matched Case-Control Study. J. Clin. Med. 2020, 9, 3024. [Google Scholar] [CrossRef] [PubMed]
- Stefanaki, C.; Pervanidou, P.; Boschiero, D.; Chrousos, G.P. Chronic stress and body composition disorders: Implications for health and disease. Hormones Athens 2018, 17, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Motta, A.B. The role of obesity in the development of polycystic ovary syndrome. Curr. Pharm. Des. 2012, 18, 2482–2491. [Google Scholar] [CrossRef] [PubMed]
- Bosomworth, N.J. Normal-weight central obesity: Unique hazard of the toxic waist. Can. Fam. Physician 2019, 65, 399–408. [Google Scholar]
- Emery, E.M.; Schmid, T.L.; Kahn, H.S.; Filozof, P.P. A review of the association between abdominal fat distribution, health outcome measures, and modifiable risk factors. Am. J. Health Promot. 1993, 7, 342–353. [Google Scholar] [CrossRef]
- Carmina, E.; Bucchieri, S.; Esposito, A.; Del Puente, A.; Mansueto, P.; Orio, F.; Di Fede, G.; Rini, G. Abdominal fat quantity and distribution in women with polycystic ovary syndrome and extent of its relation to insulin resistance. J. Clin. Endocrinol. Metab. 2007, 92, 2500–2505. [Google Scholar] [CrossRef] [Green Version]
- Ezeh, U.; Yildiz, B.O.; Azziz, R. Referral bias in defining the phenotype and prevalence of obesity in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2013, 98, E1088–E1096. [Google Scholar] [CrossRef] [Green Version]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Kaluzna, M.; Krauze, T.; Ziemnicka, K.; Wachowiak-Ochmanska, K.; Kaczmarek, J.; Janicki, A.; Wykretowicz, A.; Ruchala, M.; Guzik, P. Cardiovascular, anthropometric, metabolic and hormonal profiling of normotensive women with polycystic ovary syndrome with and without biochemical hyperandrogenism. Endocrine 2021, 72, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Gateva, A.T.; Kamenov, Z.A. Markers of visceral obesity and cardiovascular risk in patients with polycystic ovarian syndrome. Eur. J. Obs. Gynecol. Reprod. Biol. 2012, 164, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Ashwell, M.; Gibson, S. A proposal for a primary screening tool: ‘Keep your waist circumference to less than half your height’. BMC Med. 2014, 12, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borruel, S.; Molto, J.F.; Alpanes, M.; Fernandez-Duran, E.; Alvarez-Blasco, F.; Luque-Ramirez, M.; Escobar-Morreale, H.F. Surrogate markers of visceral adiposity in young adults: Waist circumference and body mass index are more accurate than waist hip ratio, model of adipose distribution and visceral adiposity index. PLoS ONE 2014, 9, e114112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, B.C.; Koh, G.C.; Chen, C.; Wong, M.T.; Fallows, S.J. Comparison of Body Mass Index (BMI), Body Adiposity Index (BAI), Waist Circumference (WC), Waist-To-Hip Ratio (WHR) and Waist-To-Height Ratio (WHtR) as predictors of cardiovascular disease risk factors in an adult population in Singapore. PLoS ONE 2015, 10, e0122985. [Google Scholar] [CrossRef]
- Ortega, F.B.; Sui, X.; Lavie, C.J.; Blair, S.N. Body Mass Index, the Most Widely Used but Also Widely Criticized Index: Would a Criterion Standard Measure of Total Body Fat Be a Better Predictor of Cardiovascular Disease Mortality? Mayo Clin. Proc. 2016, 91, 443–455. [Google Scholar] [CrossRef] [Green Version]
- Prado, C.M.; Cushen, S.J.; Orsso, C.E.; Ryan, A.M. Sarcopenia and cachexia in the era of obesity: Clinical and nutritional impact. Proc. Nutr. Soc. 2016, 75, 188–198. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Allison, D.B.; Kotler, D.P.; Ross, R. Body mass index and waist circumference independently contribute to the prediction of nonabdominal, abdominal subcutaneous, and visceral fat. Am. J. Clin. Nutr. 2002, 75, 683–688. [Google Scholar] [CrossRef] [Green Version]
- Raimi, T.H.; Oluwayemi, I.O. Anthropometric Correlates and Prediction of Body Fat Measured by Bioelectric Impedance Analysis among Women. Ann. Med. Health Sci. Res. 2017, 7, 32–35. [Google Scholar]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; World Health Organization: Geneva, Switzerland, 1997. [Google Scholar]
- Ponnalagu, S.D.; Bi, X.; Henry, C.J. Is waist circumference more strongly associated with metabolic risk factors than waist-to-height ratio in Asians? Nutrition 2019, 60, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Gibson, S.; Ashwell, M. A simple cut-off for waist-to-height ratio (0.5) can act as an indicator for cardiometabolic risk: Recent data from adults in the Health Survey for England. Br. J. Nutr. 2020, 123, 681–690. [Google Scholar] [CrossRef]
Variable | PCOS | CON | p Value |
---|---|---|---|
n = 154 | n = 68 | ||
Age (y.o.) | 25.0 ± 7.0 | 24.1 ± 7.9 | NS |
Weight (kg) | 67.50 ± 21.00 | 65.00 ± 19.00 | NS |
BMI (kg/m2) | 23.88 ± 8.02 | 23.05 ± 6.58 | NS |
WC (cm) | 78.00 ± 20.00 | 74.00 ± 15.00 | NS |
WHR (-) | 0.88 ± 0.10 | 0.89 ± 0.08 | NS |
WHtR (-) | 0.47 ± 0.12 | 0.45 ± 0.09 | NS |
WHT.5R (-) | 0.61 ± 0.16 | 0.58 ± 0.11 | NS |
A/G ratio (-) | 0.35 ± 0.21 | 0.35 ± 0.19 | NS |
VAT mass (g) | 285.35 ± 602.25 | 214.26 ± 538.03 | NS |
TBF (%) | 35.41 ± 0.12 | 34.22 ± 0.12 | NS |
FMI (kg/m2) | 8.27 ± 5.00 | 8.22 ± 4.01 | NS |
LAP (-) | 15.92 ± 28.48 | 13.56 ± 14.87 | NS |
VAI (-) | 0.84 ± 0.95 | 0.93 ± 0.76 | NS |
SBP (mmHg) | 120.00 ± 19.00 | 122.00 ± 14.00 | NS |
DBP (mmHg) | 75.50 ± 11.00 | 76.00 ± 14.00 | NS |
Glucose (mg/dL) | 89.00 ± 9.00 | 87.00 ± 10.00 | NS |
Insulin (µU/mL) | 9.06 ± 6.91 | 9.45 ± 4.97 | NS |
HOMA-IR | 1.99 ± 1.70 | 1.98 ± 1.06 | NS |
TC (mg/dL) | 179.00 ± 35.00 | 166.00 ± 40.00 | NS |
TG (mg/dL) | 71.00 ± 49.00 | 75.00 ± 51.00 | NS |
HDL-C (mg/dL) | 63.00 ± 21.00 | 64.00 ± 26.00 | NS |
LDL-C (mg/dL) | 95.45 ± 41.10 | 83.90 ± 36.90 | NS |
TSH (μU/mL) | 2.02 ± 1.29 | 2.39 ± 1.76 | ** |
FSH (mIU/mL) | 5.95 ± 2.35 | 5.60 ± 3.50 | NS |
LH (mIU/mL) | 8.65 ± 8.40 | 6.80 ± 5.60 | * |
E2 (pg/mL) | 42.50 ± 40.00 | 68.00 ± 58.00 | NS |
T (nmol/L) | 1.60 ± 0.90 | 1.20 ± 0.90 | *** |
DHEAS (µg/dL) | 305.00 ± 167.00 | 266.00 ± 165.00 | * |
SHBG (nmol/L) | 54.30 ± 37.40 | 55.00 ± 43.60 | NS |
FTI (%) | 3.15 ± 3.08 | 2.46 ± 2.25 | * |
AMH (pmol/L) | 53.31 ± 36.52 | 23.35 ± 16.87 | *** |
Variable | BMI | WC | WHR | WHtR | WHT.5R | A/G Ratio | VAT | TBF | FMI, | LAP |
---|---|---|---|---|---|---|---|---|---|---|
r, p Value | r, p Value | r, p Value | r, p Value | r, p Value | r, p Value | r, p Value | r, p Value | r, p Value | r, p Value | |
age | 0.147, | 0.191, | 0.151, | 0.20, | 0.192, | 0.142, | 0.209, | 0.103, | 0.127, | 0.225, |
NS | * | NS | * | * | NS | ** | NS | NS | ** | |
weight | 0.930, | 0.903, | 0.423, | 0.839, | 0.866, | 0.377, | 0.745, | 0.449, | 0.766, | 0.825, |
*** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
BMI | - | 0.875, | 0.405, | 0.882, | 0.901, | 0.368, | 0.784, | 0.465, | 0.829, | 0.806, |
*** | *** | *** | *** | *** | *** | *** | *** | *** | ||
WC | 0.875, | - | 0.667, | 0.966, | 0.980, | 0.434, | 0.834, | 0.449, | 0.735, | 0.922, |
*** | *** | *** | *** | *** | *** | *** | *** | *** | ||
WHR | 0.405, | 0.667, | - | 0.664, | 0.650, | 0.250, | 0.479, | 0.117, | 0.275, | 0.632, |
*** | *** | *** | *** | 0.002 | *** | 0.16 | *** | *** | ||
WHtR | 0.882, | 0.966, | 0.664, | - | 0.977, | 0.441, | 0.859, | 0.467, | 0.745, | 0.907, |
*** | *** | *** | *** | *** | *** | *** | *** | *** | ||
WHT.5R | 0.901, | 0.980, | 0.650, | 0.977, | - | 0.423, | 0.838, | 0.448, | 0.763, | 0.903, |
*** | *** | *** | *** | *** | *** | *** | *** | *** | ||
A/G ratio | 0.368, | 0.434, | 0.250, | 0.441, | 0.424, | - | 0.472, | 0.763, | 0.670, | 0.388, |
*** | *** | ** | *** | *** | *** | *** | *** | *** | ||
VAT mass | 0.784, | 0.834, | 0.479, | 0.859, | 0.838, | 0.472, | - | 0.537, | 0.726, | 0.810, |
*** | *** | *** | *** | *** | *** | *** | *** | *** | ||
TBF | 0.465, | 0.449, | 0.117, | 0.467, | 0.448, | 0.763, | 0.537, | - | 0.857, | 0.406, |
*** | *** | 0.16 | *** | *** | *** | *** | *** | *** | ||
FMI | 0.829, | 0.735, | 0.275, | 0.745, | 0.763, | 0.670, *** | 0.726, | 0.857, | - | 0.668, |
*** | *** | *** | *** | *** | *** | *** | *** | |||
LAP | 0.806, | 0.922, | 0.632, | 0.907, | 0.903, | 0.388, | 0.810, | 0.406, | 0.668, | - |
*** | *** | *** | *** | *** | *** | *** | *** | *** | ||
VAI | 0.525, | 0.642, | 0.492, | 0.645, | 0.620, | 0.293, | 0.646, | 0.298, | 0.446, | 0.846, |
*** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Indicator of Visceral Obesity | PCOS | CON | p Value |
---|---|---|---|
% (n = 154) | % (n = 68) | ||
BMI > 30 kg/m2 | 20.3% | 14.3% | NS |
WC ≥ 80 cm | 44.2% | 32.8% | NS |
WHR > 0.85 | 64.0% | 64.4% | NS |
WHtR ≥ 0.5 | 36.7% | 31.7% | NS |
FMI ≥ 9.7 kg/m2 [22] | 37.7% | 32.8% | NS |
TBF > 35% | 50.3% | 47.0% | NS |
A/G ratio > 0.3 [22] | 63.6% | 59.7% | 0.03 |
VAT mass * | 18–30 y.o.—53.3% | 18–30 y.o.—36.7% | NS |
30–40 y.o.—56.2% | 30–40 y.o.—77.8% | NS |
Variable | AUCs | Optimal Cut-Off Values | Sensitivity | Specificity | Youden Index |
---|---|---|---|---|---|
PCOS 18–30 | |||||
BMI | 0.917 | 23.43 | 0.86 | 0.89 | 0.75 |
WC | 0.953 | 80 | 0.82 | 0.96 | 0.78 |
WHR | 0.783 | 0.89 | 0.66 | 0.79 | 0.49 |
WHtR | 0.954 | 0.45 | 0.9 | 0.86 | 0.76 |
WHT.5R | 0.946 | 0.59 | 0.87 | 0.86 | 0.76 |
A/G ratio | 0.737 | 0.4 | 0.6 | 0.84 | 0.45 |
TBF | 0.764 | 0.36 | 0.71 | 0.77 | 0.49 |
FMI | 0.87 | 8.06 | 0.79 | 0.82 | 0.62 |
LAP | 0.947 | 16.44 | 0.87 | 0.96 | 0.85 |
VAI | 0.844 | 0.94 | 0.68 | 0.95 | 0.63 |
PCOS 30–40 | |||||
BMI | 0.952 | 27.34 | 0.83 | 1 | 0.83 |
WC | 0.958 | 85 | 0.88 | 1 | 0.88 |
WHR | 0.681 | 0.97 | 0.44 | 1 | 0.44 |
WHtR | 0.973 | 0.52 | 0.94 | 1 | 0.94 |
WHT.5R | 0.969 | 0.66 | 0.94 | 1 | 0.94 |
A/G ratio | 0.861 | 0.43 | 0.77 | 0.86 | 0.69 |
TBF | 0.777 | 0.39 | 0.71 | 0.86 | 0.56 |
FMI | 0.937 | 7.92 | 0.94 | 0.79 | 0.73 |
LAP | 0.942 | 29.49 | 0.75 | 1 | 0.75 |
VAI | 0.862 | 1.47 | 0.75 | 0.93 | 0.68 |
CON 18–30 | |||||
BMI | 0.89 | 23.05 | 0.82 | 0.86 | 0.69 |
WC | 0.875 | 79 | 0.77 | 0.96 | 0.73 |
WHR | 0.639 | 0.87 | 0.71 | 0.61 | 0.31 |
WHtR | 0.839 | 0.48 | 0.65 | 0.93 | 0.63 |
WHT.5R | 0.855 | 0.61 | 0.71 | 0.96 | 0.67 |
A/G ratio | 0.669 | 0.36 | 0.65 | 0.71 | 0.36 |
TBF | 0.718 | 0.38 | 0.65 | 0.74 | 0.39 |
FMI | 0.832 | 7.7 | 0.88 | 0.72 | 0.6 |
LAP | 0.821 | 15.73 | 0.69 | 0.93 | 0.61 |
VAI | 0.72 | 1.23 | 0.56 | 0.93 | 0.49 |
CON 30–40 | |||||
BMI | 1 | 23.46 | 1 | 1 | 1 |
WC | 0.985 | 80 | 0.91 | 1 | 0.91 |
WHR | 0.727 | 0.88 | 1 | 0.67 | 0.67 |
WHtR | 0.819 | 0.51 | 0.58 | 1 | 0.58 |
WHT.5R | 0.924 | 0.64 | 0.71 | 1 | 0.73 |
A/G ratio | 0.714 | 0.36 | 0.79 | 0.75 | 0.54 |
TBF | 0.732 | 0.39 | 0.5 | 1 | 0.5 |
FMI | 0.929 | 7.32 | 0.93 | 1 | 0.93 |
LAP | 0.879 | 11.19 | 1 | 0.67 | 0.67 |
VAI | 0.848 | 1.55 | 0.64 | 1 | 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kałużna, M.; Czlapka-Matyasik, M.; Bykowska-Derda, A.; Moczko, J.; Ruchala, M.; Ziemnicka, K. Indirect Predictors of Visceral Adipose Tissue in Women with Polycystic Ovary Syndrome: A Comparison of Methods. Nutrients 2021, 13, 2494. https://doi.org/10.3390/nu13082494
Kałużna M, Czlapka-Matyasik M, Bykowska-Derda A, Moczko J, Ruchala M, Ziemnicka K. Indirect Predictors of Visceral Adipose Tissue in Women with Polycystic Ovary Syndrome: A Comparison of Methods. Nutrients. 2021; 13(8):2494. https://doi.org/10.3390/nu13082494
Chicago/Turabian StyleKałużna, Małgorzata, Magdalena Czlapka-Matyasik, Aleksandra Bykowska-Derda, Jerzy Moczko, Marek Ruchala, and Katarzyna Ziemnicka. 2021. "Indirect Predictors of Visceral Adipose Tissue in Women with Polycystic Ovary Syndrome: A Comparison of Methods" Nutrients 13, no. 8: 2494. https://doi.org/10.3390/nu13082494
APA StyleKałużna, M., Czlapka-Matyasik, M., Bykowska-Derda, A., Moczko, J., Ruchala, M., & Ziemnicka, K. (2021). Indirect Predictors of Visceral Adipose Tissue in Women with Polycystic Ovary Syndrome: A Comparison of Methods. Nutrients, 13(8), 2494. https://doi.org/10.3390/nu13082494