Inflammatory Potential of Diet Is Associated with Biomarkers Levels of Inflammation and Cognitive Function among Postmenopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anthropometric Measurements
2.3. Assessment of Physical Activity (PA) Level
2.4. Assessment of Inflammatory Markers
2.5. Assessment of Other Covariates
2.6. Dietary Assessment
2.7. The Dietary Inflammatory Index (DII)
2.8. Cognitive Function Assessment
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sartori, A.C.; Vance, D.E.; Slater, L.Z.; Crowe, M. The impact of inflammation on cognitive function in older adults: Implications for health care practice and research. J. Neurosci. Nurs. 2012, 44, 206–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, G.S.; Moons, W.G.; Tewell, C.A.; Yonelinas, A.P. The effect of negative affect on cognition: Anxiety, not anger, impairs executive function. Emotion 2016, 16, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.A.; Ficek, B.N.; Westbrook, R. Understanding the role of systemic inflammation in Alzheimer’s disease. ACS Chem. Neurosci. 2019, 10, 3340–3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, V.W. Cognitive changes after menopause: Influence of estrogen. Clin. Obstet. Gynecol. 2008, 51, 618–626. [Google Scholar] [CrossRef]
- Pertesi, S.; Coughlan, G.; Puthusseryppady, V.; Morris, E.; Hornberger, M. Menopause, cognition and dementia—A review. Post Reprod. Health 2019, 25, 200–206. [Google Scholar] [CrossRef]
- Au, A.; Feher, A.; McPhee, L.; Jessa, A.; Oh, S.; Einstein, G. Estrogens, inflammation and cognition. Front. Neuroendocrinol. 2016, 40, 87–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, A.; Pike, C.J. Menopause, obesity and inflammation: Interactive risk factors for Alzheimer’s disease. Front. Aging Neurosci. 2015, 7, 130. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.J.; Blumenthal, J.A. Dietary factors and cognitive decline. J. Prev. Alzheimers Dis. 2016, 3, 53–64. [Google Scholar] [CrossRef]
- Chmurzynska, A.; Muzsik, A.; Krzyżanowska-Jankowska, P.; Walkowiak, J.; Bajerska, J. The effect of habitual fat intake, IL6 polymorphism, and different diet strategies on inflammation in postmenopausal women with central obesity. Nutrients 2019, 11, 1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayden, K.M.; Beavers, D.P.; Steck, S.E.; Hebert, J.R.; Tabung, F.K.; Shivappa, N.; Casanova, R.; Manson, J.E.; Padula, C.B.; Salmoirago-Blotcher, E.; et al. The association between an inflammatory diet and global cognitive function and incident dementia in older women: The women’s health initiative memory study. Alzheimers Dement. J. Alzheimers Assoc. 2017, 13, 1187–1196. [Google Scholar] [CrossRef]
- Bajerska, J.; Chmurzynska, A.; Muzsik, A.; Krzyżanowska, P.; Mądry, E.; Malinowska, A.M.; Walkowiak, J. Weight loss and metabolic health effects from energy-restricted Mediterranean and Central-European diets in postmenopausal women: A randomized controlled trial. Sci. Rep. 2018, 8, 11170. [Google Scholar] [CrossRef] [PubMed]
- Skoczek-Rubińska, A.; Muzsik, A.; Chmurzynska, A.; Walkowiak, J.; Bajerska, J. Snacking may improve dietary fiber density and is associated with lower body mass index in postmenopausal women. Nutrition 2021, 83, 111063. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Bleecker, M.L.; Bolla-Wilson, K.; Kawas, C.; Agnew, J. Age-specific norms for the mini-mental state exam. Neurology 1988, 38, 1565. [Google Scholar] [CrossRef] [PubMed]
- Mackin, R.S.; Ayalon, L.; Feliciano, L.; Areán, P.A. The sensitivity and specificity of cognitive screening instruments to detect cognitive impairment in older adults with severe psychiatric illness. J. Geriatr. Psychiatry Neurol. 2010, 23, 94–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, H.-T.; Wu, P.-Y.; Huang, J.-C.; Chen, S.-C.; Ho, W.-Y. Late menarche, not reproductive period, is associated with poor cognitive function in postmenopausal women in Taiwan. Int. J. Environ. Res. Public. Health 2021, 18, 2345. [Google Scholar] [CrossRef]
- Sullivan Mitchell, E.; Fugate Woods, N. Midlife women’s attributions about perceived memory changes: Observations from the seattle midlife women’s health study. J. Womens Health Gend. Based Med. 2001, 10, 351–362. [Google Scholar] [CrossRef]
- Woods, N.F.; Mitchell, E.S. The seattle midlife women’s health study: A longitudinal prospective study of women during the menopausal transition and early postmenopause. Womens Midlife Health 2016, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Kesse-Guyot, E.; Assmann, K.E.; Andreeva, V.A.; Touvier, M.; Neufcourt, L.; Shivappa, N.; Hébert, J.R.; Wirth, M.D.; Hercberg, S.; Galan, P.; et al. Long-term association between the dietary inflammatory index and cognitive functioning: Findings from the SU.VI.MAX study. Eur. J. Nutr. 2017, 56, 1647–1655. [Google Scholar] [CrossRef]
- Corley, J.; Shivappa, N.; Hébert, J.R.; Starr, J.M.; Deary, I.J. Associations between dietary inflammatory index scores and inflammatory biomarkers among older adults in the lothian birth cohort 1936 Study. J. Nutr. Health Aging 2019, 23, 628–636. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Kwon, M.; Shivappa, N.; Hébert, J.; Kim, M.K. Proinflammatory dietary intake is associated with increased risk of metabolic syndrome and its components: Results from the population-based prospective study. Nutrients 2020, 12, 1196. [Google Scholar] [CrossRef]
- Ryu, I.; Kwon, M.; Sohn, C.; Shivappa, N.; Hébert, J.R.; Na, W.; Kim, M.K. The association between dietary inflammatory index (DII) and cancer risk in Korea: A prospective cohort study within the KoGES-HEXA study. Nutrients 2019, 11, 2560. [Google Scholar] [CrossRef] [Green Version]
- Kozakowski, J.; Gietka-Czernel, M.; Leszczyńska, D.; Majos, A. Obesity in menopause—Our negligence or an unfortunate inevitability? Prz. Menopauzalny 2017, 16, 61–65. [Google Scholar] [CrossRef]
- Stachowiak, G.; Pertyński, T.; Pertyńska-Marczewska, M. Metabolic disorders in menopause. Prz. Menopauzalny 2015, 14, 59–64. [Google Scholar] [CrossRef]
- Khan, S.; Wirth, M.D.; Ortaglia, A.; Alvarado, C.R.; Shivappa, N.; Hurley, T.G.; Hebert, J.R. Design, development and construct validation of the children’s dietary inflammatory index. Nutrients 2018, 10, 993. [Google Scholar] [CrossRef] [Green Version]
- Shivappa, N.; Hebert, J.R.; Marcos, A.; Diaz, L.-E.; Gomez, S.; Nova, E.; Michels, N.; Arouca, A.; González-Gil, E.; Frederic, G.; et al. Association between dietary inflammatory index and inflammatory markers in the HELENA study. Mol. Nutr. Food Res. 2017, 61, 10. [Google Scholar] [CrossRef] [PubMed]
- Tabung, F.K.; Steck, S.E.; Zhang, J.; Ma, Y.; Liese, A.D.; Agalliu, I.; Hingle, M.; Hou, L.; Hurley, T.G.; Jiao, L.; et al. Construct validation of the dietary inflammatory index among postmenopausal women. Ann. Epidemiol. 2015, 25, 398–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banks, W. Blood-Brain Barrier Transport of Cytokines: A mechanism for neuropathology. Curr. Pharm. Des. 2005, 11, 973–984. [Google Scholar] [CrossRef]
- Wang, W.-Y.; Tan, M.-S.; Yu, J.-T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in alzheimer’s disease. Ann. Transl. Med. 2015, 3, 136. [Google Scholar] [CrossRef] [PubMed]
- Yarlagadda, A.; Alfson, E.; Clayton, A.H. The blood brain barrier and the role of cytokines in neuropsychiatry. Psychiatry Edgmont 2009, 6, 18–22. [Google Scholar]
- Wright, C.B.; Sacco, R.L.; Rundek, T.R.; Delman, J.B.; Rabbani, L.E.; Elkind, M.S.V. Interleukin-6 is associated with cognitive function: The Northern Manhattan study. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2006, 15, 34–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradburn, S.; Sarginson, J.; Murgatroyd, C.A. Association of peripheral interleukin-6 with global cognitive decline in non-demented adults: A meta-analysis of prospective studies. Front. Aging Neurosci. 2017, 9, 438. [Google Scholar] [CrossRef] [PubMed]
- Dichgans, M.; Leys, D. Vascular cognitive impairment. Circ. Res. 2017, 120, 573–591. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Yaffe, K.; Barnes, D.; Nevitt, M.; Lui, L.Y.; Covinsky, K. A prospective study of physical activity and cognitive decline in elderly women: Women who walk. Arch. Intern. Med. 2001, 161, 1703–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scazufca, M.; Almeida, O.P.; Vallada, H.P.; Tasse, W.A.; Menezes, P.R. Limitations of the mini-mental state examination for screening dementia in a community with low socioeconomic status: Results from the Sao Paulo ageing & health study. Eur. Arch. Psychiatry Clin. Neurosci. 2009, 259, 8–15. [Google Scholar] [CrossRef]
- Lancu, I.; Olmer, A. The minimental state examination—An up-to-date review. Harefuah 2006, 145, 687–690, 701. [Google Scholar]
Parameters * | Total n = 222 | T1 (n = 74) | T2 (n = 74) | T3 (n = 74) | p Value ** |
---|---|---|---|---|---|
MMSEadj | 27.3 (0.1) | 27.8 (0.2) | 26.8 (0.3) | 26.9 (0.2) | 0.003 |
Age (y) | 61.0 (0.4) | 60.8 (0.6) | 60.9 (0.7) | 61.2 (0.6) | 0.865 |
Years from last menstruation (y) | 8.8 (0.3) | 9.2 (0.5) | 8.0 (0.6) | 9.0 (0.6) | 0.363 |
BMI (kg/m2) | 31.9 (0.4) | 30.8 (0.6) | 32.0 (0.9) | 33.2 (0.7) | 0.030 |
Waist circumference (cm) | 103.5 (0.8) | 102.9 (1.2) | 103.6 (1.7) | 104.4 (1.1) | 0.692 |
Fat mass (%) | 44.3 (0.4) | 43.2 (0.6) | 44.6 (0.9) | 45.6 (0.5) | 0.022 |
Trunk fat mass (kg) | 18.9 (0.4) | 18.1 (0.6) | 19.6 (1.0) | 19.5 (0.5) | 0.177 |
hs-CRP (mg/L) | 3.8 (0.3) | 3.2 (0.4) | 3.6 (0.4) | 4.5 (0.5) | 0.145 |
TNFα (pg/mL) | 8.3 (0.4) | 6.9 (0.5) | 8.5 (0.6) | 9.8 (0.8) | 0.004 |
IL-6 (pg/mL) | 2.7 (0.2) | 2.1 (0.2) | 2.9 (0.4) | 3.1 (0.4) | 0.053 |
Sociodemographic characteristics of the study population | |||||
Education (y) | 14.0 (0.2) | 14.5 (0.3) | 14.0 (0.5) | 13.0 (0.3) | 0.064 |
Living alone, yes (n,%) | 37 (17) | 21 (23) | 9 (16) | 7 (10) | 0.087 |
Currently working, yes (n,%) | 151 (68) | 59 (63) | 39 (68) | 53 (74) | 0.379 |
Physical activity | |||||
Low < 600 MET/min/wk (n,%) | 42 (19) | 14 (15) | 9 (16) | 19 (29) | 0.079 |
Moderate 600–1499 MET/min/wk (n,%) | 160 (72) | 71 (76) | 39 (68) | 50 (69) | |
High >1499 MET/min/wk (n,%) | 20 (9) | 8 (9) | 9 (16) | 3 (4) |
Parameters * | Cognitive Impairment (≤25 Scores) (n = 25) | Normal Cognition (>25 Scores) (n = 197) | p Value ** |
---|---|---|---|
E-DII | 2.2 (0.3) | 1.1 (0.1) | 0.001 |
Age (y) | 60.1 (1.2) | 61.1 (0.4) | 0.363 |
Years from last menstruation (y) | 8.7 (1.1) | 8.8 (0.4) | 0.931 |
BMI (kg/m2) | 32.3 (1.7) | 31.8 (0.4) | 0.744 |
Waist circumference (cm) | 103.3 (2.6) | 103.6 (0.8) | 0.899 |
Fat mass (%) | 44.2 (1.3) | 44.4 (0.4) | 0.896 |
Trunk fat mass (kg) | 18.9 (1.4) | 19.0 (0.4) | 0.993 |
hs-CRP (mg/L) | 4.2 (1.1) | 3.7 (0.3) | 0.546 |
TNFα (pg/mL) | 9.4 (1.7) | 8.1 (0.34) | 0.275 |
IL-6 (pg/mL) | 4.1 (0.8) | 2.5 (0.2) | 0.004 |
Sociodemographic characteristics of the study population | |||
Education (y) | 12.7 (0.7) | 14.1 (0.2) | 0.030 |
Living alone, yes (n,%) | 2 (8) | 35 (18) | 0.217 |
Currently working, yes (n,%) | 17 (68) | 134 (68) | 0.991 |
Physical activity | |||
Low < 600 MET/min/wk (n,%) | 10 (41) | 20 (10) | 0.001 |
Moderate 600–1499 MET/min/wk (n,%) | 13 (52) | 147 (75) | |
High >1499 MET/min/wk (n,%) | 2 (7) | 30 (15) |
E-DII Tertiles | Cognitive Impairment | |||
---|---|---|---|---|
OR a | 95% CI | Adjusted OR b | 95% CI | |
Tertile 1 (most anti-inflammatory) | 1.00 | (Reference) | 1.00 | (Reference) |
Tertile 2 | 5.16 | (1.09; 24.24) | 5.39 | (1.05; 27.59) |
Tertile 3 (most proinflammatory) | 9.05 | (2.02; 40.52) | 11.10 | (2.22; 55.56) |
P for trend | <0.001 | 0.002 | ||
E-DII Continuous | 1.43 | (1.14; 1.79) | 1.55 | (1.19; 2.02) |
P for trend | <0.001 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skoczek-Rubińska, A.; Muzsik-Kazimierska, A.; Chmurzynska, A.; Jamka, M.; Walkowiak, J.; Bajerska, J. Inflammatory Potential of Diet Is Associated with Biomarkers Levels of Inflammation and Cognitive Function among Postmenopausal Women. Nutrients 2021, 13, 2323. https://doi.org/10.3390/nu13072323
Skoczek-Rubińska A, Muzsik-Kazimierska A, Chmurzynska A, Jamka M, Walkowiak J, Bajerska J. Inflammatory Potential of Diet Is Associated with Biomarkers Levels of Inflammation and Cognitive Function among Postmenopausal Women. Nutrients. 2021; 13(7):2323. https://doi.org/10.3390/nu13072323
Chicago/Turabian StyleSkoczek-Rubińska, Aleksandra, Agata Muzsik-Kazimierska, Agata Chmurzynska, Małgorzata Jamka, Jarosław Walkowiak, and Joanna Bajerska. 2021. "Inflammatory Potential of Diet Is Associated with Biomarkers Levels of Inflammation and Cognitive Function among Postmenopausal Women" Nutrients 13, no. 7: 2323. https://doi.org/10.3390/nu13072323
APA StyleSkoczek-Rubińska, A., Muzsik-Kazimierska, A., Chmurzynska, A., Jamka, M., Walkowiak, J., & Bajerska, J. (2021). Inflammatory Potential of Diet Is Associated with Biomarkers Levels of Inflammation and Cognitive Function among Postmenopausal Women. Nutrients, 13(7), 2323. https://doi.org/10.3390/nu13072323