Dietary Patterns in Early Childhood and the Risk of Childhood Overweight: The GECKO Drenthe Birth Cohort
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Dietary Data
2.3. Growth Measures during Childhood
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Cross-Sectional and Prospective Associations between Dietary Patterns and Overweight at 3 and 10 Years
3.2. BMI-SDS Development
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A.S.; Mulder, C.; Twisk, J.W.; van Mechelen, W.; Chinapaw, M.J. Tracking of childhood overweight into adulthood: A systematic review of the literature. Obes. Rev. 2008, 9, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Reilly, J.J.; Kelly, J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: Systematic review. Int. J. Obes. 2011, 35, 891–898. [Google Scholar] [CrossRef]
- Moreno, L.A.; Bel-Serrat, S.; Santaliestra-Pasías, A.M.; Rodríguez, G. Obesity prevention in children. World Rev. Nutr. Diet. 2013, 106, 119–126. [Google Scholar] [CrossRef]
- Robinson, S.; Fall, C. Infant nutrition and later health: A review of current evidence. Nutrients 2012, 4, 859–874. [Google Scholar] [CrossRef]
- Liberali, R.; Kupek, E.; Assis, M.A.A. Dietary Patterns and Childhood Obesity Risk: A Systematic Review. Child. Obes. 2020, 16, 70–85. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Ambrosini, G.L. Childhood dietary patterns and later obesity: A review of the evidence. Proc. Nutr. Soc. 2014, 73, 137–146. [Google Scholar] [CrossRef]
- Flynn, A.C.; Thompson, J.M.D.; Dalrymple, K.V.; Wall, C.; Begum, S.; Pallippadan Johny, J.; Cutfield, W.S.; North, R.; McCowan, L.M.E.; Godfrey, K.M.; et al. Childhood dietary patterns and body composition at age 6 years: The Children of SCOPE study. Br. J. Nutr. 2020, 124, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Makrides, M.; Zhou, S.J. Dietary patterns and obesity in preschool children in Australia: A cross-sectional study. Asia Pac. J. Clin. Nutr. 2018, 27, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Dalrymple, K.V.; Flynn, A.C.; Seed, P.T.; Briley, A.L.; O’Keeffe, M.; Godfrey, K.M.; Poston, L. Associations between dietary patterns, eating behaviours, and body composition and adiposity in 3-year-old children of mothers with obesity. Pediatr. Obes. 2020, 15, e12608. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, L.; Shatila, H.; Itani, L.; Hwalla, N.; Jomaa, L.; Naja, F. A traditional dietary pattern is associated with lower odds of overweight and obesity among preschool children in Lebanon: A cross-sectional study. Eur. J. Nutr. 2019, 58, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Vieira-Ribeiro, S.A.; Andreoli, C.S.; Fonseca, P.C.A.; Hermsdorff, H.H.M.; Pereira, P.F.; Ribeiro, A.Q.; Priore, S.E.; Franceschini, S.C.C. Dietary patterns and body adiposity in children in Brazil: A cross-sectional study. Public Health 2019, 166, 140–147. [Google Scholar] [CrossRef]
- Bell, L.K.; Golley, R.K.; Daniels, L.; Magarey, A.M. Dietary patterns of Australian children aged 14 and 24 months, and associations with socio-demographic factors and adiposity. Eur. J. Clin. Nutr. 2013, 67, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Shroff, M.R.; Perng, W.; Baylin, A.; Mora-Plazas, M.; Marin, C.; Villamor, E. Adherence to a snacking dietary pattern and soda intake are related to the development of adiposity: A prospective study in school-age children. Public Health Nutr. 2014, 17, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Alvira, J.M.; Bammann, K.; Eiben, G.; Hebestreit, A.; Kourides, Y.A.; Kovacs, E.; Michels, N.; Pala, V.; Reisch, L.; Russo, P.; et al. Prospective associations between dietary patterns and body composition changes in European children: The IDEFICS study. Public Health Nutr. 2017, 20, 3257–3265. [Google Scholar] [CrossRef][Green Version]
- Johnson, L.; Mander, A.P.; Jones, L.R.; Emmett, P.M.; Jebb, S.A. Energy-dense, low-fiber, high-fat dietary pattern is associated with increased fatness in childhood. Am. J. Clin. Nutr. 2008, 87, 846–854. [Google Scholar] [CrossRef]
- Durao, C.; Severo, M.; Oliveira, A.; Moreira, P.; Guerra, A.; Barros, H.; Lopes, C. Association between dietary patterns and adiposity from 4 to 7 years of age. Public Health Nutr. 2017, 20, 1973–1982. [Google Scholar] [CrossRef]
- Reilly, J.J.; Armstrong, J.; Dorosty, A.R.; Emmett, P.M.; Ness, A.; Rogers, I.; Steer, C.; Sherriff, A. Early life risk factors for obesity in childhood: Cohort study. BMJ 2005, 330, 1357. [Google Scholar] [CrossRef]
- Rashid, V.; Streppel, M.T.; Engberink, M.F.; Weijs, P.J.M.; Nicolaou, M.; Verhoeff, A.P. Weight development between age 5 and 10 years and its associations with dietary patterns at age 5 in the ABCD cohort. BMC Public Health 2020, 20, 427. [Google Scholar] [CrossRef]
- Luque, V.; Escribano, J.; Closa-Monasterolo, R.; Zaragoza-Jordana, M.; Ferré, N.; Grote, V.; Koletzko, B.; Totzauer, M.; Verduci, E.; ReDionigi, A.; et al. Unhealthy Dietary Patterns Established in Infancy Track to Mid-Childhood: The EU Childhood Obesity Project. J. Nutr. 2018, 148, 752–759. [Google Scholar] [CrossRef]
- Mikkilä, V.; Räsänen, L.; Raitakari, O.T.; Pietinen, P.; Viikari, J. Consistent dietary patterns identified from childhood to adulthood: The cardiovascular risk in Young Finns Study. Br. J. Nutr. 2005, 93, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Lioret, S.; Betoko, A.; Forhan, A.; Charles, M.A.; Heude, B.; de Lauzon-Guillain, B. Dietary patterns track from infancy to preschool age: Cross-sectional and longitudinal perspectives. J. Nutr. 2015, 145, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Bjelland, M.; Brantsæter, A.L.; Haugen, M.; Meltzer, H.M.; Nystad, W.; Andersen, L.F. Changes and tracking of fruit, vegetables and sugar-sweetened beverages intake from 18 months to 7 years in the Norwegian Mother and Child Cohort Study. BMC Public Health 2013, 13, 793. [Google Scholar] [CrossRef] [PubMed]
- L’Abée, C.; Sauer, P.J.; Damen, M.; Rake, J.P.; Cats, H.; Stolk, R.P. Cohort Profile: The GECKO Drenthe study, overweight programming during early childhood. Int. J. Epidemiol. 2008, 37, 486–489. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dutman, A.E.; Stafleu, A.; Kruizinga, A.; Brants, H.A.; Westerterp, K.R.; Kistemaker, C.; Meuling, W.J.; Goldbohm, R.A. Validation of an FFQ and options for data processing using the doubly labelled water method in children. Public Health Nutr. 2011, 14, 410–417. [Google Scholar] [CrossRef] [PubMed]
- RIVM/Voedingscentrum. NEVO-Tabel Nederlands Voedingsstoffenbestand; RIVM: Den Haag, The Netherlands, 2011. [Google Scholar]
- De Onis, M.; Garza, C.; Onyango, A.W.; Rolland-Cachera, M.F. WHO growth standards for infants and young children. Arch. Pediatr. 2009, 16, 47–53. [Google Scholar] [CrossRef] [PubMed]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Fredriks, A.M.; van Buuren, S.; Burgmeijer, R.J.F.; Verloove-Vanhorick, S.P.; de Wit, J.M. Groeidiagrammen 2010. Handleiding bij het Meten en Wegen van Kinderen en het Invullen van Groeidiagrammen; TNO: Leiden, The Netherlands, 2010. [Google Scholar]
- Northstone, K.; Emmett, P. Multivariate analysis of diet in children at four and seven years of age and associations with socio-demographic characteristics. Eur. J. Clin. Nutr. 2005, 59, 751–760. [Google Scholar] [CrossRef]
- North, K.; Emmett, P. Multivariate analysis of diet among three-year-old children and associations with socio-demographic characteristics. The Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC) Study Team. Eur. J. Clin. Nutr. 2000, 54, 73–80. [Google Scholar] [CrossRef]
- Patrick, H.; Nicklas, T.A. A review of family and social determinants of children’s eating patterns and diet quality. J. Am. Coll. Nutr. 2005, 24, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Statistics Netherlands (CBS). Level of Education. Available online: http://www.cbs.nl/en-GB/menu/methoden/toelichtingen/alfabet/l/level+of+education+1.htm (accessed on 12 February 2021).
- Stronks, K.; Kulu-Glasgow, I.; Agyemang, C. The utility of ‘country of birth’ for the classification of ethnic groups in health research: The Dutch experience. Ethn. Health 2009, 14, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Villar, J.; Cheikh Ismail, L.; Victora, C.G.; Ohuma, E.O.; Bertino, E.; Altman, D.G.; Lambert, A.; Papageorghiou, A.T.; Carvalho, M.; Jaffer, Y.A.; et al. International standards for newborn weight, length, and head circumference by gestational age and sex: The Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 2014, 384, 857–868. [Google Scholar] [CrossRef]
- Birch, L.; Savage, J.S.; Ventura, A. Influences on the Development of Children’s Eating Behaviours: From Infancy to Adolescence. Can. J. Diet. Pract. Res. 2007, 68, s1–s56. [Google Scholar]
- Powell, F.; Farrow, C.; Meyer, C.; Haycraft, E. The Stability and Continuity of Maternally Reported and Observed Child Eating Behaviours and Feeding Practices across Early Childhood. Int. J. Environ. Res. Public Health 2018, 15, 1017. [Google Scholar] [CrossRef]
- Cecil, J.E.; Palmer, C.N.; Wrieden, W.; Murrie, I.; Bolton-Smith, C.; Watt, P.; Wallis, D.J.; Hetherington, M.M. Energy intakes of children after preloads: Adjustment, not compensation. Am. J. Clin. Nutr. 2005, 82, 302–308. [Google Scholar] [CrossRef]
- Northstone, K.; Emmett, P.M. Are dietary patterns stable throughout early and mid-childhood? A birth cohort study. Br. J. Nutr. 2008, 100, 1069–1076. [Google Scholar] [CrossRef]
- Craig, L.C.; McNeill, G.; Macdiarmid, J.I.; Masson, L.F.; Holmes, B.A. Dietary patterns of school-age children in Scotland: Association with socio-economic indicators, physical activity and obesity. Br. J. Nutr. 2010, 103, 319–334. [Google Scholar] [CrossRef]
- Zhen, S.; Ma, Y.; Zhao, Z.; Yang, X.; Wen, D. Dietary pattern is associated with obesity in Chinese children and adolescents: Data from China Health and Nutrition Survey (CHNS). Nutr. J. 2018, 17, 68. [Google Scholar] [CrossRef]
- Brink, E.; van Rossum, C.; Postma-Smeets, A.; Stafleu, A.; Wolvers, D.; van Dooren, C.; Toxopeus, I.; Buurma-Rethans, E.; Geurts, M.; Ocké, M. Development of healthy and sustainable food-based dietary guidelines for the Netherlands. Public Health Nutr. 2019, 22, 2419–2435. [Google Scholar] [CrossRef]
- Rashid, V.; Engberink, M.F.; van Eijsden, M.; Nicolaou, M.; Dekker, L.H.; Verhoeff, A.P.; Weijs, P.J.M. Ethnicity and socioeconomic status are related to dietary patterns at age 5 in the Amsterdam born children and their development (ABCD) cohort. BMC Public Health 2018, 18, 115. [Google Scholar] [CrossRef]
- Gibney, M.J. Ultra-Processed Foods: Definitions and Policy Issues. Curr. Dev. Nutr. 2019, 3, nzy077. [Google Scholar] [CrossRef]
- Viskaal-van Dongen, M.; Kok, F.J.; de Graaf, C. Eating rate of commonly consumed foods promotes food and energy intake. Appetite 2011, 56, 25–31. [Google Scholar] [CrossRef]
- Jebb, S.A. Dietary determinants of obesity. Obes. Rev. 2007, 8 (Suppl. S1), 93–97. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e63. [Google Scholar] [CrossRef] [PubMed]
- Forde, C.G.; Mars, M.; de Graaf, K. Ultra-Processing or Oral Processing? A Role for Energy Density and Eating Rate in Moderating Energy Intake from Processed Foods. Curr. Dev. Nutr. 2020, 4, nzaa019. [Google Scholar] [CrossRef]
- Khandpur, N.; Neri, D.A.; Monteiro, C.; Mazur, A.; Frelut, M.L.; Boyland, E.; Weghuber, D.; Thivel, D. Ultra-Processed Food Consumption among the Paediatric Population: An Overview and Call to Action from the European Childhood Obesity Group. Ann. Nutr. Metab. 2020, 76, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Wiersma, R.; Hartman, E.; Boezen, H.M.; Corpeleijn, E. Adiposity and High Blood Pressure during Childhood: A Prospective Analysis of the Role of Physical Activity Intensity and Sedentary Time in the GECKO Drenthe Cohort. Int. J. Environ. Res. Public Health 2020, 17, 9526. [Google Scholar] [CrossRef] [PubMed]
- Olafsdottir, A.S.; Thorsdottir, I.; Gunnarsdottir, I.; Thorgeirsdottir, H.; Steingrimsdottir, L. Comparison of women’s diet assessed by FFQs and 24-hour recalls with and without underreporters: Associations with biomarkers. Ann. Nutr. Metab. 2006, 50, 450–460. [Google Scholar] [CrossRef] [PubMed]
Maternal Characteristics | n (%) 1 |
---|---|
Age, mean (SD) | 31.2 (4.2) |
Educational level | |
Low | 28.6 (368) |
Middle | 32.8 (422) |
High | 38.7 (498) |
Ethnicity | |
Dutch | 97.5 (1259) |
Other | 2.5 (32) |
Pre-pregnancy BMI, mean (SD) | 24.8 (4.7) |
Overweight % (n) | 38.5 (494) |
Parity | |
Multiparous | 39.6 (516) |
Smoking during pregnancy | |
Yes | 11.7 (152) |
Child characteristics | |
Sex | |
Male | 50.5 (660) |
Birth weight (g), mean (SD) | 3563.6 (557.0) |
Age at diet measurement (years), mean (SD) | 3.1 (0.4) |
Age at 3-year BMI measurement (years), mean (SD) | 3.1 (0.1) |
Age at 10-year BMI measurement (years), mean (SD) | 10.6 (0.5) |
BMI and overweight at 3 years (n = 938) | |
BMI, mean (SD) | 16.0 (1.2) |
Overweight (%, n); according to Cole and Lobstein [29] | 13.6 (128) |
Overweight (%, n); according to WHO [27] | 3.5 (33) |
BMI and overweight at 10 years (n = 938) | |
BMI, mean (SD) | 17.8 (2.8) |
Overweight (%, n); according to Cole and Lobstein [29] | 16.4 (154) |
Overweight (%, n); according to WHO [28] | 22.3 (209) |
Factor Loadings | ||
---|---|---|
Dietary Pattern 1 ‘Minimally Processed Foods’ | Dietary Pattern 2 ‘Ultra-Processed Foods’ | |
Water | 0.20 | −0.04 |
Vegetables | 0.61 | −0.17 |
Fruit | 0.18 | −0.22 |
Whole-grain bread | 0.28 | −0.65 |
Fish | 0.30 | 0.01 |
Sauces | 0.58 | 0.00 |
Potatoes, plain | 0.41 | 0.14 |
Eggs | 0.27 | 0.09 |
Fried and baked potatoes | 0.40 | 0.18 |
Savory dishes | 0.48 | −0.03 |
Chicken | 0.32 | 0.03 |
Meat | 0.43 | 0.29 |
Milk and buttermilk | 0.12 | −0.21 |
Dairy desserts | 0.23 | 0.07 |
Crisps | 0.26 | 0.41 |
Cheese | 0.28 | −0.18 |
Cakes and confectionery | 0.22 | 0.26 |
Butter and oil | 0.14 | 0.02 |
White bread | −0.15 | 0.64 |
Breakfast cereals | 0.16 | −0.12 |
Added sugar | 0.16 | 0.17 |
Sweet bread toppings | 0.05 | 0.05 |
Sugar-sweetened beverages | 0.14 | 0.34 |
Cookies | 0.24 | 0.27 |
Rice and pasta | 0.53 | −0.26 |
Vegetarian meat substitutes | 0.02 | −0.26 |
Porridge | 0.11 | 0.02 |
Soya milk products | 0.01 | −0.11 |
Nuts and raisins | 0.25 | 0.00 |
Crackers | 0.12 | 0.00 |
Savory snacks | 0.31 | 0.41 |
Dairy drinks with sugar | 0.04 | 0.34 |
Light drinks | 0.02 | 0.07 |
Nutrients | Pearson’s correlation coefficient | |
Total energy, mean (kcal/d) | 0.7 ** | 0.4 ** |
Protein (E%) | 0.3 ** | −0.2 ** |
Fat (E%) | 0.2 ** | 0.1 * |
Carbohydrates (E%) | −0.3 ** | 0.1 * |
Mono- and disaccharides (E%) | −0.2 ** | 0.1 ** |
Fiber (g/MJ) | 0.7 ** | −0.1 ** |
Overweight at 3 Years * | ||||||
---|---|---|---|---|---|---|
Model 1, Crude | Model 2, Adjusted | |||||
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Dietary pattern | ||||||
Pattern 1: ‘minimally processed foods foods’ | 1.07 | 0.89, 1.28 | 0.46 | 1.10 | 0.91, 1.33 | 0.31 |
Pattern 2: ‘ultra-processed foods’ | 1.02 | 0.85, 1.23 | 0.67 | 0.94 | 0.77, 1.15 | 0.54 |
Overweight at 10 Years * | ||||||
---|---|---|---|---|---|---|
Model 1, Crude | Model 2, Adjusted | |||||
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Dietary pattern | ||||||
Pattern 1: ‘minimally processed foods’ | 0.99 | 0.84, 1.18 | 0.94 | 1.03 | 0.86, 1.24 | 0.74 |
Pattern 2: ‘ultra-processed foods’ | 1.36 | 1.14, 1.61 | 0.001 | 1.30 | 1.08, 1.57 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirkka, O.; Fleischmann, M.; Abrahamse-Berkeveld, M.; Halberstadt, J.; Olthof, M.R.; Seidell, J.C.; Corpeleijn, E. Dietary Patterns in Early Childhood and the Risk of Childhood Overweight: The GECKO Drenthe Birth Cohort. Nutrients 2021, 13, 2046. https://doi.org/10.3390/nu13062046
Sirkka O, Fleischmann M, Abrahamse-Berkeveld M, Halberstadt J, Olthof MR, Seidell JC, Corpeleijn E. Dietary Patterns in Early Childhood and the Risk of Childhood Overweight: The GECKO Drenthe Birth Cohort. Nutrients. 2021; 13(6):2046. https://doi.org/10.3390/nu13062046
Chicago/Turabian StyleSirkka, Outi, Maria Fleischmann, Marieke Abrahamse-Berkeveld, Jutka Halberstadt, Margreet R. Olthof, Jacob C. Seidell, and Eva Corpeleijn. 2021. "Dietary Patterns in Early Childhood and the Risk of Childhood Overweight: The GECKO Drenthe Birth Cohort" Nutrients 13, no. 6: 2046. https://doi.org/10.3390/nu13062046
APA StyleSirkka, O., Fleischmann, M., Abrahamse-Berkeveld, M., Halberstadt, J., Olthof, M. R., Seidell, J. C., & Corpeleijn, E. (2021). Dietary Patterns in Early Childhood and the Risk of Childhood Overweight: The GECKO Drenthe Birth Cohort. Nutrients, 13(6), 2046. https://doi.org/10.3390/nu13062046